
Kybernetika

Jan Šebelík
Horn clause programs and recursive functions defined by systems of equations

Kybernetika, Vol. 18 (1982), No. 2, 106--120

Persistent URL: http://dml.cz/dmlcz/124459

Terms of use:
© Institute of Information Theory and Automation AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124459
http://project.dml.cz

KYBERNETIKA- VOLUME 18 (1982), NUMBER 2

HORN CLAUSE PROGRAMS AND RECURSIVE
FUNCTIONS DEFINED BY SYSTEMS OF EQUATIONS

JAN SEBELlK

Every recursive function can be defined by a system of equations. In this paper, we describe
an algorithm which transforms every such a system into a Horn clause program computing the
same function. On the other hand for a Horn clause program, the corresponding system of
equations is constructed. In the end, some syntactic properties of Horn clause programs obtained
from a system of equations are discussed.

In his paper [6], Tarnlund introduced the concept of binary Horn clause programs
and, in [7], he used binary Horn clause programs to simulate the behavior of a Uni
versal Turing machine as one of the formalisms for algorithms.

In [4], we introduced the concept of stratifiable Horn clause programs. Stratifiable
programs were suggested by a natural hierarchy of partial recursive functions with
some basic functions at the bottom and generating new computable functions by
the operations of composition, primitive recursion and minimization. We constructed
a stratifiable Horn clause program for every computable function by induction on
recursive functions. It was shown that these programs and binary Horn clause
programs are close to each other in the following sense: every stratifiable Horn
clause program can be transformed into a binary Horn clause program computing
the same function and vice versa.

At Logic Programming Workshop, Debrecen (Hungary), July 80, Robert Kowalski
raised the question of interpreting systems of equations and deducibility from
them (viz. [2]) by means of Horn clause programs. In this paper, we shall describe
an algorithm which transforms every system of equations into a Horn clause program
computing the same functions. In this construction, every equation of the system is
transformed into a Horn clause. The resulting program is obtained as the collection
of these clauses. On the other hand, it will be shown that for every Horn clause
program there is a system of equations defining the same functions. Moreover, we
shall discuss some syntactic features of Horn clause programs obtained from a system
of equations and, in the end, a certain syntactic characterization of Horn clause
programs computing primitive recursive functions will be introduced.

106

0. PRELIMINARIES

Concepts of Horn Logic

Throughout the paper, we shall use the standard concepts and notations of Horn
Logic. We refer the reader to [3], [7] for a more detailed exposition. We shall deal
with first-order languages containing only two function symbols 0 and S, where 0 is
a constant interpreted as zero and S is an unary function symbol interpreted as the
successor function S(x) = x + 1. The terms of this language we call arithmetical
terms, variable-free terms 0, S(0), SS(0),... we call numerals and we identify them
with natural numbers 0, 1, 2 ,

A clause is a disjunction of literals, i.e. a disjunction of atomic formulas and of
negations of atomic formulas. Horn clause is a clause with at most one positive
literal, an assertion is a Horn clause with exactly one positive literal and no negative
literal. We call Horn clause program every set of Horn clauses with exactly one posi
tive literal.

The Resolution principle with unification as a pattern matching algorithm is the
only Inference Rule of so called Horn Logic.

If & is a Horn clause program and C0 is a goal statement, i.e. a Horn clause with
no positive literal, the sequence C0, C l 5 . . . , C„ of goal statements is called deduction
of CH from 0> and C0 provided that for every ;', Ci + 1 is the resolvent of of C; and
a clause D from 0 such that the leftmost atom of Ci and the only positive atom of D
are the literals the clauses C; and D are resolved upon. It follows from the properties
of Linear Ordered Resolution (viz. [l]) and from the fact that every Horn clause
program is a satisfiable set of clauses that 0 u {C0} is not satisfiable iff there is a de
duction starting with C0 and refuting 0 and C0, i.e. deduction of an empty clause
(denoted • , interpreted as false) from 0 and C0. To find such a refutation one has
to use a complete search strategy. We shall write 0, C,- I— Cj to say that the goal
statement C, is deducible from C; and 0. If A is a ground atom (i.e. a variable-free
atomic formula), we shall write & V- A instead of 0, *- A h- • («- A is the notation
of the goal statement consisting of the only negative literal non-A).

The following easy lemma is used in our proofs.

Lemma 1. Let 0 be a Horn clause program, A a ground atom. Let C be a clause
from 0 of the form A' «- Bu ..., B„ such that A and A' can be unified by a most
general unifier a.

Then 0 \- A using C in the first step of the refutation iff there is a substitution n
such that 0 V- B,on holds for every i — 1, . . . , n, all Bxar\ being ground atoms.

Kleene's formalism for recursive functions

Kleene, [2], described a formal system for recursive functions. Let us recall some
basic concepts.

107

The formal symbols of the Kleene's system are as follows: = (equals), S (successor),
O(zero), x, y, z, ..., xu x2, ... (variables for natural numbers), /, g, h, ...,fuf2, ...
(function letters, i.e. symbols for unspecified functions). Potentially infinite lists
of variables and functions letters are supposed to be given.

The symbols f, g, h, ...,fuf2, ... are called "function letters" rather then
"function symbols". We adopt this name to distinguish them from 0 and S.

The ferms are 0, the variables, and expressions of the form St or f(tu ..., t„) where/
is a function letter and t, tu ..., t„ are terms.

An equation is defined as a formal expression r = s where r, s are terms. The
equations are the only formulas for Kleene's system. A system of equations is
a finite nonempty set of equations.

In the system there are two inference rules.

Rl is a one-premise rule applicable to an equation r = s containing a variable y.
This rule allows to pass from the original equation to an equation resulting
from r = s by substituting a numeral b for y.

R2 is a two-premise rule applicable to variable-free equations r = s and
h(au ..., A„) = b where h is a function letter and au ..., a„, b are numerals. This
rule allows to pass from the original equations to an equation resulting from
r = s by replacing all occurrences of h(au ..., a„) in s by b simultaneously.

A deduction of an equation e (the endequation of the deduction) from a system E
of equations is a sequence eu ..., e„ where e„ is e and for all i = I, ..., n, et is from E
or e,- results from some ep i < i, using Rl, or e ; results from some e}, ek, j , k < i,
using R2.

If there is a deduction of e from E, then e is deducible from E (in symbols E \— e).

Example 1. Let E consist of h(x, y) = 7, /(0) = 4, f(Sx) = h(x,f(x)). We shall
demonstrate the deduction of f(2) = 7 from E.

0) f(Sx) = h(x,f(x)) belongs to E

(2) f(2) = h(l,f(iУ) Rl to (/)

(3) f(í) = h(0,/(0)) Rl to (1)

(4) / (0) = 4 belongs to E

(*) / (l) = h(0;4) R2 to (3), (4)

(6) h(x, y) = 7 belongs to E

(7) h(0, y) = 7 Rl to (6)

(*) /i(0, 4) = 7 Rl to (7)

(9) f(l) = 7 R2 to (5), (8)

(ю) f(2) = Чl>7) R2 to (2), (9)

(n) Л(1,J0 = 7 Rl to (6)

(12) h(l,7) = 7 R2 to (11)

(iз) f(2) = 7 R2 to (10), (12)

108

Note. Our aim is to deduce endequations of the form f(ax, ..., a„) = b where /
is a function letter and ax,...,a„,b are numerals. It can be seen that if
E (- / (« ! , •.., fl„) = b then the corresponding deduction contains only such equations
whose left-hand sides consists of terms containing exactly one function letter; this
function letter appears as the leftmost symbol. It follows from the fact that using R2
only term s in r = s can be modified.

Therefore throughout the paper, we shall permit equations with only such terms
on the left-hand side, which contain exactly one function letter as the leftmost
symbol.

It can be shown that given a partial recursive function <p, there can be found
a system E of equations and a function letter / corresponding to cp such that for all
numerals au ..., a„, b

Eh-f(a1,...,a„) = b iff q>(au ..., a„) = b .

Proof goes by induction on the hierarchy of partial recursive functions. Basic
functions, i.e. zero function, the successor function and the projection on the i-th
coordinate, are defined by the systems {f(x) = 0}, {/(x) = Sx), and {f(xx,..., x„) =
= X,) respectively.

Given systems of equations for functions g, gx,..., gk, h, the functions obtained
by composition, primitive recursion and minimization are defined by adding the
systems

{/(*,.,..., x„) = % , (* ! x„),.... gk(xx,..., X„))} ,

{/(0,x2 , . . . ,x„) = g-(x2,...,x„),

f(Sxx, x2, ..., x„) = h(xx, ..., x„,f(x1, ..., x„))} and

{k(x, y, 0) = y, k(x, y, Sz) = k(x, Sv, g(x, Syj), f(x) = k(x, 0, g(x, 0))}

to the original systems defining the given functions respectively. (In the above con
struction, / is a function letter corresponding to the defined function, k is a new
auxiliary function letter.)

It can be shown by induction on appropriate variables that the above construc
tions of systems of equations have the announced property.

Remark 1. We say that a system E of equations defines function/iff for all numerals
alt..., a„, bx, b2

E h- f(ax,..., a„) = bx and E \~ f(ax,..., a„) — b2 implies bi=b2.

A system of equations defines in general rather a recursive predicate then a function.
It will be shown later that these predicates strictly correspond to atomic formulas
of Horn Logic. Note that it cannot be effectively decided, whether an arbitrary system
of equations defines a function or not.

109

1. SYSTEMS OF EQUATIONS AND HORN CLAUSE PROGRAMS

In this section, it will be shown that

a) every system of equations can be transformed into a Horn clause program
computing the same functions and

b) every Horn clause program in the language of arithmetic can be transformed into
a system of equations defining the same functions.

These facts are strictly formulated in Theorem 1 and Theorem 2.

Construction 1. Let e be an equation of the form g(s) = t where s is an appropriate
tuple of arithmetical terms, t is an arbitrary term. We shall construct a clause called
translation of e, as follows.

If / contains some term ht(rt), where h1 is a function letter and r1 is an appropriate
tuple of arithmetical terms, then we replace e by the couple of equations

9(s) = ti , 'ti(fi) = - i

where z1 is a new variable not occurring in e and tt is obtained from t by replacing

all occurrences of fti(ri) in t by zv

This process is repeated until we have a system of equations

g(s) = tk, hx(rt) = z 1 ; . . . , hk(rk) = zk,

where tk is an arithmetical term, ht are function letters and rL are appropriate tuples
of arithmetical terms, i = 1, ..., k.

Now, let for i = 1, . . . , k, G, Ht be predicate symbols corresponding to functions
letters g, ht respectively. The translation of e.is the clause

G(s,tk)^H1(r1,z1),...,Hk(rk,zk).

If £ is a system of equations, we call HC-translation of E the Horn clause program
consisting of the translations of all equations from E.

Example 2. Let e be g(Sx, y) = Sh(Sf(x), g(Sx, Sf(x))). The right-hand side of e

contains the term f(x). We get

g(Sx, y) = S/J(SZ1; g(Sx, z:)), f(x) = zx

g(Sx, y) = Sh(Szv z2), f(x) = zt , g(Sx, zx) = z2

g(Sx, y) = Sz3 , f(x) = zt , g(Sx, z.) = z2 , h(Szv z2) = z3 .

The translation of e is

G(Sx, y, Sz3) <- F(x, zt), G(Sx, zu z2), H(Szu z2, z3).

Remark 2. We can see that for an n-ary function letter / , the corresponding
predicate symbol F is of the arity n + 1, hence F is at least unary. Note that if t is

110

where D is a Skolem form of the negation of C
Since the negation of C is

an arithmetical term then fc = 0 and the translation of e is the assertion G(s, t) <-.
Note that for fc > 0, zk occurs in tk.

Lemma 2. Let E be a system of equations, let 0> be a HC-translation of E.
Then for every variable-free equation e holds:
if e is deducible from E then the translation of e is deducible from 0>,
provided that the correspondence between function letters in E and predicate

symbols in 0> is the same as the correspondence between function letters in e and
predicate symbols in the translation of e.

Proof. Let e be a variable-free equation of the form/(a) = r, where a is an ap
propriate tuple of numerals and r is a variable-free term.

Let C be the translation of e of the form

F(a,t)^H1(t1,z1),...,Hk(tk,zk)

where tx, ...,tk are appropriate tuples of arithmetical terms, zx, ..., zk are variables,
t is an arithmetical term. Denote C the universal closure of C.

We say that C is deducible from 3? if

(i) g>,Dv-u

kolem form of the negation of C.
gation of C is

(3z1)...(3zk)(lF(a, t)&Hl(t1, z,)& ... &Hk(tk, zk)),

we have
<- E(a, t')&#i(ti> Cl) <- & . . .& Hk(t'k, ck) <-

for D, where C; are Skolem constants and t', t\ are obtained by substitution c; for zf

in t, tj respectively. (Let us recall that for fc > 0, zk occurs in t).
In other words, (1) is equivalent to

0> u {Hlt\, c;) <-; i = 1, ..., fc} h- F(a, f) .

We shall prove Lemma 2 by induction on the length of the deduction of e.
1. The case e e E is trivial because C e SP.
2. a) Let E\- e' and e be obtained from e' using Rl.

Then the translation C of e' is deducible from 3P according to induction hypothesis
and C is an instance of C . Hence C is deducible from SP.

b) Let e be obtained from (variable-free) equations eu e2 using R2, E I— eu

E \- e2.
Then

ex is of the form j(a) = r ' ,

e2 is of the form g(b) = d ,

where r' is a variable-free term, 6 is an appropriate tuple of numerals, d is a numeral,

111

and g(b) occurs in r', r being obtained by replacing all occurrences if g(b) in r' by d.
The translations Cu C2 of eu e2 have the forms

(2) F(a, t) <- G(b, z 0) , H.(t"u _ .) , . . . , Hk(t'k\ zk),

(3) G(b, d) <- respectively ,

where for i = 1,. , . , k, tt are obtained by substituting d for _0 in t'[. It follows from
the induction hypothesis that Cls C2 are deducible from 0>. Hence 0 u \CU C2}
is a conservative extension of 0>. We shall conclude the proof by showing that C
is deducible from 0> u {Cj, CJ.

We start the refutation from

<— F(a, t') and we get

<- G(b, z0), Jf.(fJ, Z l) , ..., Hk^{t'U, zk_t), Hk(t'l, ck) using (2),

<- H,(tu z,), ...,Hk_,(/t_,, _ 4 _,) , f/^fc, c,) using (3) ,

and
D using the clauses Ht(t\, c,) <- for i = l , fe .

This completes the proof of Lemma 2.

Lemma 3. Let E be a system of equations, 0> be a HC-translation of E. Let E be
the predicate symbol corresponding to a function letter/from E.

Then for all numerals (au ..., a„) = a and b,

if &> h- Effl, _) then E H / (a) = & •

Proof. We shall prove Lemma 3 by induction on the length of the deduction of
0>, <- E(fl, b) h- D, which is equivalent to 0> h- E(fl, b).

1. Let &>, <- F(a, b) \- D in exactly one resolution step. Then for some arithme
tical terms t, (s 1 (. . . , s„) = s the assertion E(s, /) <- belongs to SP and E(a. b) is
unifiable with E(s, f). Hence /(s) = t belongs to E and E I- f(a) = b using Rl
several times.

2. Let ^ , <-E(a, fo) I- D in one resolution step using some clause C from 0> and
an unifier a.

Let _», D i- D.

Clearly, C is a translation of some /(s) = r of E and C is of the form

F(s>t)*-H1(tuz1),...,Hk(tk,zk),

where tu •••,tk are appropriate tuples of arithmetical terms, zx, ..., zk are variables,
zfc occurs in the arithmetical term / and Hu ..., Hk are the predicate symbols cor
responding to function letters hu ..., /?,. occurring in r, respectively.

Hence D is of the form
< - H 1 (* 1 , Z 1) £ 7 , , _ . i (^ _ i) (T

112

and using Lemma 1 we have

3? \- Hi(t„ z-j) aif for i =-- \,..., k and some substitution ?/,

Ht(th z;) a^ being ground atoms.
Let ?;<x>7 be c;, z;<r>7 be dh rat] be r'. It follows from the induction hypothesis that

E (- hj(ci) = d,. Using Rl several times, f(a) = r' can be deduced from f(s) = r.
Now, hi(cj) occurs in r' and applying R2 to f(a) = r' and /J(CJ) = dt we have

/ («) = i\ where r, is obtained by replacing h(cx) by dx in ;•'; /?2(c2) = d2 occurs in rt

and applying R2 again to f(a) = r, and /;2(c2) = d2, we obtain / (a) = r2.

Repeating this process, we get / (a) = r t, but r& is tarj and ftr̂ is b.

We have E h- f(a) = b.

Now, the first part of the relationship between Kleene's formal system for recursive
functions and Horn clause proframs can be stated as follows.

Theorem 1. Let E be a system of equations, let 5s be a HC-translation of E, let E

be the predicate symbol corresponding to a function letter/from E.

Then for every tuple a of numerals and every numeral b,

(4) E h f(a) = b iff 0>V- F(a, b).

Proof. One implication is formulated in Lemma 3. The other implication is a par
ticular case of Lemma 2. Namely, using Lemma 2 for f(a) = b, the corresponding
translation is F(a, b) <~ and the right hand side of (4) follows.

Example 3. Let us have the system E of equations for Example 1. The HC-transla
tion of E is a Horn clause program 0* consisting of the clauses

H(x, y,l)*~, E(0, 4) «- , F(Sx, z) «- F(x, y), H(x, y, z).

We shall demonstrate the deduction &" \- E(2, 7).

- E (2 , 7)

<-F(\,y), H(\,y,l)

< - E (0 , /) , H(0,y',y), H(V,y,l)

<-i/(0, 4, y), H(l, y, l)

*-H(l,l,7)

D
Note that Theorem 1 holds for all systems of equations, not only for the systems

defining functions (viz. Remark 1). For every system of equations, Theorem 1 gives

a Horn clause program satisfying (4).
Now, for every Horn clause program, we shall construct a system of equations of

the same properties as above.

113

Construction 2. Let SP be a Horn clause program, every predicate symbol occurring
in SP being at least unary.

Let £ be a system of equations obtained as follows. We call £ the E-translation
ofSP.
(i) whenever G(s, t) <- is an assertion of SP, then

g(s) — t belongs to £.
(ii) whenever G(s, t)«- £t1(s1, r,), ..., H.jsiC, ft) is a clause of j ^ , then the couple of

equations

g(s) = 0'(s.,/ . ,($.),. . . , s4, fct(s4)),
a'fsj, (., ..., sk, rs) = / belongs to £,

In (i), (ii), s, s., ..., s4 are tuples of arithmetical terms,
t, rl5 ..., rt are arithemtical terms,
g, hlt..., hk are functions letters corresponding to predicate symbols

G, Ht, ..., Hk respectively, and g' is an auxiliary function letter.

Theorem 2. Let SP be a Horn clause program, every predicate symbol of SP being
at least unary. Let £ be the E-translation of SP.

Then for every predicate symbol £ of SP, every tuple a of numerals and numeral b,

0> h- F(a, b) iff Eh- f(a) = b ,

f being the function letter corresponding to £.

Proof. Let SP' be a HC-translation of E. We shall suppose that every predicate
symbol of SP occurs in SP' in a natural way, i.e. if a function letter g of £ corresponds to
some G of SP then G of SP' corresponds to g.
It follows from Theorem 1 that

E h / (a) = b iff 0" (- F(a, b) .

We shall show that

(5) SP h- F(a, b) iff ^ ' h F(a, b)

for all £ form 0>.
First shall show that every clause of SP is deducible in SP'. Let C be a clause from SP

of the form

(6) G(s,t)^H1(s1,t1),...,Hk(sk,tk)

where s, s l 9 . . . , sk are tuples of arithmetical terms,
t, tu ..., tk are arithmetical terms.

If k = 0 then C is an assertion and g(s) = t belongs to £ due to (i) of the Construction

2. It follows from Remark 2 that C belongs to 0>'.

Let k > 0, let e,, e2 are the equations obtained from C due to (ii) of the Construc
tion 2.

114

The translations of el, e2 have then the forms

G(s, z) <- Ht(su z,), ..., Hk(sk, zk), G'(si, - , , . . . , sk, zk, z),

G'(st, tu ...,sk, tk,t) <~ ,

where zt,..., zk, z are variables. These two clauses belong to 0'. They can be resoved
using the unifier {z,/f„ z/f} and C is the resolvent of them. Hence C is deducible
from 0'.

We have: every clause C .of 0 is deducible from 0'. This gives one implication
from (5).

To prove the other implication, let 0' h- F(a, b), F occurs in 0. We shall show
0> h- F(a, b) by induction on the length of the refutation 0', <-F(a, b) h- D-

1. If <-F(a, b) can be refuted from 0' in one step then it can be refuted from 0
in one step, too, as Horn clause programs 0 and 0' have exactly the same as
sertions, with the exception of the assertions for auxiliary functions letters, which
follows from Construction 1 and Construction 2.

2. Let

0', <-F(a, b) h- <-Ht(st, zt) o,..., Hk(sk, zt) o, F'(Sl, zt, ..., sk, zk, z) o

h - . - . h - D
using a clause

E(s, z) <- Ht(Sl, zt), ..., Hk(sk, zk) , F'(st, zt, ..., sk, zk, z)

from 0' in the first step of refutation.

It follows from the construction of E and 0' that for some arithmetical terms
t, ti,-.., tk,

F'(st, tt,..., sk, tk, t) <- belongs to 0' and

E(s, i) <- Hfa, tt), ..., Hk(sk, tk) belongs to 0 .

It follows from Lemma 1 that there exists a substitution ^ such that

0' h- Hi(sh z,) o^ for i = 1, . . . , k and

F'(st, zt,..., sk, zk, b) o^ is E'(s1(tt, ..., sk, tk, t) o^ ,

all Ht(Sj, Z;) o^ are ground instances of -fffs,-, ?,),

b is to^ and a is sorj.

It follows from the induction hypothesis that

0 h Hi(sh z,) o^ for i = 1 , . . . , k.

Hence E(a, ft) can be unified with E(s, f) using the unifier o^ and 0 h- E(a, ft) using

Lemma 1.

This completes the proof of the theorem.

115

Example 4. Let SP be a Horn clause program consisting of

F(x, Sz) «- G(x, S«), //(z, x)

G(2, 1) «-

#(0,3') - •

The E-translation of 3P consists of

(7) f(x)=f'(x,g(x),z,h(z))

(2) f'(x, Su, z, x) = Sz

(3) S(2) - 1

(4) h(0) = >•.

It is easy to see that 3P \- F(2, l). We shall demonstrate the deduction of £ I- j(2) =
= 1.

(5) f(2)=f'(2,g(2),0,h(0)) R1 to (1), twice

(ó) f(2)=f'(2,\,0,h(0)) R2 to (5), (3)

(7) h(0) = 2 Rl to (4)

(S) Д 2) = Д 2 , 1 , 0 , 2) R2 to (6), (7)

(9) f'(2, 1, 0. 2) = 1 Rl to (2), three times

(10) j(2)=l R2 to (8), (9)

In Section 1, we have described natural transformations of systems of equations
into Horn clause programs and vice versa. This shows a close link between these
formalisms for recursive functions or predicates. This link is reflected both between
equations and Horn clauses and between the deduction mechanisms.

2. SOME SYNTACTIC FEATURES OF HORN CLAUSE PROGRAMS

We say that a Horn clause C is a TE-clause if there is an equation e such that C
is the translation of e according to Construction 1.

Lemma 4. Let C be of the form

G(s,t)^H1(s1,t1),...,Hh(sk,tk),

where s, s1, ..., sk are tuples of arithmetical terms,
t, tu ..., tk are arithmetical terms, k > 0.

Then C is a TE-clause iff

(i) f; are pairwise different variables not occurring in s
(ii) /; does not occur in Sj for j g ;'

(iii) for i 4= k, t, occurs in some sJt j > i
(iv) tk occurs in t
Note that for k = 0, C is ever a TE-clause.

116

Proof. It follows from Construction 1 that if C is TE-clause then (i)-(iv) hold.
Let (i)-(iv) hold.
Let e0 be j(s) = /. Let us have hu ..., hk as function letters corresponding to

Hu...,Hk.
Let for i = 1, ..., k, e, be j(s) = r, where r. is obtained by substituting

/ift_I + 1(s l t_ ;+1) for tk^i + l in r,___, r0 being /. Note that the variables /,._,- occur
in rt, tk occurs in r0.

It can be shown that C is the translation of ek. We shall demonstrate it in Example 5.

Example 5. Let C be G(Sx, y, Sz3) <- F(x, z..), G(Sx, Sz1; z2), / /(Sz^ z2, z3).
For C, (i)-(iv) hold, /c = 3. We have
e0 g(Sx, y) = Sz3

... _(Sx, y) =_ Sh(Sz,, z2)

e2 _ (Sx ,y)= S/i(Sz1; A(SX, Sz,))

e3 g(Sx, y) = Sn(Sj(x), g(Sx, Sj(x)))

It was shown in Example 1 that C is the translation of e3.

Remark 3. Suppose that hu ..., hk are function letters occurring in a system E
of equations. Let the functions corresponding to hu ..., hk be primitive recursive.
Suppose that j is a new function letter, x is a variable, y is a tuple of variables.
Let j(0, y) be expressed in terms of y, hu ..., hk as a function of y, let j(Sx, y) be
expressed in terms of x, y, hu ..., hk, and fix, t) as a function of /. It is known (viz
[2], § 55) that the function corresponding to / is then primitive recursive.

We shall formulate a similar fact as above for Horn clause programs. To express
an analogy for a hierarchical definition of a primitive recursive function, we shall
recall the notion of computation tree for a Horn clause program SP and predicate
symbol F, introduced in [5].

Let SP be a Horn clause program, F a predicate symbol occurring in SP. An
AND/OR tree T is called a computation tree for SP and F provided that
(i) the OR-nodes of T are labelled by predicate symbols from SP or by the empty

clause, and AND-nodes of T are labelled by clauses from SP.
(ii) the root of T is an OR-node labelled by F.

(iii) if n is an OR-node of T labelled by a predicate symbol Q, the successors of n
are AND-nodes labelled by all clauses whose head contains Q.

(iv) if n is an AND-node of T labelled by a clause C, the successors of n are OR-nodes
labelled by the predicate symbols occurring in the body of C, if C is an asser
tion, the only successor of n is an OR-node labelled by the empty clause.

Given a program SP and a predicate symbol F, computation tree T for SP and F
may be infinite. A reduced computation tree for SP and F is the maximal subtree T
of T such that the root of T coincides with the root of T and no branch of T'
containes a pair of END-nodes labelled by the same clause. Note that the reduced
computation tree is finite.

117

Example 6. Let a Horn clause program 0 be of the form

(!) F () < -

(-) I -eO,G()
(3) ß()«-
00 ß()«-ß().-
(5) G()-П),G()
(6) G () -

The reduced computation tree for 0 and F is illustrated below.

F

G

Now, we shall introduce the concept of level-founded programs. A Horn clause
program 0 is called level founded with respect to a predicate symbol F occurring
in 0 if on every branch of the reduced computatin tree for 0 and F there is no
OR-node between two OR-nodes labelled by the same predicate symbol. A Horn
clause program is said to be level-founded if it is level founded with respect to all
predicate symbols occurring in it.

Remark 4. It can be seen that 0 is level-founded iff there is a maping s that assigns
a natural number to every predicate symbol in 0 such that for every clause G() «-
+- H J O , ..., Hk() from 0, s(Ht) > s(G) provided that H, is not G.

Note that the Horn clause program from Example 6 is not level founded. It is

level founded with respect to no predicate symbol occurring in it.

Theorem 3. Let a Horn clause program 0 be level-founded with respect to F.

Let every clause of 0 be a TE-clause of the form

G(s,t)*-H1(s1,z1),..„Hk(sk,tk),

any variable occurring in tuples su ...,sk of arithmetical terms or in arithmetical
term t being either one of z 1 ; ..., zk or from the tuple s of arithmetical terms.

Let every OR-node of the reduced computation tree for 0 and F have
either exactly one AND-successor labelled by a clause of the above form, such that

s = (x, y) and Ht are different from G,

118

or exactly two AND-successors labelled by clauses Ct, C2 of the above form,
such that
for Cj, s = (0, y) and Ht are different from G,
for C2, s = (Sx, y) and if Ht is G then s, = (x, ?•,),

where x is a variable, y is a tuple of variables, and ?-,- are arbitrary tuples of arithmetical

terms.

Then there is a primitive recursive function cp corresponding to F, i.e. for every

numeral b and every tuple a of numerals,

(p(a) = b iff 9 !- F(a, b) .

It is easy to see (viz. [4], [5]) that every primitive recursive function may be specified
by a Horn clause program of the above properties.

Sketch of proof. The proof goes by induction on the heigth of the reduced
computation tree for 0> and F.

Let £ be a system of equations such that SP is a HC-translation of E. It can be seen
both for the basis of induction and for the induction step, that the equations from E,
which define the function corresponding to F from lower level functions, satisfy
the conditions of Remark 3. Hence, the function corresponding to F is primitive
recursive.

Remark 5. It seems that Theorem 3 can be generalized for k-recursive functions
in the way of permitting recursions on more variables. Theorem 3 would be a par
ticular case of such a theorem. As we find such a generalization to be neither in
teresting nor important, we leave it.

Remark 6. For every Horn clause C, the conditions (i) — (iv) in Lemma 4 are equi
valent to C being a TE-clause. Theorem 3, after replacing the assumption that every
clause of W is a TE-clause by (i) — (ii) from Lemma 4, keeps true.

ACKNOWLEDGEMENT

The author is very grateful to Dr. Petr Stepanek for the valuable questions and comments he
has made during the formation of the paper.

(Received May 27, 1981.)

R E F E R E N C E S

[1] C. L. Chang, R. T. C. Lee: Symbolic Logic and Mechanical Theorem Proving. Academic
Press New York 1971.

[2] S. C. Kieene: Introduction to Metamathematics. North-Holland Publishing Co. — Amstero-
dam, P. Noordhoff N. V. — Groningen 1967.

[3] R. Kowalski: Logic for Problem Solving. North-Holland, New York 1979.
[4] J. Sebelik, P. Stepanek: Horn clause programs suggested by recursive functions. In: Prcceed-

119

ings of the Logic Programming Workshop (S. Á. Tárnlund, ed.), Debrecen (Hungary),
July 14-16, 1980.

[5] J. Šebelík, P. Štěpánek: Horn clause programs for recursive functions. Preprint, 1980.
[6] S. A. Tárnlund: Logic Information Processing. TRITA-IBADB-91029, 1975-11-24, Dept.

Comp. Sci., Royal Institute of Tech., Stockholm 1975.
17] S. A. Tárnlund: Horn clause computability. BIT 17 (1977), 215-226.

Jan Šebelík, Ústav pro využiti výpočetní techniky v řízení (Institute for Application of Com
puting Technique in Control), Revoluční 24, 110 00 Praha 1, Czechoslovakia.

120

		webmaster@dml.cz
	2012-06-05T09:50:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

