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KYBERNETIKA- VOLUME 19 (1983), NUMBER 1 

ON A HYBRID EXPERIMENTAL DESIGN 

JAROSLAVA MIKULECKÁ 

/ 
?E km/14. m3, tfZt, 

A hybrid design simultaneously provides information about both the supposed regression 
model and the hypothesis that the model is adequate. The hybrid design criterion is defined and 
an algorithm for the construction of hybrid optimal design is given. 

I. INTRODUCTION 

In statistical data processing, the basic problem is the correct choice of the mathe
matical model of the experiment and the problem of optimal parameter estimation 
in this model. Designing experiments, optimal (in some sense) for simultaneous 
model discrimination and parameter estimation, present thus an actual problem. 
This joint interest in discrimination and estimation was treated in several papers 
([l], [2], [3], [4], [5], [7], [8], [17]) where the authors suggested various hybrid 
optimality criteria. In oui paper we give an extension of the criterion defined by 
Stigler [17] and we give an algorithm for the construction of hybrid optimal designs. 

We shall consider the following structure of regression experiment. On a compact 
metric space X, m + 1 linearly independent continuous functions jl5j2, . . .,jm + 1 

are given. For each x e X can be performed an elementary experiment whose outcome 
is a random variable y(x) with the mean 

(1-1) E(y(x))=mi\ifi(x)^^'f(x) 
i = i 

where a = (a., a2, ..., a„1+1)', f(x) = (fi(x), f2(x), •••,fm + i(x))' and the variance 
c\y(x)) m 1. 

The parameters a., a2, •••> am + i are unknown and they have to be estimated 
from uncorrelated measurements performed in different points of X. 

A design is a probability measure £ on X supported by a finite set. (£(x) is pro-

1&1/H, 
P 



portional to the number of repeated uncorrected observations performed in x.) 
An information matrix of the design £, is 

(1.2) A-tf) = I / M / W W 
xeX 

The set of all information matrices we call 9J1, the set of all designs we call 3 . 
Let N independent measurements of y(x) be made at the points xu x2,..., xN in X. 

Assuming that M is nonsingular, it is well known that the covariance matrix of the 
best linear unbiased estimator of a is 

(1.3) cov(5) = ^ M - > ( 0 

For a fixed total number of measurements, N, it would be desirable to allocate the 
measurements so that the covariance matrix cov (a.) is small in terms of some prefe
rence function <P. The choice of the function of M~x to minimize has important 
practical implications and depends on the aim of the experiment. 

Throughout the paper we assume that # is convex and bounded below on 9H 
and that it is differentiable in the space of all nonnegative definite (m + l) x (m + l) 
matrices. The (m + l) x (m + 1) matrix \4> is defined as 

d.4) w, - *& 
d{M)i} 

If # satisfies the condition 

(1.5) &{M) < oo o M is nonsingular 

then it is said to be a global criterion function. 

2. A HYBRID DESIGN 

Let the model for the expected response be 

(2.1) E(j;(x)) = f « i / j ( x ) = a< 1 " / ( 1 , W 
i= l 

where 
a(1) = ( « l t a2> •••> am)' 

fW = (fuf2,:;fm)' 

The model (2.1) adequacy can be tested by embedding (2.1) in the more general 
model 

(2.2) E(y{x)) = i\ft(x) = «'/(*) 
> = i 
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where 
a = (a1?a2, ..., am + 1) ' 

f=(/i,/2>-.-,/m + i ) ' 
and testing the hypothesis 

IIo : am+i = 0 against the alternative hypothesis 

Hx :am + 1 * 0 

The power of the F-test of the hypothesis H0 depends on the value [var (am + 1 ) ] _ 1 

(see [2]). In order to detect departures from the model (2.1), experiments should be 
planned to give small values of the quantity var(am + 1) . These designs, providing 
a good check on the adequacy of the model, may give poor estimates of the oiiginal 
parameters a(1) if the model (2.1) is actually adequate. Therefore it is appropriate 
to ask the hybrid design to optimize the parameter's estimate in the original model 
(2.1) subject to an upper bound on the value of var(am + 1), e.g. var(am + 1) g c. 
Let c0 be the minimal possible value of the var (am+ j). Then the efficiency of some 
design £, for estimating am+1 is (see [ l ] , [2]) 

(2-3) e(am + 1 | ^ ) = c° -
var(am + 1 | £ ) 

The hybrid optimal design then minimizes some optimality criterion in the model 
(2.1) subject to lower bound on the value of the efficiency for estimating a,„+1. 

The matrix Me 9Jt can be partioned into submatrices (as in [11]) 

'M, M„ 

Mi being a m x m matrix belonging to the model (2.1). 
Let #(M,) be some convex global optimality criterion in the model (2.1) 

(see [12]). Let us define the functions 

0 ( M ) = < P ( M I ) ; Me9Jl 
and 

<F(M) = p'M~lp - c ; p' = (0 ,0 , . . . , l)eKm+1 

Then we have the following nonlinear programming problem: 

(P) minimize <P(M) over M e S0t+ = {Me W. : det M > 0} 
subject to !P(M) ^ 0 

Definition 2.1. If M* is a solution of the problem (P), then the design £*, corres
ponding to M*, is called a hybrid optimal design. 

Theorem 2.1. The problem (P) has the following properties: 

a) (P) is a convex programming problem, 



b) the solution of (P) exists, 
c) a Kuhn - Tucker vector exists for (P). 

Proof. From the definition of (P) it is evident that all properties of a convex 
programming problem aie satisfied (a detailed proof is given in [9], Theorem 3.6.2). 

Let us define the following problem: 

(A) minimize <P(M) over M e 911 
subject to det M{ < c det M 

which can be reformulated into the problem 

minimize <P(M) over M e 9JT = 9ft n {M: det M, j£ c det M} 

We know that 

1) 9JJ is compact (see [11], proposition III. 9), 
2) det M is a continuous function of matrix elements, therefore the set 9Jlc is 

closed; 
3) 4> is a continuous function on 9JJ (see [11]); 

and we can conclude that a solution of (A) exists. Let MA be a solution of (A), 
then det MA > 0, because l> is a global optimality criterion in the model (2.1). 
On the other hand, MAeiOlc, therefore the solution of (A) lies in 9Jl+, hence the 
solution of (P) exists. 

Assuming that the optimal value of (P) is finite, it is well known (see [6]) that 
a Kuhn - Tucker vector exists if the Slater condition is satisfied: there is a point 
M e 9M+ where *P(M) < 0. The formulation of (P) implies that c > c0 where 

c0 = m i n j p ' M - ^ p } ; p' = (0, 0, . . . , 1) 6 Rm+l 

ieS 

The design £* : p'M~1(£*)p = minp 'M _ 1 (^)p can be found according to the 
^~H 

algorithm, given in [11], chapter V. 2. This algorithm formulates such a sequence 
of information matrices Mt e 9Jt + , where the inequality 5P(M) < 0 is fulfilled for all 
i < i0. • 

Theorem 2.2. Let A be a Kuhn-Tucker vector for (P). The criterion #A : M e 9H -> 
<P(M) + X T(M) is a global optimality criterion for the model (2.1). 

Proof. According to (1.5) we shall prove that 

{Me SOI : <P(M) + X T(M) < oo} = 9Jt+ 

But 
<P(M) = #(M,) < oo o det M, > 0 <* the parameters al5 a2, ..., a,„ 

are estimable, 
and 

!P(M) = var (am + 1 | M) — c < oo •*> the parameter am + 1 is estimable. 



Because X 2: 0, W(M) ^ 0 and the function «J>(Af) is bounded below for all Me M, 
we see that 

# (M) + A «P(Af) < oo <=> 9{M) < oo 
and 

T(M) < co <*•(«!, a2 Km+1) are estimable <» M e 9Jl+ . Q 

Theorem 2.3. Assuming that £* is a hybrid optimal design, then either £* is 
^-optimal for the model (2.1), or var (am + 1 | £*) = c. 

Proof. The proof is obvious, if we take into account [14], Theorem 28.3. • 

3. THE ALGORITHM 

The hybrid optimal design was stated as a convex programming problem (P), 
so it is possible to use the Rockafellar's algorithm (see [15]). This algorithm converts 
the constrained problem to a sequence of unconstrained optimization problems, 
having the property that the successive solutions of the unconstrained problems con
verge to the solution of (P). Then some of the known optimal design algorithms 
( [ l l ] ) can be used in every unconstrained optimization. This is a very useful property, 
since we get directly the optimal design. Usual convex-programming algorithms 
would determine only the optimal matrix M* corresponding to the optimal design £*. 
And having the matrix M* = M(c,*) we would have to find a corresponding design 
by solving the following problem. 

Seek a function £*(x), x e X subject to 

£ / ( x ) / ' ( x ) t*(x) = M* 

xeX 

xeX 

£*(x) St 0 for all xeX. 
This problem can be solved, but evidently it complicates the determination of the 
optimal design. 

Let us define the penalty function for (P) as 

(3.1) Lr(M, X) = «P(M) + i [92(X + 2r W(M)) - X2] 

where 

(3.2) 0(f) = max {f, 0} 

The basic procedure is that 

1) In the internal iterations, given XSk> and r (r > 0), we determine M{k> minimizing 



L r(M, Aw) on 3W+. The function Lr(M, A w ) is convex in M e 9K+ (see [16]) and it 
can be considered as a global optimality criterion (according to Theorem 2.2). 
If some other requirements on Lr(M, A w ) are fulfilled (we shall prove them later), 
minimum of hr(M, A w ) can be found according to the general optimal design algo
rithm (see [11], chapter V. 5). 

2) In the external iterations we set (see [15]) 

(3.3) A(fc+1' = A w +2r f ( M ( " ) 

The transformation of this procedure into a locally convergent algorithm is patterned 
after Powell [13] and it is given in Fig. 1. A few comments on the flow diagram 

(START ) 

k: :0 
Г : 1 

л = 0 

Ç>= B 
L = -.FALSE. 

- r = í 
Л = ( 

?r 
Ì5Л 

L =. rALSE. 

k = k + 1 
find ^ and its infpr 
motion matrix M 
to minimize Lr(M,A 

Ck = |f(M)| 

A = X_ 
A=9(A<2rqj(M)) 

L = .TRUE. 

Fig. 1. Flow chart of a hybrid optimal design algorithm. 



(Fig. l) are needed, k is the number of an external iteration, and Ck is usually set 
to the last value of |!P(M)|, which has been calculated. To start the iterative process, 
we set C0 = B, where B is some large positive number exceeding the magnitude 
of 5P(M)|. L is a logical variable used as a switch. If L is. FALSE., it indicates that 
we have just chosen a new value of r. If L is .TRUE., we have applied the correction 
of X in the previous iteration. We continue to apply this correction on X provided 
that it gives the required convergence, namely Ck <£ \Ck_v 

The most difficult operation in the previous algorithm is the minimization of 
Lr(M, X). Under the following properties (A), (B), (C) of Lr(M, X), min Lr(M, X) 
(with min considered over M e 9)l+) can be found according to the general optimal 
design algorithm ([11], chapter V.5). 

Let (3 ( m + 1)x(m + 1 ) be the set of all symmetric (m + 1) x (m + 1) matrices, and 
let Jz?(50l) be the linear space spanned by 9)1. The conditions which are to be checked 
are: 

(A) There exists such a set UL c &'"+1} x (m + ' } which 

a) 9)1+ c UL c i?(SU); 
b) UL is open in .S?(9K); 
c) Lr(M, X) is defined and finite on UL for every admissible r, A; 
d) Lr(M, X) is convex in M on UL. 

(B) If M„ e 9)l+ (n = 1,2,...) and lim M„ = Me 9)1 - 9)l+ then lim Lr(M„, X) = co ; 

(C) For every M e 9)l+ there exists the gradient VMLr(M, X). 

To prove this properties, let UL = [A : A e £C(9)l), det(A) > 0}. Then obviously 
9)1 + c UL c if(9Jt). Because the determinant is a continuous function of the matrix 
elements, UL is open in £C(9)1). 

The pioperty c) is obvious from the definition of Lr(M, X) and d) follows from the 
convexity of @{M) and T(M). Let M„ e 9)1 + and let 

limM„ = M e 9)1 - 9)l+ 

lim inf Lr(M„, X) = lim inf \<P(Mn) + — [02(X + 2r T(M„)) - X2]\ 
•-.« ( AT J 

Because # (M) is a global optimality criterion, lim #(M„) = GO and 

lim inf 0\X + 2r T(M„)) - X2 ^ - X2 2: - c o 

Hence lim Lr(M„, X) = co. 

For every Me9)l+ there exists VM Lr(M, X) and 

(3.4) VM Lr(M, X) = V*(M) + 9(X + 2r y(M)) ST(M) • 
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To guarantee the convergence of the geneial optimal design algorithm we have 
to prove the following condition (see [11], chapter V.5): 

(D) For every d > 0 there exists such a K _ > 0 that 

y)-lfr(M,l)\\ ^ when 
\\M — Af U ~ 

(M M e 2Jid _ {M: MeS>i, Lr(M, A) < J}) 

| | V M L r ( M l ) - V L r ( M , l ) | ^ w h e r e ^ 

Lemma 3.1. If 

(3.6) - I n det M, + — {02(X + 2r S»(M)) - i 2} <_ d 
4r 

then 

(3.7) iMf1!2 < m TA"--1 . exp U + - j ' 

where 

(3.8) A = max | | / ( 1 ) ' (x) | < oo 
xeX 

Proof. For every matrix M, is 

(3.9) IIM,"1!2 = Tr M f 2 = | > r 2 

i = l 

(3.10) detM.-^n^r1 

i = i 

where Q{ are eigenvalues of M,. 
Because M, is an information matrix gt _ 0 for all i. To prove the lemma, it is 

in view of (3.9) enough to prove that eigenvalues of M,"J are bounded. According 
to (3.6) is 

(3.11) det M;l . exp j - \d\X + 2r T(M)) - A2]! <_ exp (d) 

Because 62(X + 2r S»(M)) - X2
 = - A 2 , we have 

det M,"1 exp j - — 1 < det M,_1 exp j — [02(/l + 2r 5P(M)) - A2]l < exp (d) 

i.e. 

(3.12) det M,_1 < exp Id + —1 

Because M, is an information matrix, there exists a number D > 0 such that 

(3.13) D = min det M,_1 < det Mf 1 

Af6«K 



From (3.12) and (3.13) follows the inequality 

(3.14) 0 < D < det M;"1 g exp id + — 1 

that is 

e x p i - c / - — 1 < detM, < -P l 4 r J - ' - D 
respectively. M} is an information matrix, therefore 

M, = £ / ( 1 ) ( x ) / ( 1 " ( x K ( x ) 
xeX 

max e,- = max w'M,« = max £ [« ' / ( 1 ) (x) ] 2 Q(X) < X max [ H ' / ( 1 I ( X ) ] 2 £(x) 
i l l - l l - l H - l l - 1 xeX xeX | |n| | = l 

But 

max r«'/ (1 '(x)]2 = r_ I^M. / (U( x )T = j|/(1)(x)||2 

II-II=I
 KU L!lf(1)WII J 

hence 
m a x e i < i : | | / ( 1 ' ( x ) | | 2 ^ ( x ) 

i I E X 

The mapping/ : X -> W" is continuous, X is a compact set, therefore such a number A 
exists that 

max | | / ( 1 , (x) | 2 = A < oo 
xeX 

This implies that 

(3.15) max Qi <. £ |/C1 '(*)I|2 £(*) = A I £(x) = A 
i xeX xsX 

that is, the eigenvalues of M, are bounded. 
From the inequality (3.15) follows 

mingr 1 ^ l/A > 0 

According to (3.10) and (3.12) is 

fl*--•»{< + $ 
Then for all ;"s is (according to (3.15)) 

^ A - e x p j ^ } Q 

and according to (3.9) 

IMf lâVИ íV^exp jc i+^ D 



Corollary 3.1. If (3.6) is satisfied by matrices MandM, then there exists a number H 
such that 

WM-'pp'M-1 - M~lpp'M-r\ 
(3.17) 

Proof. 
1110 - Mil 

< H 

iM-Vp'M-1 - M-'pp'M-'l < KM"1 - M-^ppXM-1 + M"1)!! < 

< \\rn-1 - M-1)! upp'ii KM-1 + M - ' I < 
^IIM-^IIM-MIJIIM-^KIIM- 1 ! ! + | |M- 1 | | ) 

The previous lemma implies then the existence of H. • 

Lemma 3.2. Let v(M) be a function defined on 9Jt+ and let Z be some real number. 

If 

then 

\\M-M\\ V ' 

\0(v(M)) - 0(v(M))\ < z 

||M - M|| 

where fl(u(M)) = max {t>(M), Oj. 

Proof. The proof is evident if we count the value of |0(D(M)) — 6(v(M)\. 

Theorem 3.1. The condition (D) is fulfilled for the function 

Lr(M, A) = - In det M, + — {62(). + 2r(p 'M"1p - c)) - ).2} 
Ar 

Proof. For all M, M e SJR+ is according to (3.5) 

(3.18) ||VLr(M, A) - VLr(M, A)|| 

M,-1 0\ _ (My1 0 
0 O) \0 0 

| M - M | j | | M - M | | 

__ + 2r(p 'M-y - c)] (M-'pp'M-1) - 0[). + 2r(p'M'1p - c)] ( M ^ p / M " 1 ) 

\M-M\\ 

Now, we shall find the upper bound for both members in the righthand side of (3.18). 
Let M,Me 9JJ,. Then 

M^1 0\ (M~l 0\ 
1) 0 0 0 0 = M,"1 - MÁ2 ^ \\Mr\z M, - M, - Mf1 2 á 

tl + - 1 Y ii 
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the last inequality being the consequence of Lemma 3.1. Therefore 

|| M — M\\ [ Ar 

2) Let 
l(M) = 0[A + 2 r ( p ' M - > p - c)] 

/i(M) = M-1pp'M~1 

| | / (M)./ i (M)-/(M)./ i(M)| | = 

| |M - M|| 

h(M) - /(M) /.(Af) + l(M) h(M) - l(M) h(M)\\ 

||Af - Af|| 

™ 1W-*(")« + m _ /(M)). JWL 
| | M - M|| | V ' V ; | | | M - M|| 

then 

< 

According to the Corollary 3.1 there exists a number H such that 

| | h ( M ) - h ( M ) | 

| |M - M|| -

Now, we shall find the upper bound for the expiession 

lira) _ /(M)| JMM1L 
| V ^ V ; | | | M - M | | 

Because M^pp'M1 is a symmetric matrix, Lemma 3.1 implies the existence ol 

a number Q such that for all MeWd is flAf-^'Af-1! S Q, i.e., \\h(M)\\ S Q-

Moreover 

| | p ' M - 1 p - p'M~1p\ = flTrpp'M-1 - T r p / M " 1 ! = 

= | T r p p ' ( M _ 1 - M _ 1 ) | = <pp', M-1 - M _ 1 > g 

g flpp'll . IJM"1 - M-MI = flM"1 - M-M| 
that is 

|p'M'xp -p 'м~y | flм-1 - м 
| |M - M\\ ~ ||Af - M|| 

and according to Lemma 3.1 and the relation (3.17) there exists a number R' such hat 

I W - W ^ R ' forall M M e ^ 
| | M - M | | -

We have proved the existence of the numbers H, Q, and R' that 

\mw-'Mm\s /(M).H + Q.R,. • 
| |M - Mfl ~ V ; 

11 



Example 1. (See [17]) 

Let X = {x e R : - 1 _ % <; 1} and let the original model be 

(3.20) E(y(x)) = a1 + a2x 

The model adequacy will be tested by embedding (3.20) in the more general model 

(3.21) ECK*)) = «i + aix + a 3 * 2 

and we shall test the hypothesis 

H0 : oc3 = 0 against the alternative hypothesis 

Hj : a3 + 0. 

We set 
®(M) = - I n d e t M , 

V{M) = p'M~lp- c 

where p' = (0, 0,1). We demand the 80 per cent efficiency for estimating a3 in (3.21). 
According to [4] we determine c0 = 4 and according to (2.3) we get c = 5. The hybrid 
optimal design was obtained in two steps. The results of our algorithm are tabulated 
below. 

Initial data: 

R = 1-00, X = 0-00, c = 5, EPS = 0001 
£ ( -1 ) = 0-33, £(0) = 0-33, £(1) = 0-33 

Iteration 1. 

R = 100, X = 000 
£ ( -1 ) = 0-36443. £(0) = 0-27111, £(1) = 0-364443 

Iteration 2. 

R = 1-00, X = 0-121006 
£ * ( - l ) = 0-361758, £*(0) = 0-276480, £*(l) = 0-361756. 

Stigler [17] has found the hybrid optimal design for model (3.20) according 
to completely different method, and his results were £*(-1) = 0-3618, £*(0) = 0-2763, 
£*(1) = 0-3618. Stigler's method cannot be used for other models. In view of Theo
rem 3.1 it is obvious that for the case of D-optimality our algorithm will work well 
for various models. 

Example 2. 

Let X - {x e R : - 1 g > ^ 1} and let the original model be 

(3.22) ECKX)) = «i + «2* + «3*2 

12 



The model adequacy will be tested by embedding (3.22) in the more general model 

(3.23) ECK*)) ~ a i + a 2 x + a 3 * 2 + a 4 x 3 

and we shall test the hypothesis 

H0 : a4 = 0 against the alternative hypothesis 

Hi : a4 4= 0. 

We set again 

* ( M ) = - I n d e t M , 

V(M) = p'M~1p- c 

where p' = (0, 0, 0,1), and we demand the 80 per cent efficiency for estimating a.A 

in (3.23). The results are given below. 

Initial data: 

R = 1-00,X = 0-00, c = 20, EPS = 0-05 

C ( - l ) = 0-25, £(-0-45) = 0-25, £(0-45) = 0-25, f(l) = 0-25 

Iteration 1. 

R = 1-00, X = 000 

£ ( -1 ) = 0-2707, £(-0-45) = 0-1874, £(0) = 0-0833, £(0-45) = 0-2707, 
i(l) = 0-1874 

Iteration 2. 

R = 1-00, X = 0-00 

£ * ( - l ) = 0-2737, £*(-0-529) = 0-3007, £*(0-529) = 0-2407, £*(1) = 0-1874 
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