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K Y B E R N E T I K A - V O L U M E 20 (1984). N U M B E R 5 

QUANTIFICATION OF PRIOR KNOWLEDGE 
ABOUT GLOBAL CHARACTERISTICS OF LINEAR 
NORMAL MODEL 

MIROSLAV KÁRNÝ 

Bayesian approach to system identification requires from the user to collect and express his 
prior information about the identified system. The paper presents a way in which a global prior 
knowledge can be quantified. Two simple cases, pulse response smoothness and knowledge 
of the static gain of a system modelled by mixed autoregressive-regressive model, are elaborated 
in detail. These cases which are of practical importance illustrate main steps in the quantification. 

The significant and favourable effect of this built-in prior information on the start of self-
tuning control is demonstrated on an example. 

1. INTRODUCTION 

The systematic Bayesian approach to the system identification has been developed 
by Peterka and described in [10]. Several papers have been published concerning 
different aspects of this theory (see e.g. [5], [6], [7], [8], [9]). The present paper 
belongs to this series. It tries to describe the way in which a prior knowledge about 
global characteristics of an identified system can be incorporated into the prior 
distribution. Two special cases of practical importance are elaborated in detail. 
The treated pulse response smoothness and knowledge of the static gain are suffi
ciently simple and at the same time make it possible to demonstrate the crucial steps 
of the procedure. The illustrative example supports practical importance of the 
presented solution. 

2. CONJUGATE PRIOR PROBABILITY DENSITY FUNCTION ' 
FOR NORMAL REGRESSION MODELS 

To make the paper self-contained and to fix the notation used some standard 
results are summarized here. The relation between the vector input «(r) and the 
v-dimensional vector output y\t) is described by the conditional probability density 
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function (c.p.d.f.) 

(1) P,\t-i{y\u>0) 

This represents the c.p.d.f. of the output y(t) at point y under condition that the data 
y(x) and u(x), x = 1, 2 , . . . , t — 1 have been observed, the input u(t) has been chosen 
and the finite dimensional vector of unknown parameters takes the value 6. 

The special case of a normal multivariate regression model having the c.p.d.f. 

(2) P f l r _ 1 (v |« ,0 ) = iV (P% ) ,R) = 

= |2 7 rR | - 1 / 2exp{-i (y - PTz ( r ))
T R~\y - PT

Z(r))} 

with unknown parameters 9 = {P, R} is assumed. P is the {Q, v) real matrix of the 
regression coefficients and R > 0 is the (v, v) positive definite symmetric covariance 
matrix. The regressor ^-vector z(t) is a known function of data in the condition of the 
c.p.d.f. (1). A prior knowledge is quantified by the conjugate Gauss-Wishart p.d.f. 
[3] 
(3) p{6) oc {\R ® C|)-9 / 2 exp { - i tr [R-\{P - P)T C _ 1 (P - P) + A)]} 

The quantities P, C, A and 9 are at disposal to express prior information about P 
and R. The above mentioned p.d.f. possesses computationally advantageous property 
to be self-reproducing. The aposterior p.d.f. of 0 has the same form (3) being para
metrized by the multivariate sufficient statistic P(t), C(t), A(t) and B(t). P and R = 
= A/(# — Q) (9 > Q) are the mathematical expectation of P and R respectively, 
the best point estimates of P and R for a rather wide class of optimality criteria. 
C is a positive definite symmetric matrix which determines the covariance matrix 
of P as the Kronecker product of R and C, R ® C, namely 

(4) E(P;, - P,.,) (P„ - Pkl) = Cik .Rjt i,k = l,2,...,o j , I = 1, 2 , . . . , v 

The above interpretation gives a direct hint how to choose P and R. The best 
prior guess of P and R has to be selected. We shall omit the choice of 9, which is 
important for description of R only, & = Q + v can be used. It implies that only the 
matrix C has to be chosen. This choice forms the core of our paper. 

We shall start (Section 3) with a discussion of commonly used diagonal form of C. 
It will permit to show the weak point of this choice and to find further improvements 
(see Sections 4,5). 

3. CONFIDENCE INTERVAL AS A GUIDE FOR THE CHOICE OF C 

The commonly used choice of C is 

(5) C = diag(cr2,CT2,...,(7
2) 

The form (5) corresponds to the assumption that the rows of P are uncorrelated i.e. 
independent in the present case. This choice with commonly used diagonal R implies 
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independence of all entries in P. It follows that we assign the same probability 
(the same degree of belief) to realistic as well as unrealistic coefficient configurations. 
Moreover in connection with least square interpretation of evolution of the statistic 
P, C, R, 9, see e.g. [9], rather big values of ays are often recommended (near to the 
inverse of computational precision). Such a choice coincides with almost unifonn 
prior distribution i.e. with the case when little is a apriori known about P. It, of 
course, results in drastical changes of the c.p.d.f. of 6 through the transient part 
of recursive identification. Any careful choice of P is then meaningless. However, 
in self-tuning control rapid changes of point estimates can cause short-time insta
bilities in the closed loop. This observation and interpretation (4) led to the con
clusion that in this "diagonal" case ff,'s have to be chosen so that the confidence 
intervals (at some high significance level) coincide with practically expected range 
of coefficient values. Jt is known that in the present case the confidence intervals 
take the form " 

(6) < - a V ( i y < r . + !>,•,, Fij + a^Rjj)*,} i = l,2,...,8 

J = 1,2, . . . ,v 
where 

(7) a x 2 H- 3 

This choice substantially improves transient behaviour of identification. The danger 
caused by a wrong selection of these intervals is decreased substantially in practical 
applications when exponential [8] or directional [7] forgetting is used. 

The improvement which results from choosing c ; 's with intervals (6) being the 
expected range of possible values, however, does not overcome inconsistency of the 
assumed independence of different entries of P. 

4. SYSTEMS WITH SMOOTH PULSE RESPONSE 

Let us assume the pulse-response model 

(8) y(t) = tHiu«-i) + vw 
* ;=o 

where the random term v(t) is taken as a normal random walk, a rather realistic 
and simple model of drifts. The process v(t) is generated by 

(9) i>(0 = »(.-!) + eit) 

where 

(10) Ptlt^(e\u,B) = N(0,R) 

i.e. e(t) is normal white noise. On such a model a simple selftuning controller can be 
based [ l ] . It is an easy excersise to show that the relations (8), (9), (10) determine 
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a model of the form (2) for the increment A j ( 0 = ym — Jfy-j) instead of y{l> with 

(11) I37 = [ H , „ i . „ _ 1 , . . . , H 0 ] 

(12) 2 T
0 = [AuT_,0, AuT_„+ 1 ) , ..., AuT

()] 

Rather often it can be expected that the parameters Ht of the model (8) have been 

obtained by sampling of smooth pulse response. 

This means that the second differences 

(13) ðt = Я ; + 2 - 2Я ; + 1 + Я ; i = 0, 1, 2,..., n - 2 

are apriori expected to be rather near to zero. If smoothness is the only prior informa
tion at disposal, the range of possible values of 3t is substantially narrower than that 
of H - H. 

It is of course reasonable to select PT = [/.„, ..., 7/0] consistently so that 

(14) 0 = Hi + 2 - 2Hi + 1 + Hi i « 0 , 1 , . . . , i i - 2 

From equations (13), (14) it can be seen that 

(15) 5, = (H ; + 2 - Hi + 2) - 2 ( H ; + 1 - Hi + 1) + (fl, - Ht) i = 0, 1, ..., n - 2 

To replace //,- fully by (5;'s it remains to define also _._. and (5„. Assuming the finite 
length of the pulse response it is taken for sure that Ht = Ht = 0 for i > n. Then 
it is natural to introduce 

(16) 5 , . , = -2(/f„ - H„) + (_/„_, - B._.) 

(17) d„ = H„ - Jj„ 

Relations (15), (16) and (17) can be rewritten in the matrix form 

(18) LT\P-P) = d 

where 

(19) L ~ i = r h • 
- 2 I v . '•. 

L ' • ' • 

L - 2 / v /v 

7V being the (v, v) unit matrix and 

(20) 5 T = [ 5 T , ^ T - i , . . . , 5 T ] 

Definitions (15), (16), (17), (20) imply that 

(21) E M - - 0 

Let us assume that smoothness is the only prior information available i.e. <5„ 
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i = 0, 1,..., n are taken to be independent. To maintain the simple self-reproducing 
form of the c.p.d.f. (3) we shall assume that 

(22) E8tdf = y2K i = 0,1,2, . . . , n 

where the factor y2 has to be specified. It can be chosen on the basis of the confidence 
intervals similar to (6). 

The above considerations determine 

Eddr = R vf 
ľ2Iv 

Г2Iv 

ľ2IvJ 

= R®Ľ 

Using (18) and (23) we have 
(24) L^CÍĽ-ү = ľ 

We shall write down the solution of (24) in terms of the LD-factorisation of C, 
suitable for initialization of numerically stable LD-factorization based filtering 
(in the style of UD-factorisation of Bierman [2]) 

(25) C = LDLr 

Lis a lower triangular matrix with unit diagonal and the matrix D is a diagonal one. 
It is apparent that 
(26) D = P 
and 
(27) L = Iv 

- 2 / v 

L, 

•2L, I. Ц n + ! ) / „ . 3/v 2/v LJ 

Quantification of the prior information about the smoothness of the pulse res

ponse { H j can be summarized as follows: 

— choose the best prior gues {Hf] of {Ht] having the second order differences 
equal to zero (14) 

- start up recursive estimation with L given by (27). 
The entries of D have to reflect uncertainties of the second order differences 

Hi + 2 — 2Hi+1 + Hh the choice Dt = y2 for all i is usually well satisfactory. 
Notice that the simplicity of the present case follows from the fact the smoothness 

of the pulse-response model can be expressed in terms of linear relations the number 
of which is sufficient to determine the structure of the matrix C uniquely. 
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The next section can be taken as an example how to proceed when relations 
between the entries of P are nonlinear and the number of relations is smaller than 
the number of the P-entries. 

5. INFORMATION ABOUT STATIC GAIN 

The value of static gain is a piece of information which is often at disposal. We shall 
deal with this problem restricting ourselves to single-input single-output systems 
in order to simplify the exposition. The system is assumed to be described by the 
mixed autoregressive-regressive model 

(28) yw = t aj'((-0 + I biuu-i) + eU) 
; = i i = o 

where e(t) is assumed to be normal and independent of the past input-output history, 
i.e. 

(29) p,lt^(e\u,9) = N(0,R) 

The assumption (29) together with (28) gives pt\t-x(y | u, 6) in the form (2) with 

(30) PT = [b0, bu..., b„, aua2,..., a„] , g = 2n + 1 

and 

(31) 2T
0 = [ t i ( 0 ,u ( ,_ , , , . . . , i. ( t-„),j<,-i), >'«-,), •..,; '(,-„,] 

The static gain g of the model (28) is given by 

(32) g = 

1 - I a, 
i = l 

We shall linearize this nonlinear function of parameters at the value given by P. 
The linear term of the Taylor expansion gives 

(33) S = g - 9 V - ll[P ~ P] 
1 - Z a, 

i = i 

where a-t and b, are the entries of P corresponding to (30) 

ih 
(34) " = - ^ V -

1 - I if, 
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and 

(35) ll = [l,l,...,l,g,g,...,g-\ 

n + i n 

Apparently 5 defined by (33) has zero prior expectation. If we denote 

, E«52 1 
(36) 

* (1 - І ã,)2 

; = i 

where R is the prior expectation of R, then the relations (33) and (35) imply that 

(37) /TC/0 = <r2 

Moreover the value a2 determines the range in which the guess of the gain given by 
l0P can be found with sufficiently high probability. 

Of course, the number of degrese of freedom in determining C only in accordance 
with (37) is too high. We shall complete the definition of C through the following 
reasoning: Let us take, for a fixed C, a C-orthogonal basis /0, lu .... l(j_l of the Q 
dimensional Euclidian space i.e. 

(38) tJClj = 0 for / 4= j 

i,j = 0, 1,2, ...,Q - 1 

(39) ZTC/; = a2 where a2 > a] 

i = 1,2, ...,Q - 1 

Expressing any Q dimensional vector 7 in this basis 

(40) 7 = ao/0 + X>,/. 
1 = 1 

we shall find that 

(41) E[/T(P - P)] = 0 

and 

(42) E[7T(P - P)]2 = [aX + a2 la2] R 
i= 1 

The expression g = /TP can be interpreted as a guess that the system has another 
static gain g. The error of this guess /T(P — P) has the greater dispersion the greater 
is Euclidian norm of the projection of / onto the subspace spanned by the directions 
C-orthogonal to /0. We shall require these C-orthogonal directions to be also "geo
metrically" dissimilar. It is reasonable to take this dissimilarity as the I-ortho-
gonality. Then the condition (37) can be taken as a definition of a direction in which 
the covariance elipsoid of P has significantly greater diameter. Relations (37), (38), 
(39) for fixed /,- i = 0, 1, 2 , . . . , Q — 1 represent @(£ + l)/2 linear equations for the 
same number of independent entries of a symmetric matrix C. By the direct inspection 
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it can be verified that C, uniquely determined by (37), (38), (39), takes the form 

(43) C = ^ / o K / o V 2 ll + <x2(l - loQlloTl ll) 

which is positive definite and independent of the special form of I,> i = 1 , . . . , g — 1. 
The simple form of C admits to determine explicitly the LD-factorisation of it. 
This C can be rewritten as 

<«> c=*i>-'i?] 
where (using (35) and (43)) 

(45) a* = ( W = (" + - + S2")2 

# o - ( | Y n+l+g2n-\^ 

Using the definition of LD-factorisation and denoting 

(46) st = co2 - X/oy = S. + i + 'oi+i ' - C . e - 1,..., 1 
y = i 

with 

-Í ) 
d\n + 1 + ng2)) 

(47) 

it can be found that 

(48) D,. = <72S-/±A j = Q,Q- 1.....1 

(49) L , 7 = - ^ a - J = Q,Q- l,...A;i<j 
s ;+ i i 

where /o; is the i-th entry of /0 (35) 

6. ILLUSTRATIVE EXAMPLE 

Simple self-tuning regulator 1-nB [ l ] using the model (8), (9) with v = 1, n = 6 
was simulated on a hybrid computer. The output of a continuous system having 
three identical time constants was regulated under the influence of unmeasurable 
disturbances. 

Two typical runs are documented. The dotted lines denote the uncontrolled 
system output which is the same in both cases. Figure 1 shows the closed loop be
haviour when a "diagonal" initialisation is used (C = Iy2, y2 = 1, P = 0). Figure 2 
present the result obtained by using information about the smoothness of the pulse 
response (LD-decomposition according to (26), (27) is used with y2 = I, P = 0). 



The similar influence has been observed for different values y2. Essentially the same 
improvement has been achieved when the information about the static gain was 
exploited for the P-2A 3B self-tuning regulator [ l ] , 

y . 

-W^Й^M/y^ 

vvuAA/Wy\fyp|M^ 

F/'g. 1. Closed loop behaviour with C = I, P = 0. 

Fig. 2. Closed loop behaviour with L according to (27) and D = I, P = O. 

7. CONCLUDING REMARKS 

Two practically important special cases of quantifying prior information have 

been elaborated in detail. It is known that the importance of a careful handling 

of the prior information is rather high when either limited amount of informative 

data is at disposal or the results of recursive identification are used in the subsequent 

decision problem. Typical examples of this kind are the one-shot identification with 

costly data or the start of self-tuning controllers. 
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Information about smooth character of the impulse response has been used 

in an algorithmically similar way in [4] where a surprisingly strong influence of it has 

been demonstrated on identification of the step-response. 

Naturally, the cases discussed in the paper do not cover the whole range of possi

bilities. However, it has been outlined how to deal with superfluous degrees of frefedom 

and with a nonlinear form of relations between the parameters. , , 

(Received October 24, 1983.) 
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