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KYBERNETIKA — VOLUME 20 (1984), NUMBER 2

STATISTICAL LINEAR SPACES
Part II. Strongest /-norm

JIRT MICHALEK

This paper is devoted to one of the most important cases of SLM-spaces when the generalized
triangular inequality is given in the strongest form, i.e. using the f-norm T(a, b) = min (g, b).
Only in Theorem 11 a case of a weaker #-form is considered. Symbols and denotations are the
same as in the first part of the paper.

1. SEMINORMS AND -NORM MIN

In the first part of this paper {cf. [1]) the notion of a statistical lincar space in the
sense of Menger was introduced and the ¢,n-topology was investigated. The main
goal of the second part of the paper is a more detailed investigation of one of the most
important cases of SLM-spaces. We shall deal with a statistical lincar space (S, £,
min) where the generalized triangular incquality is expressed in the form

Foiy(u + v) = min (F(u), F)(v)).
Let a € €0, 1) and let us determine for every x € S the number n,(x) by the relation

n(x) =inf{2>0:F, () > a}.
Since every probability distribution function F,(+) is nondecreasing and left continu-
ous the following inequalities are equivalent

n(x) < A< F(1)>a.

On the contrary, we can express F using n, as follows F (1) = 0 for u < 0; F(u) =
= sup {a €0, 1) :n,(x) <ul. Let us denote Ng = {n,(+):ae(0,1)} for a given
space (S, #, min).

Theorem 1. The class Ny is a class of seminorms in (S, F#, min).

Proof. Let n, € Ny, then for every x (S, £, min) n,(x) = 0 because F(0) = 0.
Further, n,{0) = 0, Fo(u) = H(u) and hence 1,(0) = 0 for every a € {0, 1).
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If 2 + 0is a real number then the definition of n,,(x) yields
n(ix) = inf {u > 0:F,(u) > a} = inf {u > 0: F(uf|2]) > a} =
=il {|#] v > 0: F,(v) > af = 4| inf {o > 01 F(0) > a} = |2] n(x).

For A =0 n,(0) = inf {u > 0: H(u) > a} = 0 for every a. We have proved that
for every a € 0, 1) and every real 2

na(Ax) = || n(x) -
Thus, we have yet to prove the triangular inequality

ms + ) < mx) + ma)

According to the definition n,(x + y) = inf {1 > 0:F., (1) > a} = inf{u + v >
>0:F.,(u+v)>a} 2inf{u + v > 0: min (Fy(u), F,(v)) > a} <inf {u >
> 0:F(u) > a} +inf {v > 0: F,(v) > a} = n,(x) + nfy). O

Theorem 2. The class Ng — {no} is a class of norms in (S, #, min) if and only
if every function F,(*) for x # 0 is continuous at 0.

Proof. In the previous Theorem 1 we proved that n,(0) = 0 for every a € {0,1).
We can prove that the equality for every a €(0, 1) n,(x) = 0 implies that x = 0,
if every function F, is continuous at 0, x = 0. Let us suppose that n,(xo) = 0 for
some a, € (0, 1) and some x, € S, X, # 0. However, at the same moment Fy (1) > g,
for every A > 0, 1t is clear that the function F, cannot be continuous at 0.

If Ng — {no} is a class of norms in (S, #, min), i.e. n,(x) = 0 = x = 0 for every
a € (0, 1), it must be then n,(x) > 0 for every x + 0 and every a € (0, 1). If for some
xo # 0lim F (u) = &, would be nonzero then we obtain immediately 0 =

ul0
= inf {1 > 0: F..(2) > e9/2} = n,)2(%o) and this conclusion is a contradiction to
the assumption that n () is a norm for every a (0, 1). 0

It is well known that every locally convex topology in a linear topological space
can be determined by a suitable collection of seminorms which are defined by all
absolutely convex and absorbing neighbourhoods in the given topology. Similarly,
in our case it is natural to ask about the relation between the &,4-topology in (S, .,
min) and the class Ng of seminorms in S.

Theorem 3. Let an SLM-space (S, #, min) be given. Then for n - oo x, = xq
in the ¢,n-topology if and only if n,(x, — xo) — 0 for every a & <0, 1).

Proof. The convergence x, — X, in the gn-topology means that (Vr,e((], 1>
V> 03n¥n = ng)=>F, _.(n) > 1 — ¢ It follows from this implication that
forevery n 2 noinf {A> 0:F, . (1) > 1 —¢} <n,ie.

ny_f(x, — xo) <y forevery n=n,.
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In other words, if we choose a € €0, 1) and # > O arbitrarily and if we put & = t — a,
then £€(0, 1) and there exists a natural n, such that for every n = o

1%, = Xo) = na(X, — Xo) <1

and hence n,(x, — x¢) -> 0 for every ae<0,1). Now, let for every ae<0,1)
n, (X, = xp) = 0, ie.

(Vae<0,1) Yy > 03ng Vi = ng) = nfx, — Xo) < -

The definition of the seminorm n,(-) yields that n,(x, — xo} < n <+ Fy, (1) > a
and for every n 2 ng X, — xo € O(1 — a, ). This fact proves that x, — x, in the
g,n-topology. O

Remark 1. If an SLM-space (S, ¢, min) is normable and hence the existence
of a bounded convex neighbourhood in the ¢,n-topology is ensured, see [1], then there
exists a bounded ¢,7-neighbourhood O, #o) and a norm can be given by

[} =inf{A > 0: F(ine) > 1 — &0} = 15 'y —ro(x) -

From this follows that n, _, (-) must be also a norm ir (S, #, min).

Theorem 4. Let (S, ¢, min) be given. Then the &n-topology is equivalent to the
topology induced by a countable collection of seminorms {n,(-)}, where a, 1 1.

Proof.In [] ], the metrizability of the &,5-topology is proved, hence we can consider
sequences in S only. If x, — 0 in the ¢,7-topology, then n,{x,) — 0 for every a € €0, 1)
as Theorem 3 states.

Conversely, et us suppose that x, — 0 in the topology induced by the seminorms
{n,} where a,11, i.e. n,(x,) - 0 for every k. Since a, 1 1, then for an arbitrary
£€(0, L) there exists g such that forevery k 2 g 1> a, > 1 —¢. If > 0 is arbi-
trary, then there exists n, such that for n = ny n,,q(x,,) < y. This last inequality
implies that F, (1) > a, , hence 1 — & < F, (). In other words, it means that
X, € O(g, n) for every n = no. This proves the convergence of {x,} to the origin

in the &,n-topology. d

Remark 2. The collection of seminorms {n, } mentioned in Theorem 4 induces
a metric

w o
d(ey) =3 L Malx=2)

=125 1+ n,(x — )
in S which is equivalent to the &,5-topology.

Theorem 5. Let S be a linear space, let N = {n, : a €0, 1)} be a class of semi-
norms in S. If for every x e S the function n,(x) is nondecreasing and right continuous
in €0,1) and n,(x) = 0 for every a € €0, 1) implies that x = 0, then S can be assumed
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as an SLM-space (S, Z, min) and the g,n-topology in S is identical with the topology
induced by the class N of seminorms.

Proof. If N is any class of seminorms in S then it is possible to introduce a topology
in S, which is locally convex and at the same time the weakest topology in which ail
seminorms in N are continuous. This topology is a Hausdorff topology if and only
if a(x) = 0 for every ne N implies that x = 0 in S. A base of neighbourhoods
of the origin in this weakest topology is formed by all sets

{xe S :max n(x) < ¢}
15isk

where ¢ > 0 and n; €N, k = 1,2,.... In our case this base is formed by all sets
of the form
{xeS:nlx)<e}, ael0,1)

because we assume that na(x) is nondecreasing on <0, 1) in a. Using the seminorms
ng, a €0, 1) we can define a mapping  : S —» #. If x € S then we put

F(x)[u] = F(u) = sup {a €0, 1) : n(x) < u}

in the case that {a € <0, 1) : n(x) < u} + Qand #(x)[u] = F(u) = 0if{ae 0, 1):
:n,(x) < u} = 0. First, we shall prove that F,(+) is a probability distribution function.
1t is sufficient to consider the case u > 0 only. If u; < u, then

Fo(uy) = sup {a:n(x) <u} Ssup{a:nx)<u,} =Fu;)

hence F,(+) is a nondecreasing function. Further, we shall prove that F.(-) is left

continuous at every u > 0. Let u,tu. Then F (u,) =sup{a:n(x)<u,} <

< F(uy41) £ F{u) and lim F(u,) = sup F,(u,) exists and sup F(u,) £ F(u).
neo n "

But Fy(u) = sup {a € <0, 1) :n,(x) < u} and hence for every &> 0 there exists
a,€<0,1) such that F(u) — ¢ < a, where n,(x) < u. We assume that n,(x) is
right continuous at a,; thus for suitably small 6 > 0 and &, > 0 we have n,_,4(x) <
<u — g.
If we denote ¢, = u — u, theng, | 0and for large n e, < e, and hence n, 45(x) < u —
— g, = u,. But tii’s inequality implies that F (u,) < F{u) + 6 — & and therefore
lim F(u,) = Ffu}.
n—om

Finally, it is necessary to prove that lim F (1) = 1. Let us suppose that lim F fuj =
= ao < 1. Then for every u > 0 F,(u) £ ao. The definition of F(+) yields that
for every u > 0 ag 2 sup {a > 0:n,(x) <u}. It implics that n,,s(x) = a0 if
ao + ¢ < 1, o > 0. This conclusion is in a contradiction to the assumption that
n,(+) for a e <0, 1) are seminorms on S.

If x =0 and n,(0) = 0 for every ae<0,1), then for u > 0 Fy(u) = sup {« e
€<0,1):0 < u} = 1 and Fy(u) = H(u) for every u € R. On the contrary, if F (u) =
= H(u) forevery u e R, i.e. F.(u) = 1 forevery u > 0, then 1 = sup {a : n{x) < u}
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for every u > 0. But this implies that n,(x) = 0 for every ae<0, 1) and by the
assumptions of Theorem 5 we have x = 0. A further property, which must be veri-
fied, is the equality
F;,X(u) = Fx(u/lil)
for every x € S and every real 2 % 0.
Foo(u) = sup {a :n(Ax) < u} = sup {a: |4 n(x) < u} =
= sup {a : n(x) < u/|/11} = Fx(u/|l]).

Finally, we must verify the generalized triangular inequality for the t-form T(a. b) =
= min (a, b). Since {n,()} are seminorms in S then

Feofutv)=supf{a:n(x+y)<u-+v}zZsupla:nx)+nfy)<u+rejz
= sup {{a : n(x) < ul, {a:n,y) < v}} = min (Fy(u), F,(v))
because the functions n,(x), n,(y) are nondecreasing on €0, 1) in a.

A base for the topology generated by the class N = {n, : a € (0, 1)} of seminorms
in S is formed by all sets

{x:n(x)<n}, ae0,1), n>0.

The ¢,x-topology has the base of ¢,7-neighbourhoods O(e, ) = {xe S: F,(3) > | —
—&}. As F(n)=sup{a:n(x)<un} then O, n)={x:n,_(x)<n}. This
implies that both these topologies are identical. ' O

2. PROBABILITY AND -NORM MIN

Theorem 6. Let an SLM-space (S, 5, min) be given. Then there exists a probability
space (N, «, P) where
1) N is a suitable set of seminorms in S
2) for every uc R and every xe S{neN :n(x) < u} e &
3) P({neN :n(x) < u}) = F(u).

Proof. In Theorem 1 it was proved that for every a € (0, 1) n,(x) = inf {1 > 0 :
: F () > a} is a seminorm in S. Let us denote N = {n, : ¢ €0, 1)} and let 4, =
={{n,1uy £ nfx) <uy}:xeS uy = 0,u; 2 0}. Since n,(x) < u, if and only
if F,(u,) > a and similarly n,(x) 2 u, if and only if F,(u,) < a, evidently {n, 1 u, <
S n(x) <uy} ={n,: F(u;) £ a < Fu,)} and hence By < o, = {{n,eN:
ta; £a<ay},a,€{0,1), i =1,2}. Let us prove that A, is a semiring in N. If
A={n,a;Sa<a},B={n:b, Sa<b,}thendn B = {n,:max(a,. b, =
< a < min (az, bz)} is also an element of &/, If 4 < B, ie. b, £ a,, a, £ b,,
then if we put Co =4, C; ={n,:b, £ a <a,}, C, =B the sets Co, Cy, C,
belong to the system gand C; — Co = {n,: by < a < a,},C, — C; = {n,:a, <
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£ a < by}, and C; = Cy, C; — C, belong to s/, also. Since N = {n,:0 < a < 1}
then N € o/ ; we have proved that o/, is a semiring.

Since it can happen that na(x) = n,,(x) for every x € S although a # b then, in
general, there is no one-to-one correspondence of all the sets <a, b} = €0, 1) and
the clements of /. Since it holds n,(x) < n,(x) for every x € S and for every pair
a £ b, and n,(x)is right continuous for every x € S, then every subset {n,e N : n, =
= n,} has the minimal point, i.c. there exists such a number a, € <0, 1) that if n, = n,,
then a = a,. It is clear that every subset {n, :n, = n,} can be expressed in the
unique way cither as {n, :do < a < by} or as {n,:ao £ a < by}, where b, =
=supf{b:n, = nﬂu}. Let us consider the cases @y < by only. There exists a countable
number of such intervals at most. Let us denote by <{a;, b;), i = 0, 1,2, ... all excep-
tional subsets in <0, 1), i.e. for every ae<a; b)n,=n, i=0,1,2,.... Then
there exists a one-to-one correspondence between N and the set <0,1) — U (a;, b)).

Let us define a probability measure x on the measurable space (0, 1), &) (where &
is the g-algebra of all Borel sets in <0, 1)) in the following way:
if <a;, b;) is an exceptional set in <0, 1) then we put u(<a;, b;)) = b; — a; and
u((a;, b)) =0,i.e. all the exceptional sets shall be atoms; if <a, b) n Ula;, b)) = 0
then we put ((a, b)) = b — a, ie. the ordinary Lebesgue measure will be con-

sidered outside all atoms.
Let us denote by G() the distribution function of this measure u in <0, 1), ie.

w(<a, b)) = G(b) — G{a), G(0)=0.
Using this measure p we shall define a probability measure P on the semiring 7.
If {n,e N :ay < a < by} is an element of &/, then we put
P({n,e N :aq < a < by}) = G(be) — Glay) -

It is no problem to verify that the set function P is a measure on the semiring &7,
and hence P can be in the unique way enlarged onto the smallest g-algebra o/ over
. In this way the probability space (N, s, P) is constructed. Since for every x € S

JJOE{HBENZMI = nu(x) < ul} = {na:Fx(ulJ sa< Fx(”Z)} ’

we can determine the probability P of this random event as follows
P({n,e N : F(u;) £ a < F(uz)}) = G(F(u3)) — G(F(uy)) .

If we express all the elements in &7, in the unambiguous form {n,, eN:cLa< d}
then there exists a one-to-one correspondence between 7, and some semiintervals
in <0, 1). That unambiguous form can be obtained in this way:

if ¢ and d are no exceptional points, i.e. ¢, d ¢ U<a;, b;), {n,: ¢ £ a < d} remains

without any changes; ¢

if ce <a; b;) then c is replaced by a;;

if d € {a;, b;) then d is replaced by b
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This expression of all intervals {n,e N:¢ < a < d} will be called the maximal
expression. It can be easily proved that all maximal intervals in &/, form a semiring
and also N = {n,:0 £ a < 1} belongs to this semiring. Let us note that the pro-
bability measure P on this semiring can be defined as

P{{n,eN:c<a<d})=d—c=G(d)— Gc),

where ¢, d are boundary points of a maximal interval. Now, since {n, : u; < n,(x) <
<uy} ={n,: Fuy) £ a < F(u;)} then {n,:u, < nfx) < u,} belongs among
the maximal intervals in every case. At the first sight it is clear that the interval
{n,:0 £ a < d} is not maximal if and only if for every x € S there exists no u > 0
with F,(u) = d. From these reasons every interval {n,: F(u;) £ a < F(u,)} is

maximal and hence P({n, : 0 < n,(x) < A}) = F (2)forevery A > 0.

3. LOCAL CONVEXITY AND SLM-SPACES.

For every x € S the seminorm n,(x) as a function of the argument a € {0, 1) is
nondecreasing and hence Borel measurable. It is reasonable to consider the value
n(x) = {4 n,(x)da (which of course can be infinite too).

Theorem 7. Let an SLM-space (S, #, min) be given such that for every x€ §

n(x) = Jl ni(x) da

is finite. Then n(+) is 2 norm in S and, in general, the topology induced by this norm
n() is stronger than the &,51-topology.

Proof. Since for every ae{0,1) n(ix) = ]A[ n(x) and nx + y) < nx) +
+ n,(y) hold, then n(+) must be a seminorm in S also. If n(x) = 0 then n,(x) = Oas.
with respect to the Lebesgue measure in <0, 1). As n,(x) is a nondecreasing
function in the argument a € <0, 1), then for every a € <0, 1) it must hold n,(x) = 0
what implies x = 0. Hence n(+) is a norm in S. Let us suppose that for some sequence
{x)7 = Sn(x,) > 0ifn— o, ie.

1
J' n(x,)da >0,
0

but this is the convergence in the mean with respect to the Lebesgue measure [
of {n(x,)}¥ in <0, 1). This convergence in the mean implies the convergence in
measure and hence

(Vee(0,1> ¥y > 03n, Vazng)=I({a:nfx)<n})>1—c¢.

Since n,(x) < <> F(n) > a then we have H{a : F,(n) > a} = F,(#) > 1 — ¢ and
this fact proves convergence of {x,}7 in the ¢y-topology. Since the convergence
in the norm n(-) is equivalent with the convergence of {n,(x,)}T in the mean which
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is gensrally stronger than the convergence in measure of {n,(x,)}7 then we proved
that the &,n-topology is weaker than the norm n(+) in (S, ., min).

Indeed, the following example shows that the norm n() is stronger than the
&, i-topology. Let S be a linear space of all real sequences with finitely many non-zero
members only. Let x = (x;, X,,...)€S. Let us define a sequence of seminorms
in S {n}2 as follows .

2
k
n{x) :.lex"] k=12, ...
For every a € {0, 1) define a seminorm #, in this way
n,=mn, for aedl—27"F* 1 —27%, [=12...

For every xe S n(_)(x) is a nondecreasing, right continuous; x = 0 if and only if
n(x) = 0 for every a € <0, 1). A norm n(x) is then given by

1 @
n(x) = [ n,(x)da = 22"'“|x,-| .
Jo i=1
Let {x™} be a sequence of elements in S defined by
xM =0 for i+n
x = 2n1,

Then lim n,(x®) = 0 for every a €40, 1), but limn(x™) =1lim1=1. [}
oo N novo
Theorem 8. Let (S, #, min) be finite-dimensional. Let (¢, e, ..., ¢,) be an arbitrary
base in S. If M = max {[§ n,(e;)da} is finite, then the ¢,;-topology is equivalent
1zign

to the topology induced by the norm n(+) = fsn(-)da.
Proof. Since every x € § can be expressed as x = Y, Ae;, then n,(x) < ¥ 1] n(e;)
i=1 i=1

and f(') n,(xj da is finite for every x € S. Let x, — 0 according to the ¢,n-topology.
As S is finite-dimensional then the e,y-topology is equivalent to the usual Euclidean
topology, see [1]; hence x| = ¥

=1

/'f] - 0 too, (recall that x, = Z" Me,). The follow-
ing inequality -

J; nfx)da li):ll/t"‘[ Jz ne;)da £ M|x
completes the proof. R |

Theorem 9. Let an SLM-space (S, #, min) be given. Then
Yonfx —y
o(xy) = f =) g

o L+n{x —y)

is a metric in S and the topology induced by ¢ is equivalent to the &,n-topology in S.
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Proof. Surely, it holds for every pair x,yeS g(x,y) = 0 because for every
ae{0,1) n(x — y) = 0; similarly, o(x, y) = o(y, x) and g(x, x) = 0. If o(x, y) = O,
ie.

it implies that n,(x — y) = 0 a.s. in <0, 1) with respect to the Lebesgue measure.
But, for every z € S n,(z) is a nondecreasing function in <0, 1) and this fact implies
that n,(x — y) = O forevery a € <0, 1) and thercfore x = y. The triangular inequality
o(x, y) £ o(x, z) + o(y, z) for every triple x, y, z in S follows from the fact that for
every a € €0, 1) n,(-) is a seminorm. We have proved that g is a metric in S.

Now, let us suppose that g(x,, x) = 0if n - oo i.e.

J‘I—n"(ﬁ:ﬁ—da—vo if n— .
o1 +nx, —x)

But this convergence describes the convergence in measure of the sequence
{n(x, — x)}¥ with respect to the Lebesgue measure in <0, 1) and we know from the
proof of the previous Theorem 7 that this convergence is equivalent to the convergence
induced by the e,n-topology. O

Theorem 10. Every metrizable locally convex linear topological space (S, r) is
an SLM-space (S, #, min).

Proof. Letalinear topological space (S, 1) be given and let the topology 7 be locally
convex and metrizable. Thanks to these properties of the topology 7 there exists
a countable base %, of neighbourhoods of the zero element in S

By = {Un}(;o
where U, is an absolutely convex subset in S and we can suppose that U, o U,

for every n. To every neighbourhood U, it is possible to construct a seminorm
p.{*)in S defined by the relation

pux)=inf{1>0:xeil,}.
Since U, > U1 then p,(x) £ p,.(x) for every xeS. Let {a,}7 be a sequence

of positive numbers, 3" a, = 1. Forevery x & S we assign b the mapping ¢ the distri-
=1

bution function #(x) = F

x

F(u)=0 ue(—oo, p(x)»
Flu) = a, we(pi(x), pax)
F{u) =a +a;, u E(pz-(,\"), p3(x)>

Fx(u) = ; 4i ue (Pn:(-\'): DPust 1(X)>
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If lim p,(x) is finite then in the case pa(X) = Pns+1(x)=... for every » 2 ny we put
F,(u) = 1 for every u e (lim p,(x), c0), otherwise F(u) = 1 for every u € lim p,(x),
o0). We do not eliminate the case of empty intervals.

If x = 0 then p,(x) = 0 for every n and hence Fo = H. Similarly, if F, = H then
it implies that p,(x) = 0 for every n and thelefore x = 0. Since every p,(*) is a semi-
norm in S then for every real 4 p, /lx) [zl[ p.(x) and as follows

Fifu) =

forevery A + 0 and every x € S.
Further, we shall prove the generalized triangular inequality

Freiy(u + v) 2 min (Fou), F,(v)).

The cases u + v<Oand u + v 2 11m p,,(x + ) are trivial. If u + ve (p(x + y),

uelR,

Pasi(x + y)> then Foy(u + v) = Za,. and it implies that u + v < p,,,{(x) +
i=1 B

+ Pus1()- However, it means that either 4 £ p,+(x) or v £ P, ((¥) which implies
that either

FwSYa or ) Ya

and thus the generalized triangular inequality holds.

By the above procedure we have proved that (S, ) can be understood as an SLM-
space (S, #, min). The topology T is formed by the class {p(*)}7 of seminorms in S,
in other words it means that x,, — 0 in topology 7 if and only ifpk(x,,) - Oforevery k.

Thus, for every ¢ > 0 and every k there exists an n, such that for every n 2 n,
Pulx,) < e

From the construction of the mapping # we conclude that

k-1
F.(e)> Y a;.
=1

Since k is arbitrary, we have F, (¢) — 1 and thus we have proved that x, — 0 in &-
topology induced by the mapping #.

Let x, — 0 in the gn-topology, i.e. Fx,.(“) -1if n—> w for every u > 0. Let
a natural number k and 7 > 0 be given. Let usset g = 1 — Z a;. Then there exists

i=1
a natural number ng such that for every n 2 ng F, (1) > 1 — ¢ = Z a;. According

to the definition of F it follows that 7 > p,(x,)forevery n = ngand hence pi(x,) 5 0.
In this way we have proved that the ¢,n-topology implies the original topology t 1n S.
O

We have shown that an SLM-space (S, #, min) can be characterized by a special
class Ny = {n,(*), a € €0, 1)} of seminorms in S. Now, we shall generalize this result
for a weaker t-norm than min. Let us consider such t-norms which are strictly in-
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creasing functions on the diagonal in €0, 1> x <0, 1>. If a € <0, 1) and if we consider
similarly n,(x) = inf {1 > 0: F,(1) > a} we obtain for every a € <0, 1) a positively
homogeneous nonnegative functional in S.

Since the t-norm T'is weaker than min, it nced not hold n,(x + y) £ n,(x) + n{y)
in S. But we can prove an analogous inequality

Nr@a(x + ¥) S n(x) + ny).
From the relation between F,(-) and n,(+) it follows that n,(x) < u if and only if
Fu)>a,n(y) <vif Fj(v)>a and npg,(x +y)<u+o if and only if
Feiy(u + v) > T(a, a). Since

Nyl + p) =inf {u + v> 0: Fy (u + 0) > T(a,a)} <
< inf{u + 0> 0: T(Fu), Fy(v)) > T(a, a)} <
Sinf{u > 0:F(u) > a} +inf{o> 0: F,(0) > a} = n(x) + n(y},

t-norm TY(a, a) is strictly increasing on the diagonal in <0, 1> x <0, 1, then we
obtained a weaker form of the triangular inequality

Nraa(X + ¥) £ nx) + nfy)

determined by the t-norm T in S. The class N§ = {n,: a e {0, 1)} of functionals
in S will be called the class of the generalized seminorms in S. Every generalized
seminorm n,,(‘) satisfies in S:

1) n,(0) = 0;if n,(x) = 0 for every a € 0, 1) then x = 0.

2) n(ix) = ),] n(x) for every 2 € R and every x e S.

3) NyafX + ¥) S ny(x) + ny(y) for every x, y € S and every a €0, 1).

Analogously, as we constructed a probability space to the SLM-space (S, #, min)
we can construct a similar probability space (N, =, P) to the space (S, #, T) with
quite analogous properties.

At the end of this we introduce two theorems which describe bounded and totally
bounded sets in the ¢,n-topology.

Theorem 11. A subset K < (S, #, T) is bounded in the ¢,ij-topology if and only if

(Vae<0,1)3k, > 0VxeK)= F(k,)> a.

Proof. If K is &,1-bounded, then for every g,n-neighbourhood Ofe, 1) there exists
such a 4 > 0 that

K = 20(e,n) = Ofg, Ay), ie forevery xeK F(in)>1-—¢.
If we put 1 — & = a, k, = Ay then F(k,) > a.

On the contrary, if {x,}7 is a sequence in K and {4,} is a sequence of reals with
4y = O then for arbitrary u > 0 F, . (u) = F,(uf|4,|) and because (u/|4,]) —» o
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if n - oo then there exists such an n, that for every n = no u > ka|/1,,| and hence

F;, (1) > a which proves that 4,x, — 0in the &,y-topology. The set K is ¢,5-bounded.

O

Remark 3. Especially, for an SLM-space (S, #, min) Theorem 11 can be formulated
in a more obvious sense. If K is ¢,4-bounded, then

(Vae0,1)3k, > 0VxeK)= F(k,) > a

and hence n,(x) = inf{l > 0:F[1) > a} < k, for every xeK. Thus, a subset
K < S is g,;p-bounded if an only if K is bounded in every topology t, induced in §
by the seminorm n,(+).

Quite analogously, it is possible to characterize totally bounded sets in an SLM-
space (S, £, min).

Theorem 12. A set K < (S, ¢, min) is totally bounded in the &,n-topology if and
only if it is totally bounded in every topology 7,.

Proof. Let K be totally bounded in every topology t,. It means that for a e €0, 1)
and every n > 0 there exists a finite n-net in the topology 7., i.e. there exist elements
x§,x%,...,x3 in S such that for every xeK m,(x — x9) < 5 at least for onc ie
e{l,2,...,s,}. It follows that F,_,«(n) > a, i.c. xe O(x{, 1 — a,7) and hence

5a Sa
KcUoxih1l—amn)=U{xi+01—an}.
i=1 i=1

We have proved that for every neighbourhood O(e, ) we can find a finite set {x;}7*™”
of elements in S such that
n(zn)
K < U {x; + O(s,n)}
i=1
and hence K is totally bounded in the g5-topology. The opposite inclusion is quite
clear because the ¢n-topology in S is stronger than every topology 1,. [}
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