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KYBERNETIKA-VOLUME 20 (1984), NUMBER 2 

STATISTICAL LINEAR SPACES 

Part II. Strongest t-norm 

JIŘÍ MICHÁLEK 

This paper is devoted to one of the most important cases of SZ,M-spaces when the generalized 
triangular inequality is given in the strongest form, i.e. using the J-norm T(a, b) = min (a, b). 
Only in Theorem 11 a case of a weaker f-form is considered. Symbols and denotations are the 
same as in the first part of the paper. 

1. SEMINORMS AND r-NORM MIN 

In the first part of this paper (cf. [ l ]) the notion of a statistical linear space in the 
sense of Menger was introduced and the 6,/j-topology was investigated. The main 
goal of the second part of the paper is a more detailed investigation of one of the most 
important cases of SLM-spaces. We shall deal with a statistical linear space (S, <f, 
min) where the generalized triangular inequality is expressed in the form 

Fx+y(u + v) 5: min (Fx(u), Fy(vj). 

Let a e <0, 1) and let us determine for every x e S the number na(x) by the relation 

na(x) = inf{A > 0 : FX(X) > a] . 

Since every probability distribution function Fx(-) is nondecreasing and left continu­
ous the following inequalities are equivalent 

na(x) < A o FX(X) > a . 

On the contrary, we can express Fx using na as follows Fx(u) = 0 for u ^ 0; Fx(u) = 
= sup {a e <0, 1) : na(x) < u). Let us denote Ns = {na(-) : a e <0, l)} for a given 
space (S, f, min). 

Theorem 1. The class Ns is a class of seminomas in (S, f, minj. 

Proof. Let na e Ns, then for every x e (S, / , min) na(x) _ 0 because Fx(0) = 0. 
Further, na(0) = 0, F0(u) = H(u) and hence na(0) = 0 for every a e <0, 1). 
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If A =1= 0 is a real number then the definition of na(x) yields 

na(kx) = inf {w > 0 : F)x(u) > a} = inf {« > 0 : Fx(u]\X\) > a} = 

= inf {|A| o > 0 : Ex(u) > a] = \k\ inf {s > 0 : E,((;) > a} = |A| n„(x) . 

For A = 0 na(0) = inf [u > 0 : H(u) > a} = 0 for every a. We have proved that 
for every a e <0, 1) and every real A 

na{kx) = \X\ na(x). 

Thus, we have yet to prove the triangular inequality 

na(x + y) < na(x) + na(y). 

According to the definition na(x + y) = inf {A > 0 : Fx+y(X) > a} = inf {u + v > 
> 0 : Fx+y(u + v) > a} <. inf {u + v > 0 : min (Fx(u), Fy(v)) > a} ^ inf [u > 
> 0 : Fx(u) > a} + inf {v > 0 : Ey(t>) > a} = na(x) + na(y). • 

Theorem 2. The class Ns — {n0} is a class of norms in (S,f, min) if and only 
if every function Fx(-) for x =f= 0 is continuous at 0. 

Proof. In the previous Theorem 1 we proved that na(0) = 0 for every a e <0,1). 
We can prove that the equality for every a e (0, 1) na(x) = 0 implies that x = 0, 
if every function Fx is continuous at 0, x 4= 0. Let us suppose that n„0(x0) = 0 for 
some a0 e (0, 1) and some x0 e S, x0 =j= 0. However, at the same moment FXo(X) > a0 

for every A > 0, it is clear that the function Fxo cannot be continuous at 0. 

If Ns — {n0} is a class of norms in (S, / , min), i.e. na(x) = 0 => x = 0 for every 
a e (0, l), it must be then na(x) > 0 for every x + 0 and every a e (0, l). If for some 
x0 + 0 lim FXo(u) = s0 would be nonzero then we obtain immediately 0 = 

= inf {A > 0 : EXo(A) > e0/2} = nBo/2(x0) and this conclusion is a contradiction to 
the assumption that na(-) is a norm for every a e (0 , l) . • 

It is well known that every locally convex topology in a linear topological space 
can be determined by a suitable collection of seminorms which are defined by all 
absolutely convex and absorbing neighbourhoods in the given topology. Similarly, 
in our case it is natural to ask about the relation between the e,n-topology in (S, f, 
min) and the class Ns of seminorms in S. 

Theorem 3 . Let an SLM-space (S, J, min) be given. Then for n -> oo xn -* x0 

in the £,n-topology if and only if na(xn — x0) ~* 0 for every a e <0, 1). 

Proof. The convergence x„ -> x0 in the e,n-topology means that (Ve e (0,1> 
Vn > 0 3n0 Vn =t n0) => FXn_Xo(n) > 1 - e. It follows from this implication that 
for every n =t «0 inf {A > 0 : FXn_X0(X) > 1 — e} < n, i.e. 

n1-£(x„ - x0) < M for every n ;> n0 . 
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In other words, if we choose a e <0, 1) and ^ > 0 arbitrarily and if we put e ~ \ — a, 
then s e ( 0 , 1> and there exists a natural n0 such that for every n >. n0 

n,-e(x„ - x0) = na(x„ - x0) < n 

and hence na(x„ — x0) —> 0 for every a e <0, l). Now, let for every a e <0, 1) 

"a (Xn ~ Xo) ~* 0, i-e-

(Va 6 <0, 1) V>7 > 0 3n0 Vn ^ n0) => na(x„ - x0) < n . 

The definition of the seminorm na(-) yields that na(x„ — x0) < ^ <=> FX|) _»„(»/) > a 
and for every n ^ n0 x„ — x0 e o(l - a,)/). This fact proves that x„ -> x0 in the 
£,f/-topology. D 

Remark 1. If an SZM-space (S, f, min) is normable and hence the existence 
of abounded convex neighbourhood in the £,f/-topology is ensured, see [ l ] , then there 
exists a bounded e,^-neighbourhood o(£0, ^0) and a norm can be given by 

|*|| = inf {X > 0 : Fx(Xt]0) > 1 - «o} = >?o ' " i - * / * ) • 

From this follows that «1_£0(-_) must be also a norm in (S, f, min). 

Theorem 4. Let (S, /", min) be given. Then the £,?/-topology is equivalent to the 
topology induced by a countable collection of seminorms {«„„(•)}, where ak \ 1. 

Proof. In [ l ] , the metrizability of the £,?/-topology is proved, hence we can consider 
sequences in S only. If x„ -• 0 in the e,^-topology, then na(x„) -* 0 for every a e <0, l) 
as Theorem 3 states. 
Conversely, let us suppose that x„ -* 0 in the topology induced by the seminorms 
{nah} where ak\l, i.e. nak(x„) -* 0 for every k. Since ak | 1, then for an arbitrary 
E e (0, 1> there exists q such that for every k >, q 1 > ak > 1 — e. If t\ > 0 is arbi­
trary, then there exists n0 such that for n >. n0 na (x„) < t]. This last inequality 
implies that FXn(n) > aq , hence 1 — e < Fxj^]). In other words, it means that 
x„ e o(e, n) for every n >, n0. This proves the convergence of {x„} to the origin 
in the e,^-topology. D 

Remark 2. The collection of seminorms {nak} mentioned in Theorem 4 induces 
a metric 

' = ' 2 ' 1 + n j x - y) 

in S which is equivalent to the e,)j-topology. 

Theorem 5. Let S be a linear space, let N = {na : a e <0, 1)} be a class of semi-
norms in S. If for every x e S the function na(x) is nondecreasing and right continuous 
in <0,l) and na(x) = 0 for every a e <0, 1) implies that x = 0, then S can be assumed 
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as an SLM-space (S, , / , min) and the £,n-topology in S is identical with the topology 
induced by the class N of seminorms. 

Proof. If N is any class of seminorms in S then it is possible to introduce a topology 
in S, which is locally convex and at the same time the weakest topology in which ail 
seminorms in TV are continuous. This topology is a Hausdorff topology if and only 
if n(x) = 0 for every n e N implies that x = 0 in S. A base of neighbourhoods 
of the origin in this weakest topology is formed by all sets 

{x £ S : max nt(x) < s} 
l g i s k 

where e > 0 and nteN, k = 1, 2 , . . . . In our case this base is formed by all sets 
of the form 

{xeS : na(x) < e} , a e <0, 1) 

because we assume that na(x) is nondecreasing on <0, l) in a. Using the seminorms 
na, a e <0, l) we can define a mapping f : S -> 3F. If x e S then we put 

/(*) ["] = I» - suP {« e <°> 1) : "«(*) < «} 
in the case that {a e <0, 1) : na(x) < u} #= 0and / ( ; c ) [u] = Fju) = Oif {a e <0, 1) : 
: na(x) < u} = 0. First, we shall prove that Fj~) is a probability distribution function. 
It is sufficient to consider the case M > 0 only. If Mj g u2 then 

rx(Mi) = SUP {a '• na(x) < ui} = SUP {a : na(x) < u2} = Fx(u2) 

hence Fj-) is a nondecreasing function. Further, we shall prove that Fj-) is left 
continuous at every u > 0. Let u„ \ u. Then Fju„) = sup {a : na(x) < u„} <, 
<: Fjun + 1) <; Fju) and lim Fx(u„) = sup Fju„) exists and sup Fju„) ^ Fx(u). 

But Fx(u) = sup {a e <0, 1) : na(x) < u} and hence for every e > 0 there exists 
ae 6 <0, 1) such that Fju) — s < ae where naJx) < u. We assume that na(x) is 
right continuous at ae, thus for suitably small <5 > 0 and E0 > 0 we have nac+0(x) < 
< M - e0. 

If we denote E„ = « — un then e„ | 0 and for large ne„ <, e0 and hence nac+d(x) < u — 
— E„ = u„. But this inequality implies that Fx(un) < Fju) + 8 — s and therefore 
lim Fju,,) = Fju). 

Finally, it is necessary to prove that lim Fx(u) = 1. Let us suppose that lim Fju) = 

= a0 < 1. Then for every u > 0 Fju) ^ a0. The definition of FJ-) yields that 
for every u > 0 a0 ~> sup {a > 0 : na(x) < u}. It implies that nao + d(x) = co if 
a0 + 5 < 1, 3 > 0. This conclusion is in a contradiction to the assumption that 
«„(•) for a e <0, l) are seminorms on S. 

If x = 0 and /7„(0) = 0 for every a e <0, 1), then for u > 0 F0(M) = sup {a e 
e <0, lj : 0 < a} = 1 and F0(u) = H(u) for every ueR. On the contrary, if Fju) = 
= H(u) for every ue R, i.e. Fju) = 1 for every u > 0, then 1 = sup {a : na(x) < u\ 



for every u > 0. But this implies that na(x) = 0 for every a e <0, l) and by the 
assumptions of Theorem 5 we have x = 0. A further property, which must be veri­
fied, is the equality 

Fju) = Fx(uj\X\) 

for every xeS and every real X =t= 0. 

F,x(u) = sup {a : na(Xx) < u} = sup {a : \x\ na(x) < u} = 

= sup{a:« f l (x)< U / |A |} = Fx(u\\X\) . 

Finally, we must verify the generalized triangular inequality for the /-form T(a, b) = 
= min (a, b). Since {«„(•)} are seminorms in S then 

Fx+y(u + v) = sup {a : na(x + y) < u + v} =• sup {a : na(x) + na(y) < u + v} =• 

> sup {{a : na(x) < u], {a : na(y) < v}} = min (Fx(u), Fy(v)) 

because the functions na(x), na(y) are nondecreasing on <0, l) in a. 

A base for the topology generated by the class N = {na : a e <0, 1)} of seminorms 
in S is formed by all sets 

{x : na(x) <n} , a e <0, l) , n > 0 . 

The £,?;-topology has the base of s,)/-neighbourhoods 0(e, n) = {x e S : Fx(n) > 1 — 
— e}. As Fx(n) = sup {a : na(x) < n} then 0(e,n) = {x:n1_E(x)<r]}. This 
implies that both these topologies are identical. • 

2. PROBABILITY AND (-NORM MIN 

Theorem 6. Let an SLM-space (S, J, min) be given. Then there exists a probability 
space (N, s4, P) where 

1) N is a suitable set of seminorms in S 
2) for every ueR and every x e S {neN : n(x) < u} e stf 
3) P({n 6 N : n(x) < u}) = Fx(u). 

Proof. In Theorem 1 it was proved that for every a e <0, 1) na(x) = inf {). > 0 : 
: Fx(l) > a} is a seminorm in S. Let us denote N = {na : a e <0, 1)} and let i$0 = 
= {{na : ux ^ na(x) < u2} : xe S,ux ^ 0, u2 ^ 0}. Since na(x) < u2 if and only 
if Fx(u2) > a and similarly «„(x) 2; u± if and only if Fx(u^) < a, evidently {na : H, < 
<: na(x) < u2} = {na : Fx(ut) < a < Fx(u2)} and hence 3&0 _ s40 = {{naeN : 
: at <. a < a2}, at e <0, 1>, i = 1, 2}. Let us prove that A0 is a semiring in N. If 
A = {na: ai <, a < a2},B = {na :b1 <; a<b2} then A n B = {na : max (au bt )< 
< a < min(a2 , b2)} is also an element of jtf0. If A c fi, i.e. bt < au a2 ^ b2, 
then if we put C0 = A, Cx = {na : b1 <, a < a2}, C2 = B the sets C0, Ct, C2 

belong to the system s/0 and Cx — C0 = {na : bx <. a < a.}, C2 — Cx = {«a : a , < 
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g a < b2], and c x - c 0 , c 2 - c , belong to ^ / 0 also. Since N = {na : 0 < a < \} 
then N es/0;v/e have proved that «af0 is a semiring. 

Since it can happen that na(x) = nb(x) for every x e S although a + fe then, in 
general, there is no one-to-one correspondence of all the sets <a, fe) c <0, l) and 
the elements of s/0. Since it holds na(x) < nb(x) for every x e S and for every pair 
a S b, and na(x) is right continuous for every x e S, then every subset {«„ e N : na = 
= nb} has the minimal point, i.e. there exists such a number a0 e <0, l) that if na = naa 

then a ^ a0. It is clear that every subset {na : na = nb} can be expressed in the 
unique way either as {na : a0 < a < b0} or as {na : a0 < a < b0}, where fa0 = 
= sup {fe : nb = nfl0}. Let us consider the cases a0 < fa0 only. There exists a countable 
number of such intervals at most. Let us denote by <a;, b;), i = 0, 1, 2, ... all excep­
tional subsets in <0, 1), i.e. for every a e <a;, fe;) na = na. i = 0 , 1 , 2 , . . . . Then 
there exists a one-to-one correspondence between N and the set <0,1) — U (a-„ fe,)-

Let us define a probability measure fi on the measurable space (<0, l), $) (where 31 
is the a-algebra of all Borel sets in <0, 1)) in the following way: 

if <a;, fa;) is an exceptional set in <0, l) then we put /j(<a;, fa,)) = fa; - a ; and 
n((ah fe;)) = 0, i.e. all the exceptional sets shall be atoms; if <a, fe) n U<« ;, fa,) = 0 

then we put (<a, fa)) = fa — a, i.e. the ordinary Lebesgue measure will be con­
sidered outside all atoms. 

Let us denote by G(*) the distribution function of this measure jt in <0, 1), i.e. 

/ i«a , fa)) = G(fa) - G(a) , G(0) = 0 . 

Using this measure fi we shall define a probability measure P on the semiring s/0. 
If {/?„ e N : a0 < a < b0} is an element of s/0 then we put 

P({n„ e N : a0 < a < b0}) = G(fe0) - G(a0). 

It is no problem to verify that the set function P is a measure on the semiring s/0 

and hence P can be in the unique way enlarged onto the smallest cr-algebra s/ over 
s/0. In this way the probability space (N, s/, P) is constructed. Since for every x e S 

s/0e{naeN :ut < na(x) < u2} = {na : Fx(ux) < a < Fx(u2)} , 

we can determine the probability P of this random event as follows 

P({naeN : Fx(ux) < a < Fx(u2)}) = G(Fx(u2j) - G(Fx(u,)) . 

If we express all the elements in s/0 in the unambiguous form {naeN :c < a < d} 
then there exists a one-to-one correspondence between s/0 and some semiintervals 
in <0, 1). That unambiguous form can be obtained in this way: 

if c and d are no exceptional points, i.e. c, d$ \J(ah fa,), {na : c S a < d) remains 
without any changes; 
if c 6 <a;, fa;) then c is replaced by a ;; 
if d e <ay, b}) then d is replaced by bj. 
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This expression of all intervals {naeN : c = a < d} will be called the maximal 
expression. It can be easily proved that all maximal intervals in s/0 form a semiring 
and also N = {na : 0 ^ a < 1} belongs to this semiring. Let us note that the pro­
bability measure P on this semiring can be defined as 

P({na eN :c = a < d}) = d - c = G(d) - G(c), 

where c, d are boundary points of a maximal interval. Now, since {na : «j < na(x) < 
< u2} = {na : Fx(u)) tk a < Fx(u2)} then {na : ut = na(x) < u2} belongs among 
the maximal intervals in every case. At the first sight it is clear that the interval 
{na : 0 < a < d} is not maximal if and only if for every x e S there exists no a > 0 
with Fx(u) = d. From these reasons every interval {na : Fx(ut) = a < Fx(u2)} is 
maximal and hence P({na : 0 = na(x) < A}) = Fx(£) for every A > 0 . • 

3. LOCAL CONVEXITY AND SLM-SPACES. 

For every x e S the seminorm na(x) as a function of the argument a e <0, 1) is 
nondecreasing and hence Borel measurable. It is reasonable to consider the value 
n(x) = J0 na(x) da (which of course can be infinite too). 

Theorem 7. Let an SLM-space (S, f, min) be given such that for every x e S 

n(x) = na(x) da 
Jo 

is finite. Then «(•) is a norm in S and/in general, the topology induced by this norm 
n(-) is stronger than the e,n-topology. 

Proof. Since for every a e <0, 1) na(kx) = \k\ na(x) and na(x + y) <, na(x) + 
+ na(y) hold, then n(-) must be a seminorm in S also. If n(x) = 0 then na(x) = 0 a.s. 
with respect to the Lebesgue measure in <0, 1). As na(x) is a nondecreasing 
function in the argument a e <0, 1), then for every a e <0, 1) it must hold na(x) = 0 
what implies x = 0. Hence n(-) is a norm in S. Let us suppose that for some sequence 
{xn}i° c S n(x„) -* 0 if n -» co, i.e. 

n„(xn) da -> 0 , 

but this is the convergence in the mean with respect to the Lebesgue measure / 
of {na(xn)}f in <0, l). This convergence in the mean implies the convergence in 
measure and hence 

(Ve e (0, 1> Vn > 0 3/i0 Vn = nQ) «• l({a : na(x„) < n}) > 1 - e . 

Since na(x) < n <* Fx(n) > a then we have l{a : FXn(n) > a} = FXn(n) > 1 — e and 
this fact proves convergence of {x„}" in the e,n-topology. Since the convergence 
in the norm n(-) is equivalent with the convergence of {na(x„)}f in the mean which 
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is generally stronger than the convergence in measure of {na(x„j}f then we proved 
that the £,n-topoIogy is weaker than the norm n(-) in (S, / , min). 

Indeed, the following example shows that the norm n(-) is stronger than the 
£, n-topology. Let S be a linear space of all real sequences with finitely many non-zero 
members only. Let x = (x l5 x2,...) e S. Let us define a sequence of seminorms 
in S {nk}k=1 as follows 

«*(*) = I N , fe = l,2,.... 
i = i 

For every a e <0, 1) define a seminorm na in this way 
na = nk for a e <1 - 2~k+i, 1 - 2'k) , k = 1,2,.... 

For every x e S n(-)(x) is a nondecreasing, right continuous; x = 0 if and only if 
n«(-v) = 0 for every a e <0, 1). A norm n(x) is then given by 

pi 
n ( x ) = na(x)da - = I 2 - | + I x , . 

Jo i = l 

Let {x00} be a sequence of elements in S defined by 

x<"> = 0 for i + n 

x("> = 2 - 1 . 

Then lim na(x
(B)) = 0 for every a e <0, l), but lim n(x(n>) = lim 1 = 1 . • 

Theorem 8. Let (S, f, min) be finite-dimensional. Let (elt e2, ..., e„) be an arbitrary 
base in S. If M = max {J0 n„(e,) da} is finite, then the s,n-topology is equivalent 

l£i£n 

to the topology induced by the norm n(-) = J^ »«.(") dfl-

Proof. Since every xe S can be expressed as x = £ z^e,, then na(x) g £ [A,| nfl(e,) 
i = l i = l 

and J0 n„(xj da is finite for every x e S. Let x t -+ 0 according to the e,n-topology. 
As S is finite-dimensional then the s,n-topology is equivalent to the usual Euclidean 

topology, see [ l ] ; hence |x*| = £ \$\ ~* 0 too,(recall that xfc = £ ?!i
ie). The follow-

i = i * i = i 

ing inequality 

I na(xk)da ^ £ \X1\ | na(et)da g M||x t | | 
Jo i = i Jo 

completes the proof. ' D 

Theorem 9. Let an SLM-space (S, f, min) be given. Then 

( ^ f1 na(x - y) 
<?(*, y) = -—^- '— da 

Jo l + n a ( x - y) 

is a metric in S and the topology induced by Q is equivalent to the £,n-topology in S. 
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Proof. Surely, it holds for every pair x, y e S Q(X, y) ;> 0 because for every 
a e <0,1) na(x — y) ^ 0; similarly, Q(X, y) = Q(y, x) and Q(X, X) = 0. If Q(X, y) = 0, 

f <*-*) dq^O, 
J 0 l + n B ( x - j ) 

it implies that na(x — j ) = 0 a.s. in <0, 1) with respect to the Lebesgue measure. 
But, for every z e S na(z) is a nondecreasing function in <0, 1) and this fact implies 
that na(x — y) = 0 for every a e <0, 1) and therefore x = y. The triangular inequality 
Q(X, y) S Q(X, z) + Q(y, z) for every triple x, y, z in S follows from the fact that for 
every a e <0, l) «„(•) is a seminorm. We have proved that Q is a metric in S. 

Now, let us suppose that Q(X„, x) -> 0 if n —> co i.e. 

na(x„ - x) 
—2^-2 — da -> 0 if n -» oo. 

o 1 + na(x„ - x) 
But this convergence describes the convergence in measure of the sequence 
{na(x„ — x)}f with respect to the Lebesgue measure in <0, 1) and we know from the 
proof of the previous Theorem 7 that this convergence is equivalent to the convergence 
induced by the £,?7-topology. • 

Theorem 10. Every metrizable locally convex linear topological space (S, T) is 
an SLM-space (S, #, min). 

Proof. Let a linear topological space (S, T) be given and let the topo'ogy T be locally 
convex and metr'zable. Thanks to these properties of the topology T there exists 
a countable base ^ 0 of neighbourhoods of the zero element in S 

^ o = {U„}f 

where U„ is an absolutely convex subset in S and we can suppose that U„ =3 U„ + 1 

for every n. To every neighbourhood U„ it is possible to construct a seminorm 

P„(-) in S defined by the relation 

P„(x) = inf {X > 0 : x e Wn} . 

Since U„ => U„+1 then p„(xj ^ p„+1(x) for every x e S. Let {a„}f be a sequence 

of positive numbers, £ an = 1. For every x e S we assign by the mapping / the distri-
n= i 

bution function f(x) = f 

Fx(u) = Q ы є ( - c x ) , P l ( x ) > 

Tv(") = fl! uє(Pl(x), P2(x)) 

Fx(u) = at+a2 uє (Pl(x), Pì(x)) 

ВД = Ž«; uє(p;,(x), p„+ 1(x)> 
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If lim p„(x) is finite then in the case p„(x) = p„+ .(x) = . . • for every n ^ ?J0 We put 
Fx(u) = 1 for every u e (lim p„(x), oo), otherwise Fx(u) = 1 for every u e <lim p„(x), 
oo). We do not eliminate the case of empty intervals. 

If x = 0 then p„(x) = 0 for every n and hence F0 = H. Similarly, if Fx = H then 
it implies thatp„(x) = 0 for every n and therefore x = 0. Since every p„(-J is a semi-
norm in S then for every real Xp„(Xx) = |A| p„(x) and as follows 

Fju) = Fx(ul\X\) , ueR, 

for every X =t= 0 and every x 6 S. 

Further, we shall prove the generalized triangular inequality 

Fx+y(u + v) _ min (Fx(u), Fy(e)) . 

The cases « + _ 0 and u + v ^ lim p„(x + y) are trivial. If u + v e (p„(x + y), 

Pn+i(x + )')} then Fx+y(u + v) = £ at and it implies that u + v < p„ + l(x) + 
r=i 

+ / W I C F ) - However, it means that either u _ p„ + i(xj or v _ p„ + i(>0 which implies 
that either 

Fx(u)<£at or F.X») _ f a, 
i = l i = l 

and thus the generalized triangular inequality holds. 
By the above procedure we have proved that (S, T) can be understood as an SLM-

space (S, f, min). The topology T is formed by the class {p,(#)}i° °f seminorms in S, 
in other words it means that x„ -+ 0 in topology T if and only if pk(x„) -* 0 for every k. 

Thus, for every e > 0 and every k there exists an n0 such that for every n _ n0 

pk(x„) < e. 
From the construction ol the mapping f we conclude that 

F j B ) > £ „ ; . 
i = 1 

Since k is arbitrary, we have FXn(e) -* 1 and thus we have proved that x„ -* 0 in e,w-
topology induced by the mapping/". 

Let x„ -> 0 in the e,n-topology, i.e. FxJu) -> 1 if n -> co for every u > 0. Let 
fc — i 

a natural number /c and n > 0 be given. Let us set e = 1 — £ a;. Then there exists 
i = l k - l 

a natural number n0 such that for every n }> n0 FXn(n) > 1 — e = £ a ; . According 
i = l 

to the definition of Fx it follows that n > pt(x„) for every n >. n0 and hence pk(x„) - j * 0. 
In this way we have proved that the e,n-topology implies the original topology T in S. 

• 
We have shown that an SLM-space (S, f, min) can be characterized by a special 

class Ns = {«„(•)> a e <0, l)} of seminorms in S. Now, we shall generalize this result 
for a weaker i-norm than min. Let us consider such f-norms which are strictly in-
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creasing functions on the diagonal in <0, 1> x <0,1>. If a e <0, l) and if we consider 
similarly na(x) = inf {X > 0 : FX(X) > a} we obtain for every a e <0, 1) a positively 
homogeneous nonnegative functional in S. 

Since the /-norm Tis weaker than min, it need not hold na(x + y) ^ na(
x) + nq()') 

in S. But we can prove an analogous inequality 

nT(a-a)(X + y) ^ na(x) + ".(>') • 

From the relation between Fx(-) and na(-) it follows that na(x) < M if and only if 
Fx(u) > a, na(y) < v if Fy(v) > a and nT(a,a)(x + y) < u + v if and only if 
Fx+y (u + v) > T(a, a). Since 

nT(a.a)(x + y) = inf {" + » > 0 : Fx+y(u + v) > T(a, a)} g 

S inf {M + v > 0 : T(Fx(u), Fy(vj) > T(a, a)} ^ 

S inf {w > 0 : Fx(u) > a} + inf {v > 0 : Fy(v) > a} = na(x) + na(y), 

/-norm T(a, a) is strictly increasing on the diagonal in <0, 1> x <0, 1>, then we 
obtained a weaker form of the triangular inequality 

nna,a)(x + }') S na(x) + na(y) 

determined by the /-norm T in S. The class TVj = {na : a e <0, l)} of functional 
in S will be called the class of the generalized seminorms in S. Every generalized 
seminorm «„(•) satisfies in S: 

1) na(0) = 0; if na(x) = 0 for every a e <0, 1) then x = 0. 
2) na(Xx) = \x\ na(x) for every Xe R and every x e S. 
3) nT(a,a)(x + y) ^ na(x) + na(y) for every x, y e S and every a e <0, 1). 

Analogously, as we constructed a probability space to the SLM-space (S, f, min) 
we can construct a similar probability space (N^, jaf, P) to the space (S, f, T) with 
quite analogous properties. 

At the end of this we introduce two theorems which describe bounded and totally 
bounded sets in the e,/?-topology. 

Theorem 11. A subset K a (S, #, T) is bounded in the £,ij-topology if and only if 

(Va e <0, 1) 3ka > 0 Vx e K) => Fx(ka) > a . 

Proof. If K is e,/j-bounded, then for every e,/j-neighbourhood 0(E, n) there exists 
such a X > 0 that 

K <=. X 0(e, r\) = 0(E, Xn) , i.e. for every xeK Fx(Xrj) > 1 - £ . 

If we put 1 — £ = a, ka = Xn then Fx(ka) > a. 

On the contrary, if {x„}f is a sequence in K and {X„}f is a sequence of reals with 
X„ ~> 0 then for arbitrary u > 0 FlnXn(u) = FXn(u\\Xn\) and because (M/|A„|) -> GO 
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if n -* co then there exists such an n0 that for every n g: n0 u >_ fc0U„| and hence 
FXnXn(u) > a which proves that X„x„ -> 0 in the s^-topology. The set K is s^-bounded. 

D 
Remark 3. Especially, for an SLM-space (S, #, min) Theorem 11 can be formulated 

in a more obvious sense. If K is a,^-bounded, then 

(Vfl 6 <0, 1) 3fcfl > 0 Vx e K) => Fx(ka) > a 

and hence na(x) = inf {/ > 0 : FX(X) > a] < ka for every xeK. Thus, a subset 
K <= S is s,?j-bounded if an only if K is bounded in every topology Ta induced in S 
by the seminorm na(-). 

Quite analogously, it is possible to characterize totally bounded sets in an SLM-
space (S, f, min). 

Theorem 12. A set K <= (S, f, min) is totally bounded in the 8,/7-topology if and 
only if it is totally bounded in every topology xa. 

Proof. Let K be totally bounded in every topology xa. It means that for a e <0, l) 
and every n > 0 there exists a finite n-net in the topology ra, i.e. there exist elements 
x",, x"2,..., x"Sa in S such that for every xeK na(x — x°) < n at least for one i e 
6 {1, 2, ..., sa}. It follows that Fx_x.a(n) > a, i.e. x e 0(x", 1 - a, n) and hence 

K c\J 0(x"t, 1 - a, n) = U {xl + 0(1 - a, n)} . 
i = 1 i = 1 

We have proved that for every neighbourhood 0(e, n) we can find a finite set {x,}"(E"') 

of elements in S such that 

K cz"u"{x; + o(s, n)} 
i = i 

and hence K is totally bounded in the s,^-topology. The opposite inclusion is quite 
clear because the ^- topology in S is stronger than every topology r„, D 
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