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EXISTENCE OF AVERAGE OPTIMAL POLICIES 
IN MARKOV CONTROL PROCESSES 
WITH STRICTLY UNBOUNDED COSTS 

ONÉSIMO HERNÁNDEZ-LERMA 

01849/01 
This paper deals with discrete-time Markov control processes on Borel spaces and strictly 

unbounded one-stage costs, i. e. costs that grow without bound on the complement of 
compact sets. Under mild assumptions, the existence of a minimum pair for the average 
cost problem is ensured, as well as the existence of stable optimal and pathwise-optimal 
control policies. It is shown that the existence of a minimum pair is equivalent to the 
existence of a solution to an "optimality inequality", which is a weaker version of the 
dynamic programming (or optimality) equation. 

1. INTRODUCTION 

This paper is concerned with the problem of minimizing the average cost (AC) 
for discrete-time Markov control processes (MCPs) with Borel state and control 
processes, and strictly unbounded one-stage costs, i. e. costs that grow without bound 
on the complement of compact sets. The most conspicuous example of the MCPs 
we have in mind is the linear-quadratic (or LQ) problem, which consists of the linear 
system equation 

xt+i = axt + Bat + 6 , t = 0,l,... (1.1) 

and the quadratic one-stage cost 

c(x,a) := x'yx + a'Qa, (1.2) 

where "prime" denotes transpose. In (1.1)-(1.2), the state and control (or action) 
spaces are X := Rp and A := Rq respectively, and the & are i.i.d. (independent 
and identically distributed) random disturbances, a, 8, y and 6 are matrices of 
appropriate dimensions, with y and 6 symmetric and positive definite. However, the 
feature we are interested in of the LQ problem is not the linearity — we may as well 
take a general nonlinear system equation 

x.+i = G{xuat,it), t = 0,l,.... (1.3) 

What we are interested in is the fact that the one-stage cost c is strictly unbounded, 
in the sense that (cf. Assumption 2.1(c) and Remark 2.4(a)) „ dJ'^CL^' OxX) 

inf inf c(x, a) —> oo as n —• oo. I (1.4) - • » & , 
i - i> n a \ yyv\JtM** 1 c 



O. HERNANDEZ-LERMA 

Our objective is to show, under mild assumptions (Assumptions 2.1 and 3.3), the 
existence of a "minimum pair" and of AC-optimal policies for a class of MCPs that 
includes (1.1)-(1.2) and (1.3)-(1.2). 

As noted by several authors (e.g. Hartley [12], Kushner [22]), there are vir
tually no results in the MCP literature directly applicable to the AC problem for 
(1.1) — (1-2) [or (1.3) —(1.2)], for, to begin with, most of this literature is concen
trated on problems with (i) denumerable state space, and/or (ii) compact control 
constraint sets, and/or (iii) bounded one-stage costs: [1,6,7,11,14,20,30,...]. Thus 
one has to resort to "indirect" approaches or plainly to non-MCP techniques. For 
instance, among the latter, to solve the AC problem for (1.1) — (1-2) one uses ad 
hoc concepts from linear systems theory, such as controllability, observability, sta-
bilizability [1,12,22,28]. Among the former, "indirect" approaches one may use 
compactness/compactification methods [2, p. 210; 21,29]; the "vanishing discount 
factor" approach [15,16]; the linear programming approach [17]; or combinations of 
these [12,29]. 

The approach we adopt in this paper, on the other hand, is a direct one, based 
on the fact that an AC problem with strictly unbounded costs is necessarily well-
behaved. More precisely, if an arbitrary control policy yields a finite AC, then there 
exists a (possibly randomized) stationary policy that yields a better (i.e. lower) AC 
and, moreover, the latter policy is "stable" (in the sense of Definition 4.1). Thus we 
are able to show the existence of stable AC-optimal policies and that/furthermore, 
the existence of one such policy is essentially "equivalent" to the existence of a 
solution to the "optimality inequality" (see Theorem 5.3 and Corollary 5.4) — unlike 
the standard result, which shows that such an inequality is sufficient for optimality, 
see e.g. [15,16]. 

Organization of t he paper: In § 2 we introduce the basic Markov control model 
and assumptions, and in § 3 we present the AC optimality criteria we are interested in 
(see (3.1)-(3.4) and Definition 3.4). § 4 deals with the definition and some important 
properties of stable relaxed (or randomized stationary) policies. Our main results 
are presented in § 5, and their proofs are collected in § 6. Finally, in § 7 we present 
two examples, one of which is the LQ problem (1.1) — (1.2), and conclude with some 
brief remarks on the "optimality inequality" versus the "optimality equation". 

Remark 1.1. We use the following notation and terminology. Given a Borel space 
Y (i.e. a Borel subset of a complete and separable metric space), its Borel cr-algebra 
is denoted by B(Y); "measurable" always means "Borel-measurable". V(Y) stands 
for the space of probability measures (p. m.'s) on Y, and C(Y) denotes the space of 
real-valued, continuous and bounded functions on Y. If Y and Z are Borel spaces, 
then a stochastic kernel (or conditional probability) on Y given Z is a function 
P(-1 •) such that P(-1 z) is a p.m. on Y for each fixed z 6 Z, and P(B\ •) is a 
measurable function on Z for each fixed B £ B(Y). The family of all stochastic 
kernels on Y given Z is denoted by V(Y\Z). We also use standard abbreviations, 
such as p.m. = probability measure, a.s. = almost surely, a.a. = almost all. 
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2. THE CONTROL MODEL 

We consider the usual Markov control model (X, A, Q, c) with state space X, control 
(or action) set A, transition law Q, and one-stage cost function c, which are assumed 
to satisfy the following. Both X and A are Borel spaces. The set of admissible 
control actions in state x £ X is a nonempty set A(x) £ B(A) (see Remark 1.1 for 
notation). The set K of admissible state-action pairs, i.e. 

K := {(x,a)\xEX, a £ A(x)} (2.1) 

is a Borel subset of X X A. The transition law Q is a stochastic kernel on X given 
K, i.e. Q £ V(X | K). Finally, c is a real-valued measurable function on K. 

The above Markov control model is standard: [2,10,11,14,19]. Here we will also 
assume the following. 

Assumpt ion 2 .1 . (a) Q is weakly continuous, i. e., / u(y)Q(dy \ x, a) is a continu

ous and bounded function in (x, a) £ K for every u £ C(X) (recall Remark IT for 

the meaning of C(X)). 

(b) c(x, a) is l.s. c. (lower semicontinuous) and nonnegative; 

(c) c is strictly unbounded (equivalently, a moment; see Remark 2.4(a)), i.e., there 
exists an increasing sequence of compact sets Kn | K such that 

liminf {c(x, a) \ (x, a) g Kn} = +oo. (2.2) 
n 

In the remainder of this section we briefly discuss Assumption 2.1. 

Example 2.2. Let 5 be a Borel space, and let £t be a sequence of i.i.d 5-valued 
random variables with a common distribution /.. Let G : K x S ^ I be a given 
measurable function, where K is the set in (2.1), and consider a stochastic control 
system of the form 

xt+1 = G(xt,at,t:t), . = 0 , 1 , . . . , (2.3) 

The corresponding transition law Q satisfies, for any nonnegative measurable func
tion u on X, 

/ u(y)Q(dy | x, a) = E[u(xt+i)\xt = x, at = a] 

= / u[G(x,a,s)]n(ds). 
Js 

Clearly, Q satisfies Assumption 2.1(a) if G(x,a,s) is continuous in (x,a) £ K for 
every s £ S. In particular, Assumption 2.1 (a) holds for the linear system (IT) . On 
the other hand, it is plain that the quadratic cost in (1.2) satisfies Assumption 2.1 (b) 
and 2.1 (c) even if 0 is only nonnegative definite (as opposed to positive definite). 
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Example 2.3. Suppose that X is compact, and that there is an increasing sequence 
of compact sets An f A. Then Assumption 2.1(c) trivially holds: define Kn := 
X x An and recall that (by convention) the infimum over the empty set is +00. 

The following remarks are crucial for later developments. 

R e m a r k 2.4. (a) A nonnegative measurable function v on a Borel space Y is said 
to be a moment on Y [13,24] if there is an increasing sequence of compact sets 
Yn t Y such that 

lim inf v(y) = +00. 

Thus, Assumption 2.1(c) states, in other words, that the one-stage cost c(x,a) is a 
moment on K. 

(b) Let M C V(Y) be a family of p.m.'s (probability measures) on Y. If there 
exists a moment v onY such that 

sup^ e M vdfi<oo, 

then M is tight (i.e. [3, p.37] for each e > 0 there is a compact set C in Y such 
that fi(C) > l - e V> G M). The proof is trivial. 

(c) In §§4 and 6, the above remark (b) will be used in conjunction with Pro-
horov's Theorem [3, p.37], which states the following: If M C V(Y) is tight, then it 
is relatively compact, i.e. every sequence in M contains a weakly convergent sub
sequence. More explicitly, every sequence {/.in} in M contains a subsequence {/*ni} 
such that, for some p.m. /.t on Y, 

lim fudfin, = fudfi VueC(Y). (2.4) 

(d) Let Hn and fi be p.m.'s on a Borel space Y, such that p„ —» \i weakly, and 
let v : Y —* R be l.s.c. and bounded from below. Then 

liminf / v d/in > / vdfi. (2.5) 

Indeed, by the assumption on v, there is a sequence of functions vk G C(Y) such 
that vk 1 v. Therefore, for all k, 

liminf / t)d/i„ > liminf / vk d/x„ = vk d/t. 

Letting k —* 00 we obtain (2.5). 
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3. PERFORMANCE CRITERIA 

Definition 3.1. F denotes the set of all measurable functions / : X —+ A such 
that f(x) G A(x) for all a; G X, and $ stands for the set of all stochastic kernels 
<p G V(A\X) such that <p(A(x)\x) = 1 for all x G X. 

A function / G F will be identified with the stochastic kernel <p G $ such that 
<p(-\x) is the p.m. concentrated at f(x) V i 6 I . Thus F c $ . By Assumption 
2.1 (c), the set K in (2.1) contains the graph of a function / G F (see e.g. [27] 
Example 2.6). In other words, the set F (hence <$> and the set of policies defined 
next) is nonempty. 

Definition 3.2. As usual, a control policy (more briefly a policy) is a sequence 
6 = {6t} such that, for each t = 0 , 1 , . . . , 6t(- \ ht) is a conditional probability on A 
given the history ht := (x0, a0,..., Xt-i,at^i,xt), and which satisfies the constraint 
8t(A(xt) | h.) = 1. The class of all policies is denoted by A. A policy 6 = {6t} is 
said to be a: 

(i) relaxed (or randomized stationary) policy if there exists <p <= $ such that 
6t(-\ht) = <fi(-\xt)Vht, t>0; 

(ii) (nonrandomized or) deterministic stationary policy if there exists / G F such 
that 6t(-1 ht) is concentrated at f(xt) V ht, t > 0. 

Following a standard convention, we will identify F (resp. $) with the set of all 
deterministic stationary (resp. relaxed) policies. Thus F c $ C A . 

Let (f2, J") be the measurable space consisting of the sample space fi := (X xA)00 

and the corresponding product tr-algebra T. Then for each policy 6 G A and 
initial distribution v G V(X), a probability measure Pv and a stochastic process 
{(xt,at), t = 0,1,...} are defined on Q, in a canonical way, where xt and at represent 
the state and the control action at time t, respectively. The expectation operator 
with respect to Pv is written Ev. If v is concentrated at (the initial state) x0 = x, 
then we write Pv and Ev as P% and Es

x, respectively. 

For each 6 G A and v G V(X), define 

Jn(6,v) := EІ ^ C ( Ж < > Я ť ) (3.1] 

Then the long-run expected average cost (AC) per unit time incurred by the policy 
6, given the initial distribution v, is given by 

J(6,v) := \imsup7rlJn(6,v). (3.2) 
n 

Similarly, the palhwise AC is given by 

n - l 

J°(6, v) := l i m s u p n - 1 2_] c(xt,at). (3-3) 
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Finally, let 
j* := inf inf J(8,v). (3.4) 

v 5 

To ensure that the control problem is non-trivial, we suppose the following. 

Assumpt ion 3.3. J(8,v) < oo for some policy 8 and some initial distribution v. 

Assumptions 3.3 and 2.1 are supposed to hold throughout the following. (In §7 
we show two examples for which these assumptions hold.) 

We are interested in several optimality criteria, one of which is the existence of a 
"minimum pair" introduced by Kurano [21]. 

Definition 3.4. Let 8* be a policy and v* an initial distribution. Then: 

(a) (8*,v*) is called a minimum pair if J(8*,v*) = j * ; ' 

(b) 8* is said to be AC-optimal if 

J(8*,v) = j * Vv£V(X), 

and pathwise AC-opiimal if 

J°(8*,v) = j* p f - a . s . \/v&V(X). 

4. STABLE RELAXED POLICIES 

As is well-known, when using a relaxed policy <p £ <3> the state process {xt} is an 
X-valued Markov chain with time-homogeneous transition kernel 

Q(\x,<p) := j Q(-\x,a)<p(da\x), x £ X. (4.1) 

We will also write 

c(x,cp) := / c(x,a)(p(da\x). (4.2) 
JA 

In particular, for a deterministic stationary policy / £ F, (4.1) and (4.2) reduce to 

Q(-1 x, f) := Q(-1 x, f(x)), and c(x, f) := c(x, f(x)) (4.3) 

respectively. 

Definition 4 .1 . A relaxed policy ip is said to be stable if: 

(a) There exists an invariant p.m. pv € V(X) for Q(- \ -,ip), i.e. 

PV(-)= [ Q(-\x,<p)p*(dx); (4.4) 
Jx 

(b) the average cost J(<p,pv) is finite and satisfies 

-%,PH: = f c(x,<p)p'('(dx). (4.5) 

The family of all stable relaxed policies is denoted by $ 0 . 
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Remark A.2. (a) If <p £ $ 0 , the invariant p.m. p^ in Definition 4.1 is not 
required to be unique; if it is, then the transition kernel Q(-\-,<p) is said to be 
ergodic. (Ergodicity holds if, e. g. Q(- \ •, <p) is indecomposable [31, pp. 389-390]. See 
also Remark A A below.) 

(b) If ip £ $o and p^ is as in (4.4)-(4.5), then by the Individual Ergodic Theorem 
[31, p. 388], the limit (cf. (3.1),(3.2)) 

J(ip,x) = \lmn-lJn(ip,x) (4.6a) 

exists for p^-a. a. (almost all) x £ X and satisfies 

f J(cp,x)pv'(dx) = J c(x,ip)pv(dx) = J(p,pv) (4.6 b) 

(where the second equality comes from (4.5)), and moreover [9,31], 
ra-l 

J°(lP>P'fi) = lim?i_1 ~^2c(xt,ip) a.s. (almost surely). (4.7) 
t=o 

To state a stronger form of (4.7) we first recall the following [8,18,24,26]. 

Definition 4.3. Let A be a <r-finite measure on X, and for each ip £ <J> define 

Lv(x, B) := P*(xn £ B for some n > 1), x £ X, B £ B(X). 

Then the transition kernel Q(- \ •, <p) is said to be X-irreducible if X(B) > 0 implies 

Lf(x,B)>0 Vx&X, 

and X-recurrent (of Harris recurrent) if X(B) > 0 implies 

Lv(x,B) = 1 VxeX. (4.8) 

If X is a denumerable set (with the discrete topology) and we take A as the 
counting measure, then A-irreducibility and A-recurrence reduce to the standard, 
elementary notions of irreducibility and recurrence in the theory of Markov chains. 
In the examples in § 7 we take A = Lebesgue measure on X = Rp. 

R e m a r k 4.4. Laws of Large N u m b e r s [24,26]. Let p £ <3>0 be a stable relaxed 
policy and let p^ be as in (4.4)-(4.5). If, moreover, the transition kernel Q(-1 -,<p) 
is A-recurrent (for some A), then Q(-1 -,ip) is ergodic and for any initial distribution 
v in V(X), 

J°(<p,v) = limn ! Ysc(xt,<p) 
*=o (4.9a) 

and 

= / c(x,ip)pifi(áx) pv~&.s. 

J(ip,v) = EÍJ°(<p,v) - íc(x,ip)p'p(dx). (4.9b) 

[cf. (4.6)-(4.7).] 

We conclude this section by noting two important facts. 
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Propos i t ion 4.5 Let <p* G $0 be a stable relaxed policy with corresponding 
invariant p .m. pv'. Then (<p*,P9 ) is a minimum pair, i.e. 

j(<P*,P*') = j* (4.10) 

if and only if 
J(<p*,x) = j * for p^*-a.a. x £ X. (4.11) 

P r o o f . It is obvious that (4.11) implies (4.10): see (4.6). To prove the converse 
we need to show that if (4.10) holds, then the set B := {x\J(<p*,x) > j*} has 
pv -measure zero. Now, by (3.4), the complement of B is Bc = {x\ J(<p*, x) = j * } , 
so that, by (4.10) and (4.6), 

j* = f J(<p*,x)p*'(dx)+j*p*'(B') 
JB 

or, equivalently, 

/ J(p*,x)p*'(dx) =j*p«'(B). 
JB 

This implies p*'(B) = 0. D 

The following proposition states an important property of MCPs with strictly 
unbounded costs: it says that, when dealing with the AC problem, we may restrict 
ourselves to work with stable relaxed policies — see (4.19). 

Propos i t ion 4.6. Suppose that Assumptions 2.1 and 3.3 hold. Then for any 
6 e A and v € V(X) such that J(S,v) < 00, there exists a stable relaxed policy 
<p e $0 such that 

J[6,v) > J(ip,pv). (4.12) 

P r o o f . The proof in fact uses standard arguments (see e. g. Kurano [21] Lemma 
2.1), but is included here for completeness. It consists of the following steps: 

(i) There exists a p.m. /t on X x A concentrated on K such that 

J(S,u) > [cdp,; (4.13) 

(ii) Decompose the p.m. /. in part (i) as p:(dx,da) = <p(da \x)p,(dx), where <p e $ 
and p, e 'P(X) is the marginal of/< on X, i.e., 

Li(BxC)= f <p(C I x)Ji(dx) VBeB(X), CeB(A); 
JB 

thus we may rewrite (4.13) as 

JiSyV) > J c(x,<p)p(dx); 
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(iii) The relaxed policy ip in (ii) is stable and // =: pv is an invariant p.m. for 

Q(-\;<p). 

Proof of (i). For each n = 1,2,... , let /(n be the p. m. on X x A defined as 

n - l 

»n(T) := n" 1 5 3 P* [(art, a t) G T], T G B ( I x A ) . (4.14) 
<=o 

By definition of control policy (Definition 3.2), /.„ is concentrated on K and, on the 
other hand, by (3.2), 

J(6,v) = limsup / cd/(n. (4A5) 

Thus for any given e > 0, there exists N such that 

sup / cd/í„ < /(<5, Í/) + e < co. 
n>JVj 

This implies, by Remarks 2.4(a), (b), that {/<„} is tight and, therefore, by Prohorov's 
Theorem (Remark 2.4(c)), there is a subsequence {/J.ni} of {fin} converging weakly 
to a p.m. /( on X x A. Furthermore, since each /«„ is concentrated on K, so is /«. 
Finally, from (4.15), 

J(6,v) > lim.inf /cd//.n , > f cdfi, (4.16) 

where the latter inequality is due to the weak convergence and Assumption 2.1 (b); 
see Remark 2.4(d). 

Proof of (ii). This decomposition is well-known, e. g. [11, p. 89, Theorem 2], [19, 
Corollary 12.7]. 

Proof of (iii). From (4.1) and (4.4), it suffices to show that 

lTv(x,a)fi(dx,da)= f Tv(x, <p)Ji(ix) = 0 V v G C(X), (4.17) 

where 

Tv(x,a) := v(y)Q(dy\x,a) — v(x). 

To begin with, observe that for any bounded measurable function v on X, the 
sequence 

n - l 

Mn(v) := v(xn)~Y^Tv(xt,at), n > 0, 
t=o 

with M0(v) := v(x0), is a P^-martingale with respect to the cr-algebra generated 
by the history hn (introduced in Definition 3.2). Thus, in particular, for all n, 
Es„v(x0) = Ef,Mn(v),i.e., 

f vdv = Elv(xn)-n f(Tv)dfin Vn, (4.18) 
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where p,n is the p.m. in (4.14). Observe also that, by Assumption 2.1(a), Tv is 
a continuous and bounded function on K if ^ £ C(X). Finally, in (4.18), let 
v £ C(X), replace {/.in} by the weakly convergent subsequence {fini} in (4.16), 
and then divide by n, and let i —» oo to obtain (4.17). This completes the proof of 
Proposition 4.6. • 

As a corollary of Proposition 4.6, the number j* in (3.4) satisfies 

j * = mf{J((p,pi>)\<peQo}, (4.19) 

where <J>o is the set of all stable relaxed policies. 

5. MAIN RESULTS 

In this section we state our main results; their proofs are collected in § 6. We assume 
throughout thai Assumptions 2.1 and (3.3) hold. 

Theorem 5 .1. (a) There exists a stable relaxed policy <p* £ 4>o such that (<p*,pv ) 
is a minimum pair, i.e. 

J(V\PV') = r- (5A) 

(b) If the policy <p* £ $o in (a) is such that Q(-\-,<p*) is A-recurrent for some 
cr-finite measure A on X, then <p* is AC-optimal and pathwise AC-optimal, i.e. for 
any initial distribution v £ V(X), 

J\<P*,y) = 3* Pf-*.8., (5.2) 

and 
J(p*,v) = j * - (5.3) 

The op t imali ty inequality. The existence of an AC-optimal policy is sometimes 
based on the following well-known result [7,15,16], stated here for completeness and 
for comparison with our results. 

Proposi t ion 5 .2 . If there exists a relaxed policy <p and a measurable function h 
on X, bounded from below, and such that 

j * + h(x) > c(x,<p) + J h(y)Q(dy\x,<p) Vx, (5.4) 

then <p is AC-optimal; in fact, any policy <p £ $ that satisfies (5.4) is AC-optimal. 

Indeed, iteration of (5.4) yields 

n - l 

nj* + h(x) > E^c(xt,<p) + E^h(xn) 
t=0 

> Jn(<p,x) + L, (5.5) 
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where L is a lower bound for /.(•). This implies j* > J(<p, x) Vx and, therefore, the 
AC-optimality of <p follows from (3.4). 

It turns out that (5.4) is "almost" equivalent to the existence of a stable minimum 
pair, in the following sense. 

Theorem 5.3. (a) Let <p G $o be a stable relaxed policy with an invariant p.m. 
pv. Then (<p,pip) is a minimum pair if and only if there exists a nonnegative mea
surable function h on X such that h and <p satisfy (5.4) for p^-a. a. x G X. 

(b) If <p G $o is such that Q(• \ •, <p) is A-recurrent, then <p is AC-optimal if and only 
if there exists a nonnegative measurable function h on X such that (5.4) holds for 
all x G X. 

Combining Theorems 5.1 and 5.3 we obtain the following. 

Corollary 5.4. (a) There exists a stable relaxed policy <p*, with invariant p.m. 
pv , and a nonnegative measurable function h on X such that 

j * +h(x)>c(x,<p*) + [ h(y)Q(dy\x,<p*), pv'~a.a.xeX. (5.6) 

Moreover, there is a deterministic stationary policy /* G F such that (using the 
notation (4.3)) 

j*+h(x)>c(x,f*) + J h(y)Q(dy\x,f*), / - " . ^ I (5.7) 

(b) If, in addition, <p* is such that Q(- \ -,<p*) is A-recurrent, then (5.6)-(5.7) hold for 
all x G X; hence (by Proposition 5.2) both <p* and the deterministic policy /* G F 
in (5.7) are AC-optimal. 

To obtain the deterministic stationary policy /* in (5.7), starting from (5.6), it 
suffices to apply the following (slight.) generalization of Blackwell's theorem [4] p. 864 
(which is the same as the Lemma in [5] p. 228): 

Lemma 5.5. (Blackwell). Let v : K —*• R be a measurable function, and <p G $ a 
relaxed policy such that the map 

x-^v(x,<p) := / v(x, a)<p(da \ x) 
J A 

if finite-valued. Then there exists a deterministic stationary policy / G F such that 

v(x,<p) > v(x,f(x)) V x 6 l . 

Thus if we write the right-hand side of (5.6) as 

/ c(a;,a)-(- / h(y)Q(dy\x,a)\ <p*(da\x) = : / v(x, a)<p*(da\x), 

then the existence of/* G F satisfying (5.7) follows from Lemma 5.5. Finally, part 
(b) in Corollary 5.4 follows directly from the assumption of A-recurrence, as in the 
proof below of Theorem 5.3 (b). 
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R e m a r k 5.6. (5.4) implies 

j * + h(x)> inf \c(x,a)+ fh(y)Q(dy\x,a)]. (5.8) 
a£A(x) I J J 

This is the so-called oplimalily inequality. If / £ F is such that f(x) £ A(x) 
attains the minimum in (5.8) for all x £ X, then Proposition 5.2 yields that / is 
AC-optimal. However, the existence of such an / is not ensured in general, unless 
we strengthen the hypotheses on c, Q and A(-). This is the reason why to obtain 
/* £ F satisfying (5.7) we had to resort to Blackwell's theorem (Lemma 5.5). 

In the next section we prove Theorems 5.1 and 5.3; however, the reader may wish 
to read first the applications in § 7. 

6. PROOFS 

Proof of Theo rem 5.1. (a) Recall that, by (4.19), the search for a minimum pair 
may be restricted to policies <p £ <I>o. 

Let 0 < e„ < 1 be a sequence of numbers such that en { 0 and, for each n, let 
<Pn £ $0 be such that 

J(<Pn,Pv») = / c d 7 „ < j * + en (6.1) 

where j n is the p.m. on X x A, concentrated on K, such that 

7„(B x C) := / ^B(C|*)p^-(d*) VS £ B(X), C £ B(A). 
JB 

Thus, since sup / cd7„ < j * + 1 and c is a moment (see Remarks 2.4(a), (b), (c)), 

there is a subsequence {jni} of {7,,} converging weakly to a p.m. 7* on X x A, 
concentrated on K, and such that 

j * > liminf / cdjni > / CCI7*, , (6.2) 

where the first inequality comes from (6.1) and the second from the Remark 2.4(d). 
Finally, decompose 7* as in the proof of Proposition 4.6, parts (ii) and (iii), i.e. 
7*(da:,da) = <p*(da\x)p'fi (dx), where tp* £ <I>o, to obtain, from (6.2) and (4.6), 

ľ > I c(x,ip*)pv (dx) = J(<p*,pv ) . 

This yields (5.1). 

(b) If the policy ip* in part (a) is A-recurrent, then (5.2)-(5.3) follow from (5.1) 
and (4.9). This completes the proof of Theorem 5.1. Q 
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Proof of Theo rem 5.3. (a) (Sufficiency.) Suppose that <p G <£>o and h(-) satisfy 
(5.4) for p v -a . a . x G X; that is, 

j * +h(x) > c(x,<p)+ [ h(y)Q(dy\x,cp) p^-a.a. x G X. (6.3) 

Integrating with respect to pv yields, by (4.4), 

j*+ fhdP
v > j c.(x,<p)pv(dx)+ f hdpv, 

which combined with (4.6) implies j* > J(<p,pv). Thus (<p,pv) is a minimum pair. 

(Necessity.) Conversely, suppose that <p G 3>o is such that (<p, pv) is a minimum 
pair, so that, from (4.6) and Proposition 4.5, 

J(<p,x) = l\mn~1Jn(<p,x) = j* for p v -a . a. x £ X. (6.4) 

Now, define ho := Jo '•= 0, and for n — 1,2,. . . , a: G X, 

jn(x) 

Mn 

K(x) 

h(x) := l iminfm - 1 N hn(x 

= Jn(<P,x)-Jn^(<p,x), (6.5) 

= inf Jn(<p, x), 

= Jn(<p,x)-Mn (> 0), 

Notice that h(-) > 0, and y^Jn(x) = Jm(<p,x). On the other hand, by the Markov 
n = \ 

property, 
Jn(<p,x) = c(x,<p)+ / Jn-l(y,<p)Q(dy\x,<p), 

which is equivalent to 

jn(x) + hn^(x) = c(x,<p) + J hn„1(y)Q(dy\x,<p). 

This yields, summing over n = 1 , . . . , m, 

m-\ .nz- l 

Jm(<p,x)+Y,K(x) = mc(x,<p)+ / J2^n(y)Q(dy\x,<p). 
n=\ J n=l 

Finally, divide by m and take liminf as m —> oo; thus (6.4) and Fatou's Lemma 
yield 

j * +h(x) > c(x,<p)+ f h(y)Q(dy\x, <p) p^ - a . a . x. (6.6) 

This completes the proof of Theorem 5.3 (a). 
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(b) If (5.4) holds for all x G X, then <p is AC-optimal; see Proposition 5.2. 
Conversely, suppose now that <p G (J>o is such that Q(-\-,<p) is A-recurrent. If, 
moreover, <p is AC-optimal, then, by (4.6) and (4.9), the limit in (6.4) holds for all 
x G A'. Therefore, the argument from (6.4) to (6.6) holds for all x G A'; thus (5.4) 
(or (6.6)) holds for all x G X. O 

7. APPLICATIONS AND FURTHER COMMENTS 

E x a m p l e 7.1. Consider the LQ system (1.1) — (1.2), which, for ease of reference, 
is repeated here: 

xt+i = ctxt + 0at + £,, t r= 0 ,1 , . . . ;x 0 given, (7.1) 

c(x,a) := x'yx + a'Ba. (7.2) 

As in § 1, we let X := Rp, A(-) = A := R'; y and 0 are symmetric and posi
tive definite matrices. If the initial state x0 is random, then we assume that it is 
independent of the i.i.d. disturbances £t. As already noted (see Example 2.2) As
sumption 2.1 (a),(b),(c) trivially hold in this case. Thus, if Assumption 3.3 holds, 
then with no further hypotheses whatsoever, Theorem 5.1(a) yields the existence 
of a stable relaxed policy <p* such that (<p* ,pv ) is a minimum pair; furthermore, 
Corollary 5.4(a), together with Proposition 5.2, yields a deterministic stationary 
policy /* G F such that 

J(f*,x) = j * for p^ ' -a .a . x G X. 

Sufficient conditions for Assumption 3.3 can be derived from Example 7.3 below (see 
Proposition 7.6). 

Now, to get the stronger results in Theorems 5.1 (b), 5.3(b) and Corollary 5.4 (b), 
we need Q(-1 -,<p*) to be A-recurrent, for some <7-finite measure A on X = Rp. So, 
let (e.g.) A stand for the Lebesgue measure on X, and suppose: 

Assump t ion 7.2. The random vectors £t are absolutely continuous with a density 
fi which is positive A-a.e. (such as, for instance, a Gaussian density). 

Then, as is well-known [8,10,25], Q(- \ -,<p*) is A-recurrent and, therefore, all the 
results in §5 are applicable. 

Example 7.3. Let us consider again the quadratic, cost (7.2), but (7.1) is now 
replaced by a nonlinear (autoregressive-like) system 

xi+i = G(xt, at)+St- (7.3) 

The control constraint sets A(x) C R? are assumed to be (nonempty) closed sets 
and such that K —defined in (2.1) —is convex. If, in addition, we suppose: 
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Assumption 7.4. G : K —+ X is continuous, 
then Assumption 2.1 holds. 

To obtain Assumption 3.3 and A-recurrence, let us suppose the following (essen
tially "growth") conditions. 

Assump t ion 7.5. (a) G(x,ip) := G(x,a)ip(da\x) is locally bounded for every 

f E $; 

(b) For some constant m > 0, G(x, a)'jG(x, a) < mc(x, a) for all (x, a) £ K, where 
7 in the coefficient matrix in (7.2); 

(c) Assumption 7.2 holds and, also, £"(£0) = 0 and E |£o |2 < °°; 

(d) There is a relaxed policy <p G $ for which the following holds: There are positive 
constants p < 1, k\, k2 such that 

(dx) E\G(x,fi)+£0\
2 < p\x\2 V|x| > ku and 

(d2) (a'0a)p(da\x) < k2\x\2 Var. 

Then standard results on ergodicity of time series [8,25] yield Assumption 3.3 
and A-recurrence. More precisely, we have: 

Proposi t ion 7.6 [8,25]. (a) If Assumption 7.5(a) and (c) hold, then Q(- \ -,<p) is 
(aperiodic and) A-recurrent Vy G $; 

(b) If, moreover, Assumptions 7.5(b) and (d) hold, then when using the policy 9?, 
the state (Markov) process {xt} is geometrically ergodic and its unique invariant 

p. m., say p, has a finite second moment, i.e. / |x|2p(da;) < 00. 

It goes without saying that Assumption 7.5 was specially designed for the additive-
noise (or autoregressive-like) system (7.3). If we have instead a general MCP, say 
as in (2.3), sufficient conditions for Assumption 3.3 and A- (or Harris-) recurrence, 
may be obtained in a number of ways [10,18,24,26]. 

We conclude with a few remarks on the "optimality inequality" (5.8), which 
was derived from (5.4). As shown in Theorem 5.3, the inequality (5.4) is virtually 
equivalent to the existence of a minimum pair or an AC-optimal policy. The question 
is: is it possible to have equality in (5.4) or in (5.8)? Some authors have found the 
answer to be affirmative in settings much more restrictive than our Assumptions 2.1 
and 3.3: even for linear systems [12] or for denumerable state/compact action sets 
[7], additional hypotheses are required to obtain the "optimality equation". It would 
be interesting to investigate conditions under which, in our general MCP, equality 
holds in (5.4), i.e. the Poisson equation [10,26] 

3* + h(x) = c(x, (p)+ h(y)Q(dy \x,ip) V x G X 
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would be ob ta ined . Th i s would yield no t only t h a t ip is AC-op t ima l , bu t also t h a t 

the t rans i t ion kernel Q{- | •,</?) satisfies nice recurrence proper t ies , such as Doebl in 's 

condi t ion. 

(Received March 19, 1992.) 
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