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K Y B E R N E T I K A - V O L U M E 27 ( 1 9 9 1 ) , N U M B E R 4 

A STRUCTURAL ANALYSIS 
OF THE POLE SHIFTING PROBLEM 

AYLA SEFIK, MESUT EROL SEZER 

Pole assignability and stabilizability problems are investigated qualitatively. Both problems 
are first formulated algebraically and then translated to a structural setting via graph-theoretic 
formulations. Graphical sufficient conditions concerning the closed-loop system digraph which 
determine pole assignable and stabilizable structures are developed. 

1. INTRODUCTION 

The concept of structure was first introduced by Lin [1] in his characterization 
of structural controllability for single-input systems. Since then many researchers have 
demonstrated (see, for example, [2] and the references therein) the use of a qual
itative approach based on system structure in the analysis of such properties as 
controllability, observability, existence of fixed modes, etc., which describe latent 
qualities possessed by a system. Such an approach is consistent with physical reality 
since system parameter are never known precisely. On the other hand, the insight 
into the system structure gained by a qualitative analysis is often helpful in establish
ing a way-out through certain problems that arise due to features as high-dimen
sionality, uncertainty in system parameters and constraints on information structure. 
A qualitative analysis also enables investigation of general system properties from 
the genericity point of view. 

In this paper, we present a qualitative analysis of the pole assignment and stabi
lization problems. We assume that the nonzero system parameters are algebraically 
independent, and realize a qualitative analysis of the problems of pole assignability 
and stabilizability in terms of the structure of the closed-loop system. Using graph 
theoretic formulations due to Reinschke [3], we develop graphical results which can 
be used to characterize certain pole assignable and stabilizable structures. 

We first present an algebraic formulation of the two problems combined as the 
general problem of pole-shifting. The preliminaries for the establishment of the 
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structural framework needed for our graph-theoretical approach is followed by the 
main results concerning the two problems. Proofs, which are avoided in this paper, 
can be found in [4]. 

2. ALGEBRAIC CHARACTERIZATION OF THE POLE-SHIFTING 
PROBLEM 

Consider a linear, time-invariant system described as 

Sf: x = Ax + Bu 
(i) 

y = Cx 
where x(t) e R", u(t) e Rm, and y(t) e Rr are the state, input, and output of Sf, and 
A, B, and C are real, constant matrices of appropriate dimensions. Applying a con
stant output feedback 

&: u = Fy (2) 

to $f in (1) results in a closed-loop system 

Se(W): x = (A + BFC) x 

y = Cx 

having a characteristic polynomial 

p(s) = det(_J - A - BFC) = s" + pxs"~l + ... + pn.±s + pn . (4) 

Let the m x r feedback matrix F have fi ^ mr nonzero elements which can 
be chosen arbitrarily. If / = (fuf2, ...,ffi) e R" and p = (pu p2, ..., p„) e R" re
present the nonzero elements of E and the coefficients of p(s) in(4) respectively, then 
the relation between p and / can be represented by a smooth mapping g: R? —> R" as 

P = g(f)- (5) 

The problem of pole-shifting is concerned with the existence of a solution fe Rf of 
(5) for every given p e R" (arbitrary pole assignment problem) or for some p e R" 
corresponding to a stable polynomial (stabilization problem). 

We assume that /J, _ n (note that this is a necessary condition for arbitrary pole 
assignability), and partition the feedback variables f\,f2, •••,/. into two disjoint 
subsets/, and/ , , containing n and fx — n elements respectively. Fixing the variables 
in fc at particular real values, (5) reduced to 

P = g(fv), (6) 

where g: R" —> Rn is a restriction of g to R". The following results give sufficient 
conditions for pole assignability and stabilizability. 

Lemma 1 [3]. Suppose that after appropriately fixing the elements of/., the deriva
tive gfv of g in (6) is unimodular. Then the system Sf is arbitrarily pole assignable 
by the feedback #". 
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Note that unimodularity of gfv implies that g is a homeomorphism, and hence 
for every p e R", there exists a unique /„ e R" satisfying g(fv) = g(fv,fc) ~ V-

Lemma 2 [4]. Let the feedback variables in /„ be renumbered as f1,f2, •••,/„• 
Suppose that the mapping g between p and /can be written in the 'staircase' form 

Pi = 9i(fv) = «i + (aji + ct) bn + ... + (ajk + ck) bkl + ... + (ajn + c„) bnl 

Pk = 9k(fv) = «k + (aJk + ck)bkk + ... + (ajn + cn) bnk 

Pn = 9n(fv) = Xn + (aJn + C„) bnn 

(7) 

where ak, bkj, ck are polynomials in fx, ...,/Jk_1,' l ^ / c ^ n , 1 ^ j ^ k — 1, with 

<3fc + 0 4= 6fefc and afe are constants. Then ^ is stabilizable with $F. 

The result of this lemma depends on the fact that the structure in (7) allows for 
stabilization of p(s) in (4) by a recursive root-locus technique, utilizing arbitrarily 
high feedback gains of appropriate sign at each step [4]. 

3. PRELIMINARIES 

A structured matrix M [5] is a matrix whose entries are either fixed zeros or 
algebraically independent parameters in R. If M has pi nonzero entries, then we 
associate with these a parameter space R* such that every data point d e R*1 defines 
a matrix M = M.(d). Two matrices Mx and M2 are said to be structurally equivalent 
if there corresponds the same structured matrix M to both, and M represents the 
equivalence class of structurally equivalent matrices. 

Let H be a property asserted about the structured matrix M. Then it is a mapping 
H: BP1 ~> {0, 1} defined as 

n( r\ _ i1» if u holds for M M 
^ ' [ 0 , otherwise 

If the set {d e R"1 \ fl(d) = 0} is included in a variety in R* characterized as the 
set of zeros of a nonzero polynomial in d, then H is said to be generic. A generic 
property holds almost everywhere in f?'. 

A digraph [6] is an ordered pair 3 = (*f, S), where 'f is a finite set of vertices 
and 6 a set of oriented edges. And edge oriented from Vj e V to vt e "T is denoted 
by the ordered pair (vj, vt). If (vp vt) e S, then vt is said to be adjacent to vt, and vt 

adjacent from Vj. Adjacency relation can be described by a square binary matrix, 
R = (TJJ) such that rtj = 1 if and only if (vj, vt) e i . A sequence of edges {(vu v2), 
(v2, v3), ..., (yfc-i, vk)} where all vertices are distinct is called a path from vt to vk. 
If vk coincides with vlf then the path is called a cycle. Any two cycles are said to be 
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disjoint if they have no common vertices. A collection of disjoint cycles is called 
a cycle family. 

Associated with the system Sf of (l), we define a square structured matrix as 

A B 0~ 
S = 0 0 0 (8) 

C O O 

called the system structure matrix. Viewing the matrix S as a binary matrix with 
zero and nonzero elements, we define the digraph Q) = {f~, €) which assumes S as 
its adjacency matrix to be the digraph of the system Sf. For convenience, the vertex 
set of B can be partitioned as "V = °U u 3£ u <W, where °U, 3C and ty are the sets of 
input, state and output variables, respectively. The system digraph & completely 
characterizes the structure of Sf. We say that two dynamic systems are structurally 
equivalent if their digraphs are the same up to an enumeration of J7/, 3C, and <&. 

When a feedback of the from (2) is applied to Sf of (1), the resulting closed loop-
system of (3) has the system structure matrix 

(9) S(F) = 
A B o" 
0 0 ғ 
C 0 0 

Accordingly, the system digraph becomes Q)(^) — (ir, S u SF), where Sp = 
= {(yj, ut) j ttJ =j= 0} is the set of feedback edges. For convenience, the edges in S are 
called the d-edges and those in S'? the f-edges. Accordingly, a cycle is called an 
f-cycle if it contains at least one f-edge and a d-cycle otherwise. Similarly, a cycle 
family is called an f-cycle family if it contains at least one f-edge, a simple f-cycle 
family if it contains one and only one f-edge, and d-cycle family otherwise. Where 
necessary, we will represent a cycle family as a collection of cycles which in turn are 
represented by the set of the weights of the edges contained. Note that if a feedback 
variable ftj is given a fixed nonzero value, then the corresponding f-edge (>'y-, ut) 
becomes a d-edge as/'(J- is no more different from a nonzero parameter of A, B or C. 

4. STRUCTURAL FORMULATION OF THE POLE-SHIFTING 
PROBLEM 

We first state our definition of a structurally pole assignable (respectively stabiliz-
able) system. 

Definition 1. A system Sf of (1) is said to be structurally pole assignable (respectively 
stabilizable) by a feedback !F of (2) if there exists a system structurally equivalent 
to 5^ which is pole assignable (respectively stabilizable) by #". 

Let us assume, that the nonzero parameters of the system structure matrix S 
in (8) are algebraically independent, and correspond to a data point d e R^. Then, 
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the relation in (5) can be expressed as 

P = g(d,f) (10) 

to indicate the dependence of g on the system parameters. Clearly, a system is struc
turally pole assignable if for some d* e Ru the equation 

v = g(d*,f) = g*(f) (11) 

has a solution for every given p e R". Similarly, structural stabilizability is concerned 
with the existence of a particular d* e Rn for which one can find an / that satisfies 
(11) for some p e Rn corresponding to a stable polynomial. We note that, due to 
the nonlinearity of (10), neither structural pole assignability not stabilizability 
are generic properties, in general. However, in this paper, we aim at obtaining 
graphical conditions which guarantee genericity of the two structural properties. The 
formulation due to Reinschke [7], which is summarized below, serves this purpose. 

Consider the closed loop system digraph Q)(3F) = {V, £ u SF) associated with the 
system structure matrix S(F) of (9). By assigning a weight to every edge, 3(!F) 
becomes a weighted digraph. The weight of a d-edge is the corresponding nonzero 
parameter value of A, B or C, and the weight of an f-edge is the corresponding 
variable feedback gain. Accordingly, the weight of a path, a cycle or a cycle family is 
the product of weights of all edges involved. Denoting the number of cycles in a cycle 
family <%& by o(f€&), the weight of <€& by cotyP), and defining the width y(^3F) of 
^ J^ to be the total number of state vertices covered by %>)F, Reinschke proved the 
following: 

Lemma 3. The coefficients pk = gk(f), k = 1,2, ..., n, of the closed loop character
istic polynomial are given as 

9k(f)= X ( - 1 W ) 02) 
y{<£&:) = k 

where the summation is carried over all cycle families of width k. 

5. GENERIC POLE ASSIGNABILITY 

The following result, which is a special of Lemma 1, gives algebraic sufficient 
conditions for generic pole assignability: 

Corollary 1. Let /,. and fc be as defined in Lemma 1, with the feedback variables 
in /„ renumbered as fi,f2, •••«/»• For a partitioning Jf = J u (Jf — J), with 
J =f= 0, of the index set Jf = (1, 2 , . . . , « } , let the auxiliary variables/, be defined as 

f ={h> k E j (13) 
Jk JAA + tfO., kzJf - J X ] 

where 6k = 6k(d) are nonzero polynomials in d, and \jjk = ij/k(d,fj) are polynomials 
in / , , / e J, with coefficients being polynomials in d. Suppose that the restriction g 
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of g in (6) to R" is given by 
n 

9k(d,fv) = 0*(«-;/)««fc + Z«w/. , fc=l, 2, ...,n (14) 
/ = i 

where txk = ak(d) and ekl = ekl(d). Then, ^ is generically pole assignable by 3F if 
the coefficient matrix E = E(d) = (ekl) has full generic rank. 

Under the conditions of Corollary 1, the mapping g can be decomposed as g = 
= g oh, where g: IR* ->• IR* is the affine mapping defined in (14), and h: Rn -> R" 
is defined in (.13), both mappings being homeomorphisms. With Lemma 3 on hand, 
the assumptions and the full generic rank condition on the matrix E of the corollary 
can be characterized in terms of the closed-loop system digraph. This leads us to the 
following two main results which give sufficient conditions for generic pole as
signability. 

Theorem 1. Suppose that in 3)(^) there exists a choice of n distinct f-edges, re
numbered conveniently &sfl,f2, . . . , /„, which after converting the remaining f-edges 
into d-edges by fixing their weights at arbitrary values, satisfy the following conditions, 

(i) No two f-edges occur in the same cycle; 
(ii) All f-cycles have a vertex in common; 

(hi) For k = 1, 2, ..., n, there exist particular simple f-cycle families of width k, 
denoted by ##"*, such that 
(a) / f c e<^*,and 
(b) any other simple f-cycle family of width k which contains an f-edge f,, 

I = k, also contains a d-edge which appears in no ^J5**, j ^ k. 
Then £f is generically pole assignable with 3F. 

Note that conditions (i) and (ii) in the statement of Theorem 1 guarantee that 
every f-cycle family is a simple f-cycle family. Thus, each gk in (12) is an affine func
tion offi,f2, ...,f„ as in (14), so that g has the structure in Corollary 1 with J = Jf. 
Conditions (iii) establish the generic nonsingularity of the coefficient matrix E. 

The second result characterizes a larger class of pole assignable structures: 

Theorem 2. The result of Theorem 1 remains valid if condition (ii) is replaced by 
(ii)' To any two f-edges fp and fq that appear in disjoint cycles there corresponds 

a unique pair of edges/, and dr such that 
(a) dr appears in every cycle of/r but in no cycle of/p orfq, and 
(b) to any two disjoint cycles # p and ^q of fp and fq there corresponds a cycle 

(€r of/. which covers exactly the same state vertices as %>p and ^q cover, 
and vice versa. 

Under condition (ii)' of Theorem 2, ££(#") may contain at most two pairwise 
disjoint f-cycles, and hence each product term in co(^«^r) of (12) contains at most 
two variable weights. Also the correspondence between the pair (/., dr) and the pair 
(fp,fq) in the statement of condition (ii)' is one-to-one, and if/r appears in a product 
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term in some gk(f) of (12), then so does the product fpfq, and vice versa. Moreover, 
all the product terms that contain fr in any gk(f) are of the form ekr(erfr + epqfpfq), 
where ekr, er, and epq are polynomials in d with er and epq being the same in all such 
expressions. These allow for defining the index set J and the auxiliary variables fk 

in Corollary 1 uniquely such that the indices of all such e/s are included in Jf — J 
and 0r = er, \\ir = epqfpfq in (13). 

The usefulness of these two theorems is due to the fact that they can easily be 
translated to an algorithm which identifies a possible choice of n feedback gains to be 
included in/,,, as well as the fixed values to be assigned to those in the corresponding 
/ . . 

5.1. Examples of Generically Pole Assignable Systems 

The following discussion on examples of classes of pole assignable structures 
demonstrates the nontriviality of our results. 

It is a fact that pole assignability under state feedback is a generic property of 
a structurally controllable system. Consider such a system described by 

SF\ x = Ax + Bu , (15) 

and a full state feedback law 

&: u = Fx, (16) 

where x e R" and u e Rm. The resulting closed-loop system SF(^) can be represented 
by the reduced system structure matrix 

S(F) = 
A B 
F 0 (17) 

Let $XU(^F) = (3S u °U, Sux u $p) denote the closed-loop system digraph. Then, we 
have the following result, which relates the pole assignability of SF(^) to Theorem 1. 

Theorem 3. The following are equivalent. 
(a) Sf is structurally controllable. 
(b) S?(SF) is generically pole-assignable. 
(c) There exists a choice of n feedback edges such that when the remaining feedback 

edges are assigned suitable fixed weights, Q)xl[3F) satisfies the conditions of 
Theorem 1. 

The proof of this theorem hinges on the fact that the special structure of the 
system digraph implied by structural controllability allows for a systematic selection 
of the feedback edges / i , / 2 , •••,/„ that satisfy the conditions of Theorem 1. 

Our second example is a characterization of a class of structurally controllable 
and observable systems with dynamic output feedback which satisfy conditions of 
Theorem 2. For this, consider a structurally controllable and observable single-
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input/single-output plant 

$f*\ x = Ax + bu 

y = cTx 

to be controlled by a dynamic output feedback of the form 

S*: k = Ax + by 

u = cTx + fy 

where x ERA is the state of the controller y. We know [8] that the problem of 
assigning the poles of Sf using Sf is equivalent to the problem of assigning the poles 
of the augmented system 

(18) 

(19) 

Sŕn 

A 0 
0 0 + 

b 0 
0 I 

(20) 

& 

mm 
ant output feedback 

•' [uc\
 = \b Á\\yc\ 

by using constant output feedback of the form 

(21) 

Thus, our graph-theoretic approach can be used to attack the problem. Let & 
denote the digraph corresponding to the plant Sf and 2(f) the digraph of the closed-
loop system consisting of S? and the (scalar) constant output feedback 

& u — fy • 

Since Sf is structurally controllable and observable, it has no structurally fixed 
modes [9]. Equivalently, &(f) is strongly connected and contains a cycle family of 
width n [10]. 

We choose the order of the controller S* to be n = n — 1, and fix the structure 
of (A, cT) to be in the observability canonical form. Thus, of the n2 elements of Wa 

in (21), n2 — (2n — 1) are fixed at 0 or 1 with the remaining 2n — 1 left as variable 
parameters. 

We have the following result about the pole assignability of Sfa(SFa). 

Theorem 4. Suppose that 3>(f) contains a cycle family of width n, each cycle of 
which has a vertex in common with some input-output path in Q>. Then &a{lFa) 
satisfies the conditions of Theorem 2 with n replaced by na = 2« — I. 

Under the conditions of Theorem 4, each of the na feedback edges can be associated 
in a systematic way with one of the particular cycle families ^J^*, 1 ^ k ^ na 

in the statement of Theorem 1. Note that the assumption of the theorem which puts 
a constraint on the structure of @(f) is not essential for structural pole assignability 
of Sf using dynamic output feedback controller Sf'. However, it is needed for proving 
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generic pole assignability using Theorem 2. On the other hand, the restriction of 
y to be single-input/single-output can be relaxed since preliminary constant output 
feedback can be employed to reduce the system to a single-input/single-output one 
without destroying structural controllability and observability. 

6. GENERIC STABILLZABILITY 

We first state a result which is the structural counterpart of Lemma 2. 

Lemma 4. Let/;, = (fx,f2, . . . , / , ) a n d / c be as in Lemma 2 and suppose that the 
relation p — g(d,fv) can be written as in (7), where ak = ak(d,fk), bkj(d,fk) and 
ck = ck(d,fk) are polynomials in d with/* = (/., . . . , / t _ 1 ) , 1 «g k £ n, 1 ^ / .g k; 
and otk = <xk(d) are polynomials in d with ak and bkk being nonzero. Then, Sf is 
structurally stabilizable by # \ 

Now, let ^(J5") = {f~, $ u (ff) be the digraph associated with the closed-loop 
system ¥(3F), in the usual way. The definition below is a generalization of condition 
(ii)' of Theorem 2 to any pair of edges of the digraph. 

Definition 2. In &($F), consider a pair of edges, denoted by {ep, eq) which never 
appear in the same cycle. Suppose that there corresponds to the pair {ep, eq) a unique 
ordered pair of edges (er, es) such that, 
(a) es appears in every cycle of er but in no cycle of ep or eq, and 
(b) to any two disjoint cycles %p and <$q of ep and eq, there corresponds a cycle <ir 

of er which covers exactly the same state vertices as <€p and (€q cover, with no 
input and/or output vertices that occur in c€p u

 ciq taking part in a cycle disjoint 
from <&„ and vice versa. 

Then, we say that {ep, eq} is a pair biased to (er, es) and that any cycle family of 
{ep, eq) in an accompanying cycle family of er. 

We now state our first result on stabilizability: 

Theorem 5. Suppose that in Q)(3F) there exists a choice of n distinct f-edges, re
numbered conveniently &sflff2, . . . , / , , which after converting the remaining f-edges 
by fixing their weights at arbitrary values, satisfy the conditions listed below. Then, 
y is structurally (generically) stabilizable with J5". 

There exists an integer n, 1 < n <. n, such that, 

(i) for k = n, n — 1, ..., n, there exist particular cycle families of width k, denoted 
by ^fJ^* such tha t / t e ^3F*, f} <fc ^J5"*, j > k and either of the following holds. 
(a) Any cycle family of width / < k which contains fk either contains or is 

an accompanying cycle family of some/},/' > k, or 
(b) Any other cycle family of width k which neither contains nor is an ac

companying cycle family of any f}, j > k, contains either fk or a pair of 
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edges [ep, eq] biased to (fk, e) for some e such that if ep = / . (respectively 
eq = fj), then *$&* does not contain eq (respectively ep), I < k. 

(ii) With/fc and all {ep, e9} which are biased to (fk, e) for some e removed for k = n, 
the remaining digraph satisfies Theorem 1, with n replaced by n — 1. 

Under the conditions of Theorem 5, (6) takes the special form 

9i(fv) = hi(fu •••Jn-i) + (ajn + cH) bnl + + (ajn + c„) bnl 

9n-i(fv) = hK-i(fi> •••Jn-i) + (ajn + cH) bn^x + + (aj„ + cn) bnt%-x (22) 

9n(fv) = *n + (ajn + c„) bn>H + + (ajn + cn) b„jH 

9n(fv) = Xn + (ajn + C„) Kn 

where ck contain the edges biased to fk, k ^ n, and hk(fu . . . . .I i-i) are linear in 
fu . . . , / g - i , X S k tk n — l a s i n Theorem 1. The result then follows from a com
bination of Lemma 2 and Theorem 1. 

The next two results, which are based on an asymptotic approach justified by 
the use of high gains in stabilization by Lemma 2, characterize systems whose char
acteristic polynomial coefficients are not in the form of (6) but can be effectively 
brought into that form by neglecting certain system parameters. 

Theorem 6. Suppose that, for k — 1,2,..., n, there exist particular cycle families 
of width k, denoted by ̂ J5"* in 3)(^) such that 

(ii)fke«P*&rL&fji<eP*J> k; 
(ii) for any other f-cycle family <6&k of width k, #/(^#"fc) = #/(<^ r*)> with strict 

inequality if c€^x
k contains no fjj > k, where # / ( • ) denotes the number 

of variable f-edges in (•). 
Then Sf is generically stabilizable by #". 

The proof of this theorem relies on the fact that with fk = gfk, those f-edges that 
are included in <^J^* become dominant in gk(fv) as £ -> oo, which, in turn, satisfy 
conditions of Theorem 1. 

Our last result on generic stabilizability of 6F(^) depends on the following recur
sive reduction process applied to the closed-loop digraph QJ(3F). 

(i) Delete from 3>(^F) all edges that do not appear in any cycle, 
(ii) Let a be a d-edge such that to every cycle <$", I — X, 2, . . . , that contains a, 

there corresponds a cycle family ^ # 7 with the following properties. 

(a) ^ # 7 covers the same state vertices as <̂ f does, 
(b) ^J*7 covers no input or output vertices which are covered by some f-cycle 

disjoint from #?, 
(c) ^ # 7 includes all the f-edges that appear in ^f and at least one additional 

f-edge. 
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Let S"ftf) denote the set of the additional f-edges in <$JF%, but not in #f. Delete a,, 
and record $~(f). 

Let the digraph obtained from Q)(3F) by successive application of (i) and (ii) 
above be denoted by \\})(3F). We state the following. 

Theorem 7. Suppose !3(3F) satisfies either Theorem 5 or Theorem 6 with at least 
one f-edge from each Sftf) included in /„, / = 1, 2, .... Then £f(3F) is generically 
stabilizable. 

6.1. A Class of Generically Stabilizable Systems 

Consider a system Sf composed on Jf interconnected structurally controllable 
sub-systems described by 

N 

&{. xt = AiXi + ^AijXj + bVi, i = l,2,...,N. (23) 
i = I 

Suppose that local state feedback law 

J V Ui =fjxi, (24) 

is applied to the decoupled subsystems 

STf: xt = AiXi + btut, (25) 
N 

where xieRn, and u e R, with ~P nt = n, and fj = (fn,fi2, • . . , / t e < ) . We know 
i = 1 

from our results on pole assignability that each decoupled subsystem SF^(^^) is 
generically pole assignable. We assume that each (Ah bt) is controllable canonical 
form, and that the interaction between the states of the subsystem satisfies the 
following condition: 

Im Aij c Im bi, i +- j , i,j = 1, 2, ..., N (26) 

With &(3F) denoting the closed-loop system digraph, the following result concerns 
the generic stabilizability under this well known restriction on the interconnection 
structure. 

Theorem 8. All the d-edges of B(<F) corresponding to the interconnection matrices 
Aij of (25) can be deleted by the reduction process. The resulting digraph B(W) 
consists of decoupled components ^ ((#"i) associated with the decoupled systems 
S?f(^i). Since «$ff(#"j) are generically stabilizable by Theorem 3, then so is Sf(3F) 
by Theorem 7. 

7. CONCLUSIONS 

A qualitative investigation of the two aspects of the basic problem of pole-shifting, 
namely, arbitrary pole assignability and stabilizability is realized. The analysis 
depends on the closed-loop system structure. The results obtained are essentially 
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algebraic ones, which are stated in graph-theoretical terms. The graphical nature 

of the sufficient conditions guarantees genericity of the results and allows for trans

lation to an algorithm. 

An observation about the results on generic pole assignability is remarkable: 

In some systems for which the renowned results of Brasch an Pearson [11] and of 

Kimura [12] require dynamic compensation in order to place all the poles at desired 

locations, our results show that constant output feedback or at least a dynamic 

compensator of smaller order is sufficient for the job. 

We note that the closed-loop system structures required either for generic pole 

assignability or generic stabilizability are characterized as special cases of more 

general results which have possible hints for characterizing broader classes of pole 

assignable or stabilizable structures. 

(Received November 30, 1990.) 
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