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K Y B E R N E T I K A - VOLUME 26 (1990), N U M B E R 5 

A LARGE SAMPLE STUDY 
OF NONPARAMETRIC PROPORTIONAL HAZARD 
REGRESSION MODEL 

PETR VOLF 

The proportional hazard model is considered for the regression of survival time on a covariate 
x. The cumulative hazard function generally acquires the form L(t, x) = A(t) . B(x). We suggest 
a method for estimating the functions A, B, provided that the function A is normalized by the 
condition J"^ A(t) d/u(t) = 1. Then B(x) = J^ L(t, x) dn(f). The cumulative hazards are estimated 
by a simple kernel procedure, meanwhile the estimator for the function A(t) is obtained by the 
ML method. The resulting estimates are strongly consistent and most of them asymptotically 
normal. 

1. INTRODUCTION AND NOTATION 

During the past few years the methods for survival analysis with censored data 
have been studied intensively. In order to model the regression of such data, the 
proportional hazard model has been developed. Its parametrized form has been 
suggested by D. R. Cox and examined (under various conditions) by several authors, 
among them by Tsiatis [5]. In our paper, where the general nonparametric form 
of the model is considered, the cumulative hazard function of survival time is supposed 
to depend on a covariate x in the following factorisable way: 

L(t, x) = A(t) B(x) . (1) 

In order to avoid ambiguity, one of the functions A, B has to be normalized by 
some condition. An attempt to identify such a model was made in [6], where the 
values of covariate were divided into several levels and the function A characterized 
an average cumulative hazard. In the present contribution, the funtion A will be 
estimated by the method developed by Tsiatis [5]. The result coincides with the 
nonparametric maximum-likelihood estimate. The function B may be regarded as 
a function describing the cumulative influence of given x through the domain of 
time, namely 

B(x) = tfL(t,x)dii(t), (2) 
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with a finite measure p. chosen on (Rl5 ^ x ) and some upper bound for time, ST. 
Under proportional hazard model this relation corresponds to the normalizing 
condition jo A(t) d/i(t) = 1. Our estimate of A(t) will fulfil this condition asymptoti
cally only. 

Denote by the positive, independent random variables Y(x(-) the survival times 
of N cases. They are censored from the right side by means of random variables 
V(x), which are independent mutually as well as of Y(x,)'s. Therefore we observe 
the realization of T(xt) = min(Y(x,), V(xt)) and 8(xt) = I[Y(xt) = V(x,-)], i = 
= 1, 2, ..., N. Denote the distribution functions of Y(x) and V(x) by E(t, x), G(t, x), 
their survival functions by P(t, x) = 1 — E(t, x) = exp { —L(t, x)}, Q(t, x) = 
= 1 - G(t, x). 

Let us imagine that the values of the regressor are realizations of a random variable 
X distributed with a density h(x) on an interval SC £ Ut. The extension of the results 
to a vector valued set of covariates is possible and straightforward. 

We shall examine the behaviour of the cumulative hazards up to some finite time 
2T such that P(£T, x) Q(ST, x) > 0 for every x e 3C and, naturally, P(2T, x) < 1. 

Let us now establish other notation useful throughout the paper: 

H(t, x) = P{T(x) = t} = P(t, x) Q(t, x) 

R(t, x) = P{T(x) = t, 5(x) = 1} 

R(t) = $x R(t, x) h(x) dx 

and in accordance with [5], for a function g(x) continuous on 9£ 

E(q(x), t) = \x g(x) H(t, x) h(x) dx . 

Whichever is the procedure for identification of the functions A, B, quality of 
results depends on the properties of the cumulative hazard functions L(t, x) estimates. 
A method of estimation of L(t, x) has been developed in [6], let us now remind 
the main results. 

For a given point x e f define its neighbourhood OdN(x) = {z e 2£: \z — x\ <. dN}. 
Denote by MN(x) the number of points x,- in OdN(x). With increasing extent of 
sample N, the sequence dN is chosen such that d^ -> 0 and NdN -> oo. Then 
MN(x)j(2NdN) tends to h(x), almost surely. It follows from the theory of nonparametric 
estimation of density. The estimator of the cumulative hazard function at x is con
structed standardly by the nonparametric ML method — cf. [2], but only from the 
realizations at the points xt e OdN(x): 

LN(t, x) = 0 for t < min {T(xt): xt e OdN(x)} , (3) 

= 2 L TV i ~\ ^Xi E °--W- otherwise • Mjv(T(x,), x) 

There MN(s, x) = ^lT(xj) = s l -^CXJ e ^dN(x)1 denotes the number of observations 
in OdN(x) with the results no less than 5. 
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2. ESTIMATION OF PROPORTION OF HAZARDS 

Let us now formulate several assumptions: 

Al. Function B(x) is positive, bounded and continuous on 3C, function A(t) is 
nonegative, nondecreasing and continuous on [0, 3~~\. 

A2. Distribution function G(t, x) is continuous in both arguments. 

A3. The distribution of the covariate random variable X possesses a continuous, 
positive and bounded density h(x) on SC. 

A4. Functions B(x) and G(t, x) are Lipschitz-continuous with regard to variable 
x on S£. 

A5. Sequence dN is such that lim (NdN) = 0. 
JV-»oo 

The third assumption states that MN(x) is proportional to NdN, the last assumption 
means that yjMN(x) dN -* 0, a.s.. When dN is chosen proportionally to N~a, by 
A5 we demand a > ~. 

In [6] for every x e f , strong consistency of LN(t, x) is proved under Al —A3, 
uniformly in t e [0, Sr\. It means that in the sup norm 

sup \LN(t, x) — L(t, x)\ -> 0 a.s. 
t6[0,^"] 

Asymptotic normality is there proved, too, this time under Al —A5: Random 
functions ZN(t, x) = y/[MN(x)\ (LN(t, x) — L(t, x)) converge weakly to a Gaussian 
random function Z(t, x), which has zero mean and the covariance function given 
for 0 = s = t = ST by 

cov (Z(t, x), Z(s, x)) = C(s, x) = f0 H' 1P~1 dE . 

These results together with relation (2) suggest immediately the estimate for 
function B(x), namely 

BN(x) = \l LN(t, x) dpi(t) . (4) 

LN(t, x) is a nondecreasing, finite stepwise function of t, therefore (4) is well defined. 
Let Tfci ^ Tfc2 = ••• ^ TkM, with M = MN(x), be the ordered realizations observed 
at points x ; & OdN(x), let Tkl be the greatest from them, less than 3~~. Then 

BN(x) = I LN(Tki, x) JJ«i*i) dfl(t) + LN(Tkh x) Jf dfi(t) . 
i= 1 

Theorem 1. Let assumptions Al —A3 hold. Then BN(x) is a strongly consistent 
estimate of function B(x) defined by (2). 

Proof. According to our definition connected with (2), pi is a finite measure. 
The estimator LN(t, x) of L(t, x) is a strongly consistent one, uniformly in t e [0, S~~\ 
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as it has been demonstrated in [6], Therefore 

\BN(x) - B(x)\ = % \LN(t, x) - L(t, x)\ d[i(t) = 

= sup \LN(t, x) - L(t, x)\ ^[0, 2T~\ , 

which tends to zero almost surely. • 

Remark. Let us remind that sup \LN(t, x) - L(t, x)\ = &{(ln M/M)1/2}, confer 

for example the work of L. Rejto [4]. 

Corollary 1. Let assumptions Al — A3 hold and function B(x) have a finite variation 
on 9C. Then a strongly, uniformly in x e 3C, consistent variant of the estimate for 
B(x) can be constructed. 

Proof. Choose an arbitrary sequence of positive numbers sx > s2 > ... > e„ -> 0. 
For every sn interval 9C can be divided into a finite number (Kn) of disjoint intervals 
Inj, j = 1, ...,Kn, such that the variation of B(x) is less than e„/2 throughout InJ. 
Choose one point znj in every interval Inj. In accordance with Theorem 1 there 
exists almost surely N„ such that N ^ N„ implies 

sup {\BN(znj) - B(znj)\,j = 1, ..., Kn} = e„/2 . 

Evidently, for m > n the points z can be chosen in such a way that {znj} g {zmj}. 
For given N, n define now our desired estimate by the following relation: 

BN,n(X) = BN(Znj) f<>T X E / „ ; . (5 ) 

Let us imagine that both N and n tend to infinity. Then 

sup |Bjv,„(x) - B(x)| S 
XfB% 

= sup {\BN(znJ) - B(znj)\ + sup \B(znj) - B(x)\} = (e„/2) + (e„/2) = e„ 
j xelnj 

for N = N„. 

4. ASYMPTOTIC NORMALITY 

Throughout this part our interest is concentrated on examination of asymptotic 
distribution of random variable WN(x) = x/(MJV(x)) (BN(x) — B(x)), for a fixed 
x e l WN(x) is obtained by integration, WN(x) = \Q ZN(t, x) dp,(t). Almost all 
trajectories of ZN(t, x) are bounded and integrable, therefore the integral may be 
understood as a result of integration of the trajectories. On the other hand, the 
limiting process Z(t, x) is Gaussian, with zero mean and with finite and continuous 
covariance function, therefore W(x) = [Q Z(t, x) dpi(t) is Gaussian again, EW(x) = 0, 
var W(x) = D(x), where 

D(jc) = Jf \l cov (Z(t, x), Z(s, x)) dn(t) dfi(s) = 

= % % C(min (t, s), x) dfi(t) d[i(s). 
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Theorem 2. Let assumptions Al —A5 hold. Then random variables WN(x) converge 
weakly to the Gaussian random variable W(x). 

Proof. The definition and the distribution of W(x) has been presented above. 
In [6] the weak convergence of the processes ZN(t, x) to Z(t, x) has been proved 
provided that Al — A5 hold. The step from it to the weak convergence of WN(x) 
to W(x) can be accomplished, using the propositions from [3], Chap. IX. 1. Q 

Remark. Let x, y be two different points from 3C. If N is sufficiently large, the 
neighbourhoods of x and of y are disjoint, WN(x) is then independent of WN(y). 
Therefore W(x) and W(y) are independent random variables, too. 

Up to now, two asymptotic covariance functions have been derived, C(t, ;c) and 
D(x). The method of their estimation can be developed easily, their consistency 
is the subject of our following examination. Denote HN(t,x) — MN(t,x)JMN(x) 
the empirical estimate of H(t, x). 

p*(t> x)- n \MiTt^]~1} 'M-tn*.) = o -t*. e odN(X)] 
i [ MN(T(xt),x) J 

for t ^ min {T(x,-): xt e OdN(x)} , 

PN(t, x) = 1 otherwise , 

is the product-limit estimate of P(t, x). Both Hjv and P^ are strongly consistent, 
uniformly in t e [0, 5""] — cf. also [6]. Let us define 

cN{t, x) = f =*£> = z MMMVMM I[xi e 0dM1 • 
1 ' )oP„H„ L [ M K ( T ( x ( ) , x ) - l ] 2 L ' A H 

Sometimes the values in the denominator are replaced by MiV(T(x,), x)2, because 
they are always positive, the asymptotic result remains unchanged. The estimator 
of D(x) can be expressed as 

DN(X) - \o jo Q(min (t, s), x) dw(t) dfi(s) . 

Let us now remind two propositions from the Appendix of Tsiatis' work [5], 
in order to prove consistency of the derived estimates. The first proposition follows 
from the Glivenko-Cantelli lemma, the second one is a special case of Lemma 6.1 
from Aalen [1]. 

Lemma Tl . Let g(x) be a continuous function on 9£, such that E(g(x))2 is finite. 
Then 

sup \EN(g(x), t) ~ E(g(x), t)\ -+ 0 a.s. , 

where EN(g(x), t) = £#(*;) I[T(x.) = !]/N is the empirical estimate of E(g(x), t). 

Lemma T2. Let ZN(t), QN(t) be random functions on [0, 3T~\ that converge almost 
surely in sup norm (uniformly as to t) to a continuous function Z(t) and to a conti-
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nuous (sub)survival function Q(t) respectively. Let/(z) be a continuous function such 
that d//dz exists and is continuous on the range space of Z(t), t e [0, ZT\ Then 

sup \j0f(ZN(s))(-dQN(s)) - J 0 / (Z(s)) ( -dQ (s) ) | -> 0 a.s. 
0^t^3T 

Applying Lemma T2, we can prove the strong uniform consistency of CN(t, x). 
P corresponds to Q of Lemma P . H stands instead of function Z, f(z) = 1/z, x is 
a fixed point from 3C. 

Immediately the strong consistency of DN(x) may be stated, as 

\DN(x) - D(x)\ = {Jf dn(t)}2 sup \CN(t, x) - C(t, x)\ . 

5. ESTIMATION OF FUNCTION A(t) 

Let us imagine that the function B(x) is known. According to [5] 

A(t) = J0-dR(s)/E[B(x),s] . (6) 

both E(g(x), t) and R(s) are defined at the beginning of our contribution. The em
pirical estimate of R(s) is RN(s) = Yj\P(xi) = 1]I[- r(*i) = S1IN> u n d e r A 1 ~ A 3 

it is strongly uniformly consistent on [0, .T\ Due to Lemmas Tl and T2 the follow
ing holds: 

Lemma 1. Under assumptions Al —A3 the function 

M<) = V-V ZS(xt) l[T(xt) = t\EN(B(x), T(xt)) (7) 
i 

is a strongly consistent estimate of A(t), with respect to the sup norm on [0, &~\ 
Assumptions Al — A3 guarantee that all demands of Lemmas Tl, T2 are fulfilled, 

including the accurate definition of the integral (6). The asymptotic distribution 
of AN(t) could be derived in the same way as Breslow and Crowley [2] proved the 
asymptotic normality of the cumulative hazard estimate. However, from Tsiatis [5] 
the more straightforward proof follows. Tsiatis deals with parametrized model, 
where B(x) is proportional to exp (fix). Estimate /3 of /3 is obtained by iterative Newton-
Raphson procedure. Estimation of A(t) follows, its result resembles our function 
AN(t), with B(x) = exp(/?x). Therefore the asymptotic distribution of AN(t) can be 
obtained directly as a special case, namely the case with /i known. Properly modified 
results from [5] yield the following proposition. 

Lemma 2. Let the assumptions Al — A3 hold. Then the random functions ZN(t) = 
= y/(N) (AN(t) — A(t)) converge on [0, 3T~\ weakly to a Gaussian random function 
Z(t), which has zero mean and the covariance function for 0 — s ^ t — ST given by 

cov (Z(s), Z(i)) = C(s) = f0 - dR(u)lE2(B(x), u). 

409 



Immediately the estimate of the asymptotic variance can be proposed: 

Q(*) = I F 2 J f ; | i[T(Xi)^s-]. 
E2

N(B(x), T(xt)) 
Its strong consistency in sup norm on [0, ^~] follows again from Lemmas Tl and T2. 

Let B*(x) be an estimate of B(x), strongly consistent with respect to the sup norm 
on 3C. The example has been presented in Corollary 1. Let us construct the estimate 
ofA( t)by 

AN(t) = ZS(xi)l[T(*i) = W W • 
i 

with SN(s) = XBN(xj)l[T(xj)^sl 
i 

Theorem 3. Let the assumptions Al — A3 hold, then 

sup \A*(t) - A(t)\ -• 0 a.s. 

Proof. In order to apply Lemma T2, the almost sure, uniform convergence 
of SN(s)JN to E(B(x), S) remains to be demonstrated. However, the comparison 
with EN(B(x), S) suffices. It yields: 

sup K(s) /N - EN(B(x),s)\ = sup 1 / N 2 B J M - B(xt)\ . 
0£s^,3~ 0gsg5~ i 

.I[T(Xi)^s] = sup \B*(x)-B(x)\, 
xe% 

which tends to zero a.s. Then all assumptions of Lemma T2 hold (with f(z) = l/z) 
and strong uniform consistency of AN(t) on [0, «̂ ~] is proved. • 

5. CONCLUSION 

The next step would naturally consist in substitution the estimate BN(x) into the 
expression for Ajv(t). However, the properties of such an estimate AN(t) are not clear. 
Certainly this problem is worth of further examination. 

As the functions L(t, x) and B(x) are estimated by the kernel method, the asympto-
tics is rather slow and requires large extent of sample. The actual measure of con
vergence speed might be a subject of simulation study. In Theorem 2 assumption A5 
indicates thdt the error of BN(x) decreases more slowly than M~1 / 3 . On the other 
hand, it is well known that sup \LN(t, x) — L(t, x)\ = &{\n MN(x)JMN(x)Y12 a.s. 

og<g.r 
When the assumptions Al —A3 hold only, the proper choice of dN (or the kernel 
estimation with another kernel function) makes possible to achieve the asymptotic 
error not significantly larger than (In NJN)1/2. 

The experience with the presented method is encouraging. The method has been 
tested both by real and simulated data. The output of the procedure consists of 
graphs or tables of estimated functions. As it is mostly the goal of nonparametric 
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estimation, resulting estimates could suggest the proper form of parametrized model. 
When more-dimensional regression is analysed, the graphical projections of BN(x) 
are available. 

Remark. In the following examples, the measure pi was chosen as the uniform 
distribution function on [0, &~{\, 2TX near 60% sample quantile from realized T,'s. 
Such choice /i and 3~x guaranteed that the estimate of B(x) would really reflect the 
shape of the cumulative hazard function in x. Varied window-width 2dN ensured 
at least N1/2 measurements in the window. 

The samples of our examples were not censored. 

Example 1. The simulated samples followed one-dimensoonal Cox's model with 
B(x) = exp(/?x), /? = —1-5, A(t) = t2. The covariate x was distributed uniformly 
through [0, 10], the extents of samples differ from 100 to 500. The resulting 

graphs of AN(t) clearly showed parabolic trend (cf. Fig. 1 for N = 200). When the 
least squares line c + dx was led through the points {xu In BN(xt)}, its parameter 
d could be regarded as an estimate of /?. The estimation of the line is summarized 
in Table 1. S2 is the normalized sum of squares, /I denotes the direct estimate of 
Cox's /L 

Naturally, the original functions A(t), B(x) cannot be determined uniquely, we 
are able to estimate their shape, multiplied by some constant. This constant is con-
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nected with the normalizing condition (2). Therefore the graphs of AN(t) have dif
ferent scales, the estimates In BN(x) are shifted from In B(x) (by the constant c in 
Example l). 

Table 1. 

N estimated c d correlation 52 ß 

100 4-167 - 1 - 2 7 8 - 0 - 9 9 4 0-163 - 1 - 4 0 8 

200 4-965 - 1 - 4 0 1 - 0 - 9 9 2 0-259 - 1 - 4 6 2 

300 6-376 - 1 - 3 7 2 - 0 - 9 9 4 0-193 - 1 - 4 2 8 

400 6-390 - 1 - 4 1 1 - 0 - 9 9 5 0-182 - 1 - 4 1 1 

500 6-295 - 1 - 4 2 4 - 0 - 9 9 7 0-125 - 1 - 4 3 0 

Example 2. The samples followed two-dimensional model L(t, x, z) = A(t) . 
.Bx(x).B2(z), with A(t) = It, In Bx(x) = x - 0 ' 5 , In B2(z) = z0 '3. The covariates 
x, z were distributed uniformly in [0, 10], [0, 20] respectively. Figures 2, 3 display 

0.5 

Lnв 1,N 

- 1 . 5 

N = 200 

N=400 

10 

Fig. 2. 

logarithm of the estimated B1 tN(x), B2N(z) after secondary smoothing by a fixed 
bandwidth moving average. They are compared with shifted model functions x - 0 ' 5 , 
z 0 ' 3 respectively. Figure 4 shows part of AN(t) for N = 200. 

(Received January 5, 1989.) 
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