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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 6 

SPECTRUM DECOMPOSITION FOR STATIONARY 
WEAKLY ISOTROPIC RANDOM FIELDS 
WITH BOUNDED RANGE INTERACTIONS 

ANTONIN OTAHAL 

A stationary weakly isotropic random field on a ^-lattice (rf-dimensional square lattice) is 
defined as a (weakly) stationary random field whose covariance function is invariant with respect 
to all the symmetries of the (/-lattice. Under assumption of bounded range interactions the co-
variance function of such a field is expressed as a finite linear combination of product covariance 
functions. Analogous decomposition of the spectral density follows from that of the covariance 
function. A solution of an extrapolation problem of certain type is derived as a corollary of this 
result. 

1. STATIONARY WEAKLY ISOTROPIC RANDOM FIELDS 

Through Zd we denote a d-dimensional square lattice, i.e. the set of all (/-dimen­
sional vectors whose coordinates are integer. The elements of Zd will be called 
indeces. 

Stationary random field on Zd is a system of complex random variables X = 
= (X(K): K e Zd) such that every variable from X has zero mean and finite variance 
and there exists covariance function B defined on Zd such that, for every K, Le Zd, 
EX(K). X(L)* = B(K — L) holds where asterisk denotes the complex conjugate. 

Stationary random field on Zd is weakly isotropic if, for every permutation Q e Sd 

(where Sd denotes the symmetric group of degree d), every d-tuple a = (ttlt..., ocd) 
where, for every j = 1 , . . . , d, «j is either + 1 or — 1 and every K = (Kt, ..., Kd) e Zd 

the equality 
(1) B(Klt ..., Kd) = B(a1Ke(l),..., adKaW) 

is true. Such a field may be viewed on as some discrete analogy of the notion of 
a stationary isotropic random field on a d-dimensional Euclidean space Ud(cf. e.g. [3]). 

A stationary random field on Zd is said to have bounded range interactions if its 
covariance function is not zero just for finitely many indeces. It is obvious that the 
condition of bounded range interactions provides the existence of the spectral 
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density of the field given, that is, the existence of the function j defined on / = 
= [ — 7t, n\d such that for every K e Id it is 

(2) B(K)={e
l<K-'>f(X)dX 

where < •, •) denotes the usual scalar product in Rd. 
Viz. in case of bounded range interactions the spectral density is given 

f(X) = (2n)-«j:e-i<K'X}B(K) 
K 

where the summation goes over all indeces K for which B(K) 4= 0. 

1.1. Theorem. Let X be a stationary random field on Id with the spectral density j . 
Then X is weakly isotropic if and only if 

(3) f(X)=f(a1Xe(l), ...,adXe(d)) 

holds for almost every X = (X±,..., Xd) e I, every Q e Sd and every a = (a . , . . . , ad) e 

- { - - . - } ' • 
Proof. The "if" is obvious and the "only if" follows immediately from that the 

function 
g(X) = 2-d(d\yllj X f(^Xe(V),...,adXe(d)) 

QeSdxe{-l,l}* 

has the property described in (3) and with respect to (1) both j and g have the same 
d-tuple Fourier coefficients (cf. [2]). • 

Putting ax = ... = ad = — 1 in (3) we see that the spectral density of a weakly 
isotropic field is an even function. Hence the covariance function is a real one. 

2. SPECTRUM DECOMPOSITION 

In what follows we suppose that X is a stationary weakly isotropic random field 
on Id with bounded range interactions. Its spectral density we denote through j . 
We say j to be a product spectral density if there exists a function q> defined on 
[ - 7i, 7t] such that, for every X e I, it is 

f(X) = fl<p(Xj). 
j=i 

By aid of (2) it may be easily seen that the necessary and sufficient condition for 
a field X to have a product spectral density is to have a product covariance function 
of the form d 

B(K) = l\b(Kj) 
j = i 

for every K e Id where b is some function defined on Z, i.e. the set of all integers. 
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Our aim is to prove that under stated assumptions the spectral density is expressed 
as a finite linear combination of product ones. 

We start with one auxiliary result. 

2.1. Lemma. Let m, n be positive integers and A e #?' *""'"'", that is, A = 
= (AK(i),...,K(„): --(-)>• •••,K(n) = 1, . . . , m) and suppose that for every permutation 
QGS„ 

VV ^ K ( l ) K(„) — ^ K ( e ( n ) , . . . , K ( e ( « ) ) 

holds. Further suppose that there exist x e Rm and e > 0 such that for every t e 
e VE(x) = {(e Rm: \tj - %j\ < e for j =- 1 , . . . , m} the relation 

(5) I ••• I ^K (i),.,K (,ofltKa) = 0 
K ( l ) = l K(n)= l y - 1 

is true. Then A = 0, i.e. AK(i),.,K(n) -= 0 f ° r every choice K( l ) , . . . , -K(n) e {l, ..., m}. 

Proof. Let us denote the left hand side of (5) through G(A, f). Obviously G(A, •) 
is a smooth function on Ve(x). 

The proof will be carried out by induction. 

1) Let n = 1. Then G(A, t) = £ AxfK and G(A, i) = 0 on VE(x). Hence for every 
K = l 

K = 1, ..., m there is AK = (3/3fK) G(A, f) = 0. 

2) Suppose the statement to be true for n — 1. For (j(l), ...,j(k)} c (1, ..., n} 

we write £ instead of £ ... £ . 
t/U),. . . , /(&)) K(j( i)) = i K(j(t)) = i 

We calculate 

— c(A, t) = z K̂(D,.,K(,o (—(tKd)) n hm + • • • + n ha ~ w ) = 
o f i ( i , . . . ,») \ o t i J = 2 j = i 3f j y 

n n~l 

— z ^i,K(2),..,K(n)n fKU) + ••• + z 4 ( i ) , . . . ,K(»- i ) , in t«j ) • 
(2 „) j = 2 ( 1 , . . . , „ - 1 ) j = l 

According to (4) we obtain 

(6) -J- G(A,t)= X ^l,K(2),.,KWri fKO-). 
n Ott (2,...,n) y = 2 

With respect to (5) it is G(A, t) = 0 on Vc(x) and therefore (djdtx) G(A, t) = 0 on 
F/r) . Hence the induction assumption and (6) yield A1K(2),...,K(n) = 0 for every 
choice K(2),..., K(n) from { 1 , . . . , m}. 

Similar consideration of (d/dtj) G(A, t) for j = 1 , . . . , m completes the proof. Q 

A simple one-dimensional spectral density is a strictly positive function q> defined 
on [ - 7t, 7t] that is the spectral density of a stationary weakly isotropic random 
sequence with bounded range interactions, that is, the covariance function which 
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corresponds to q> is an even real function defined on Z and is equal to zero outside 
some finite set of indices. 

A simple product spectral density is a function g defined on / such that for every 
d 

lei it is g(X) = F] (p(lj) where cp is a simple one-dimensional spectral density. 
]=i 

2.2. Theorem. Let j be a spectral density of a stationary weakly isotropic random 
field X on Za with bounded range interactions. Then there exist real numbers at,... 

..., am and simple product spectral densities j , , .. .,j,„ such t h a t / = ]T akfk. 
k = l 

Proof. With regard to (2) it is sufficient to express the covariance function B 
ofX in the form 

(?) B(K) = iakhbk(Kj) 
k=l j=l 

for every Ke Zd where bu ..., bm are covariance functions corresponding to simple 
one-dimensional spectral densities. 

We denote S = max {s: B(s,K2,...,Kd) +- 0}. Let e be such that 0 < s < 1 / 
/ (2S + 1). We put T0 = 1, Tj = ... = TS = 0 and Fir) = {(t0,..., ts): \ts - x\ < s 
for s = 0, ..., S}. For every t e Vs(r) and every integer u we define 

b (u\ = [h«\ for |"l = S 

"• ' [0 otherwise 

and for every t e F£(T) and every x e [ — n, n\ we define 
s 

cpt(x) = (1/2JI) (to + 2 X h cos kx) . 
k=l 

According to the choice of e the function q>t is strictly positive and therefore cpt is 
the simple one-dimensional spectral density corresponding to the covariance function 
b, 

d 

Through Bt we denote the function defined on Z4 as Bt(K) = \\ bt(Kj)-
j=i 

For a function C defined on Zd we denote C the restriction of C onto the finite 
set of indeces {0, ...,S}d. 

We shall prove that there exist real numbers alt ...,am and vectors t(i),..., t(m) e 
e Vs(r) such that 

(8) B' = l akB'm 

k = i 

holds. (8) obviously implies (7). 
Let us denote through L the linear subspace of ^0--s}d spanned by {B't: t e VE(x)}. 

If the expression (8) of B' were not possible, it would be B' = B1 + B2 where B1 e L 
and B2 4= 0 would be orthogonal to L. But then B2 would fulfil the assumptions 
for A in Lemma 2.Land the contradiction B2 = 0 would follow. Q 
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3. EXTRAPOLATION PROBLEM 

Let X be a stationary random field on Zd. We denote through L(X) the linear 

space of all finite linear combinations (with complex coefficients) of random variables 

from X and through H(X) the Hilbert space that is the completion of L(X), the scalar 

product being defined as covariance. H+(X) will denote the closed linear subspace 

of H(X) that is spanned by the set {X(K): KeZd

+] where Zd

+ = {KeZd:Kj ^ 0 

forj = \,...,d). 

Given LeZd\Zd

+, X(L) denotes that random variable from H +(X) for which 

E|Z(L) - X(L)\2 is minimal, i.e. X(L)is the projection of X(L) onto H+(X). Naturally, 

X(L) is viewed on as the best linear extrapolation of X(L) on the base of observed 

values X(K),KeZd

+. 

It may occur that there exist coefficients rK, Ke Zd

+ such that 

X(L) « YfKX(K) where KeZd

+ 

K 

is true, the convergence being understood in the mean, that is, with respect to the 

norm of H(X). If it is the case and if, moreover, the series X' 'K e ' < & " > converges 
K 

in the sense of L2(I) = L2(I, 3&, md) where 38 denotes the c-algebra of all Borel 

subsets of / and md is the d-dimensional Lebesgue measure, we say that the extra­

polation X.(L) has the spectral characteristic 

gL(-) =- Y/K e 1 ^ ' 0 where K e Z\ . 
K 

The spectral characteristic being known, the extrapolation coefficients may be deter­

mined by means of the relation 

rк = (2к)-d^gL(X)e-^>dX. 

We shall therefore consider the spectral characteristic, if it exists, to be a solution 

of the extrapolation problem. 

In case the random field X has factorisable spectral density, i.e. there exists the 

function h of d complex variables such that both h and \\h are holomorphic on the 

unit polydisc Ud = {(zu ..., zd): \zj\ g 1 for j = 1, ..., d) and the spectral density 

/ i s expressed for every A e i asj(A) = |/i(eU l, . . . , e ' ; " ) | 2 , the spectral characteristic 

gL exists for every Le Zd\Zd

+ and its explicit form involves the factor function h. 

In fact, 

gJLX) = jr(e'<--« - h(e\ ..., e"-)). ( l/^e" ' , . . . . e1^)) 

where 3fC denotes the "holomorphic part of a function", more exactly, for every 

function p on / of the form 

p(-) = LPK^<K"y where K e Zd 
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the value of .Jf (p(X)) is, for every X e I, defined as 

&(P(X)) = 1PKJ<K'X> where K e Z+ . 
K 

Theorem 3.5.3 in [ l ] implies that every (strictly) positive bounded lower semi-
continous function on / is factorisable. Hence, if X is a stationary random field on 
Zd with bounded range interactions and the spectral density/ of X is positive then the 
spectral density / is factorisable because it is obviously bounded and continuous. 
So for every Le Zd\Zd

+ there exists the spectral characteristic gL of the extrapolation 
X(L). Unfortunately, the theorem referred to does not provide an effective way 
to obtain the factor function. In case X is weakly isotropic, this difficulty may be 
overcome using the spectrum decomposition. 

Let us, according to Theorem 2.2, write 

f(X) = iaj\\<Pj(Xk) 
]=i k=1 

where <p1, ..., cpm are simple one-dimensional spectral densities. For j = 1, . , . , m 
let Pj denote the factor polynomial corresponding to <p,. That is, (pj(x) = |P,(e,;v)|2 

for every x e [ — 7t, 7t] and l /P , is holomorphic on the unit disc U. (Existence of 
such a factorization is an easy consequence of the definition of a simple one-dimen­
sional spectral density.) 

j 

Denoting hj(X) = FT P,(e' ") it is possible to express 
k= 1 

(9) jW = I*W|2-
J = l 

3.1. Theorem. Let X be a stationary weakly isotropic random field on Zd with 
bounded range interactions and with strictly positive spectral density / . Then for 
every Le Zd \ Zd

+ the spectral characteristic gL of the extrapolation X(L) is given 

(10) gL(X) = (1//(A)). £ a, *(e '<w> hj(X)) (hj(X)f 
j = i 

for every X e I = [ — 7t, 7t]". 

Proof. The function gL is the spectral characteristic of X(L) if and only if 

(11) ^ ( e , < ^ > - a £ ( A ) ) / ( A ) e - , < ^ > c U = 0 

is true for every KeZd
+. Viz. X(K) is the projection of X(L) onto H + (X) if and 

only if E(Z(L) - X(L)). (X(K))* = 0 for every K e Z"+ what implies (11) with regard 
to (2). Let us substitute (9) into (11). As J'f e

! < M ' ; > dX + 0 holds just in case M = 0, 
(11) is equivalent to 

(12) £ a j se((e<^ - gL(x)) hj(x)) (hj(x))* = o. 
; = i 

It is jr((ei<z-;-> - gL(X)) hj(X)) = ^(e ,<L 'A> hj(X)) - gL(X) hj(X) because J?(gL) = gL 

and se(hj) = h. Hence (12) is equivalent to (10). ^ ^ ^ A p n ) 2 m 4 ) 
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