Kybernetika

Branislav Rovan

Bounded push down automata

Kybernetika, Vol. 5 (1969), No. 4, (261)--265
Persistent URL: http://dml.cz/dmlcz/124611

Terms of use:

© Institute of Information Theory and Automation AS CR, 1969
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

KYBERNETIKA ČíSLO 4, ROČNÍK 5/1969
 Bounded Push Down Automata

Branislav Rovan

The bounded push down automata, a special kind of push down automata, are defined in this paper. Bounded push down automata accept exactly bounded context-free languages, defined and studied in [6], [7].

The central problem of the theory of grammars and languages is that of determining for a given class \mathscr{E} of languages a class of automata which accept exactly the languages in \mathscr{E}. This problem was solved for regular events [1], linear languages [2], context-free languages [3], [4] and context-sensitive languages [5]. In this paper we are going to introducea utomata (the so called "bounded push down automata"bpda) which accept bounded languages, defined and studied in [6]. By this one of the Ginsburg's open problems [7] is solved.
The basic ideas and notations of the theory of context-free languages are used just in the sense of those in [7]. From [7] is also the definition of bounded language:

Definition 1. A context-free language L (briefly "language L " in the next) on alphabet Σ is said to be bounded, if there are words w_{1}, \ldots, w_{n} in Σ^{*} such that $L \subseteq$ $\subseteq w_{1}^{*} \ldots w_{n}^{*}$.
In the next we define a special class of push down automata which will accept exactly bounded languages. bpda which accept language $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$ will contain n parts which will work sequentially. The i-th part of automaton will accept for a given x in L exactly that subword of x which belongs to w_{i}^{*}.

Definition 2. A bounded push down automaton (bpda) is a 7-tuple $M=(K, \Sigma, \Gamma$, $\delta, Z_{0}, q_{0}, F \cup Q$), where K is a finite nonempty set of states, Σ is a finite nonempty set of input symbols, Γ is a finite nonempty set of auxiliary symbols, δ is a mapping of $K \times(\Sigma \cup\{\varepsilon\}) \times \Gamma$ into finite subsets of $K \times \Gamma^{*}, Z_{0}$ in Γ is a start auxiliary symbol, q_{0} in K is a start state, $F \cup Q \subseteq K$ is a set of final states, Q contains at most
one element and the following properties are satisfied:
1° There exists a partition of the set $K-\left(\left\{q_{0}\right\} \cup Q\right)=K_{1} \cup \ldots \cup K_{r},\left(K_{i} \cap K_{j}=\right.$ $=\emptyset$ for $i \neq j)$ such that if $\left(t, Z_{1}\right)$ is in $\delta(q, a, Z)$ for q in K_{i} and t in K_{j}, then $i \leqq j$, where a is in $\Sigma \cup\{\varepsilon\}, Z$ in Γ, Z_{1} in Γ^{*}.
2° Let there be an ordering $\left\{q_{1}^{(i)}, \ldots, q_{k_{i}}^{(i)}\right\}$ of the set K_{i} and let the following conditions be satisfied:
A) $\delta\left(q_{0}, \varepsilon, Z_{0}\right) \subseteq\left\{\left(q_{1}^{(i)}, Z_{0}\right) ; 1 \leqq i \leqq r\right\}$ and $\delta\left(q_{0}, a, Z_{0}\right)=\emptyset$ for all a in Σ.
B) If $1 \leqq i \leqq r, 1 \leqq j<k_{i}$, then for exactly one a in Σ there is at least one Z in Γ such that $\delta\left(q_{j}^{(i)}, a, Z\right) \neq \emptyset$ and is $\delta\left(q_{j}^{(i)}, a, Z\right) \subseteq\left\{\left(q_{j+1}^{(i)}, Z^{\prime}\right), Z^{\prime}\right.$ in $\left.\Gamma^{*}\right\}$.
C) If $1 \leqq i \leqq r$, then for exactly one a in Σ there is at least one Z in Γ such that $\delta\left(q_{k_{i}}^{(i)}, a, Z\right) \neq \emptyset$ and is $\delta\left(q_{k_{i}}^{(i)}, a, Z\right) \subseteq\left\{\left(q_{1}^{(s)}, Z^{\prime}\right) ; i \leqq s \leqq r, Z^{\prime}\right.$ in $\left.\Gamma^{*}\right\} \cup Q^{\prime}$, where $Q^{\prime}=\{(p, Y)\}, p$ in Q, Y in Γ^{*} (i.e. $Q^{\prime}=\emptyset$ if $\left.Q=\emptyset\right)$.
D) If q is in $K-\left(\left\{q_{0}\right\} \cup Q\right), Z$ in Γ, then $\delta(q, \varepsilon, Z) \subseteq\left\{\left(q, Z^{\prime}\right) ; Z^{\prime}\right.$ in $\left.\Gamma^{*}\right\}$. $3^{\circ} F \subseteq\left\{q_{1}^{(i)} ; 1 \leqq i \leqq r\right\} \cup\left\{q_{0}\right\}$.

Definition 3. Given a bpda M let " F " be the relation on $K \times \Sigma^{*} \times \Gamma^{*}$ defined as follows: For arbitrary q and p in K, x in $\Sigma \cup\{\varepsilon\}, Z$ in Γ, w in Σ^{*}, α and γ in Γ^{*} let $(p, x w, \alpha Z) \vdash(q, w, \alpha \gamma)$ if (q, γ) is in $\delta(p, x, Z)$. Let " \vdash^{*} ", be the reflexive and transitive closure of the relation " r ".

Definition 4. A word w is accepted by a bpda M, if $\left.\left(q_{0}, w, Z_{0}\right)\right|^{*}(d, \varepsilon, \gamma)$ for some d in $F \cup Q$ and some γ in Γ^{*} (i.e. there exist states $q_{0}, q_{1}, \ldots, q_{n}=d$ and auxiliary words $\alpha_{0}=Z_{0}, \alpha_{1}, \ldots, \alpha_{n}=\gamma$ such that for $w=x_{1} \ldots x_{n}$, each x_{i} in $\Sigma \cup\{\varepsilon\}$ holds $\left.\left(q_{0}, x_{1} \ldots x_{n}, \alpha_{0}\right) \vdash\left(q_{1}, x_{2} \ldots x_{n}, \alpha_{1}\right) \vdash \ldots \vdash\left(q_{n}, \varepsilon, \alpha_{n}\right)=(d, \varepsilon, \gamma)\right)$.

Notation. Let us denote by $T(M)$ the set of all words accepted by a bpda M.
Lemma 1. $T(M)$ is a bounded language for each bpda M.
Proof. It clearly follows from Def. 2 and Def. 4 that bpda are only a special kind of pda. Thus by Th. 2.5.2 of [7] $T(M)$ is a language.

Now we show that $T(M)$ is a bounded language: Consider the same notation for M as in Def. 2. Let us denote $M_{i}=\left(K, \Sigma, \Gamma, \delta_{i}, Z_{0}, q_{0}, F \cup Q\right)$, where ' δ_{i} is a restriction of the mapping δ in such sense, that $\delta_{i}(a, b, c)=\delta(a, b, c)$ for (a, b, c) in $\left(K_{i} \cup\left\{q_{0}\right\}\right) \times(\Sigma \cup\{\varepsilon\}) \times \Gamma$ and $\delta_{i}(a, b, c)=\emptyset$ otherwise. Then clearly $T\left(M_{i}\right) \subseteq$ $\subseteq w_{i}^{*}$ for some w_{i} in Σ^{*}. (We can obtain this w_{i} in this way: Let $a_{1}^{(i)}, \ldots, a_{k_{t}}^{(i)}$ be those elements of Σ for which is $\delta\left(q_{j}^{(i)}, a_{j}^{(i)}, Z_{j}\right) \neq \emptyset, 1 \leqq j \leqq k_{i}$. Then $\left.w_{i}=a_{1}^{(i)} \ldots a_{k_{i}}^{(i)}\right)$. From the definition of the bpda it clearly follows, that $T(M) \subseteq\left(T\left(M_{1}\right) \cup\{\varepsilon\}\right)$. $\cdot\left(T\left(M_{2}\right) \cup\{\varepsilon\}\right) \ldots\left(T\left(M_{r}\right) \cup\{\varepsilon\}\right)$. Thus $T(M) \subseteq w_{1}^{*} \ldots w_{r}^{*}$.
Q.E.D.

In order to prove the converse, we must introduce the notion of the set $N(M)$ for given bpda M, which is similar to that one of Null (M) in [7].

Definition 5. Given a bpda M let be $N(M)=\left\{w\right.$ in $\Sigma^{*} ;\left(q_{0}, w, Z_{0}\right) \vdash^{*}(p, \varepsilon, \varepsilon), p$ in $\left.F\right\}$, where M is as in Def. 2.

Lemma 2. For every bounded language L there exists a bpda M such that $L=$ $=N(M)$.

Proof. Let L be a bounded language, i.e. $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$, where $w_{i}=x_{1}^{(i)} \ldots x_{j_{i}}^{(i)}$, each $x_{k}^{(h)}$ in Σ. Let G be a grammar generating L, i.e. $L=L(G), G=(V, \Sigma, P, \sigma)$. Let us construct a bpda M in the following way:
$M=\left(K, \Sigma, \Gamma, \delta, \sigma, q_{0}, F\right)$, where $K=\left\{q_{i}^{(k)} ; 1 \leqq k \leqq n, 1 \leqq i \leqq j_{k}\right\} \cup\left\{q_{0}\right\}$, $\Gamma=V, F=\left\{q_{1}^{(i)} ; 1 \leqq i \leqq n\right\} \cup F_{1}, F_{1}=\emptyset$ if ε is not in L and $F_{1}=\left\{q_{0}\right\}$ otherwise. Let us define the mapping δ as follows:

$$
\begin{aligned}
& \delta\left(q_{0}, \varepsilon, \sigma\right)=\left\{\left(q_{1}^{(i)}, u_{j}^{R}\right) ; 1 \leqq i \leqq n, u_{j} \text { in } V^{*} \text { and } \sigma \rightarrow u_{j} \text { is in } P\right\} \\
& \delta\left(q_{k}^{(i)}, x_{k}^{(i)}, x_{k}^{(i)}\right)=\left\{\left(q_{k+1}^{(i)}, \varepsilon\right)\right\}, \text { for } 1 \leqq i \leqq n, 1 \leqq k<j_{i} \\
& \delta\left(q_{j_{i}}^{(i)}, x_{i_{i}}^{(i)}, x_{j_{i}}^{(i)}\right)=\left\{\left(q_{1}^{(m)}, \varepsilon\right) ; i \leqq m \leqq n\right\}, \text { for } 1 \leqq i \leqq n \\
& \delta\left(q_{r}^{(s)}, \varepsilon, \xi\right)=\left\{\left(q_{r}^{(s)}, v_{h}^{R}\right) ; v_{h} \text { in } V^{*}, \xi \rightarrow v_{h} \text { is in } P\right\}, \text { for } \\
& \quad 1 \leqq s \leqq n, 1 \leqq r \leqq j_{s}, \text { all } \xi \text { in } V-\Sigma . \\
& \delta(q, a, Z)=\emptyset \text { otherwise. }
\end{aligned}
$$

It is clear that M is a bpda (with the set $Q=\emptyset$). In the next we show that $L=N(M)$.
Let x be in L, then there is a left-most derivation of x in $G: \sigma \Rightarrow u_{1} \xi_{1} v_{1} \Rightarrow u_{1} u_{2} \xi_{2}$. $. v_{2} \Rightarrow \ldots \Rightarrow u_{1} \ldots u_{n}, \quad x=u_{1} \ldots u_{n}, \quad$ each u_{i} in Σ^{*}. Then $\left(q_{0}, u_{1} \ldots u_{n}, \sigma\right) \vdash$ $\vdash\left(q_{1}^{(i)}, u_{1} \ldots u_{n}, v_{1}^{R} \xi_{1} u_{1}^{R}\right) \stackrel{*}{\vdash}\left(q_{j}^{(k)}, u_{2} \ldots u_{n}, v_{1}^{R} \xi_{1}\right) \vdash\left(q_{j}^{(k)}, u_{2} \ldots u_{n}, v_{2}^{R} \xi_{2} u_{2}^{R}\right) \vdash^{*} \ldots \vdash$ $\vdash(q, \varepsilon, \varepsilon)$, where q must be in F.] Therefore, if $x=\varepsilon$ then $q=q_{0}$. The non- ε word x from L (i.e. from $w_{i}^{*}, \ldots, w_{n}^{*}$) is expended on the input of bpda M just in the moment when M moves from some $q_{j_{i}}^{(i)}$ (expending the last symbol of w_{i}) to one of the final states $q_{1}^{(m)}=q$.] Thus x is in $N(M)$ and $L \subseteq N(M)$.

In order to prove the converse inclusion let x be in $N(M)$, i.e. there exist a_{0}, \ldots \ldots, a_{s-1} in $\Sigma \cup\{\varepsilon\}$ and $\gamma_{0}, \ldots, \gamma_{s}$ in Γ^{*} such that $x=a_{0} \ldots a_{s-1}, \gamma_{0}=\sigma, \gamma_{s}=\varepsilon$ and $\left(q_{0}, a_{0} \ldots a_{s-1}, \gamma_{0}\right) \vdash\left(q_{1}^{(i)}, a_{1} \ldots a_{s-1}, \gamma_{1}\right) \vdash \ldots \vdash\left(q, \varepsilon, \gamma_{s}\right)=(q, \varepsilon, \varepsilon), q$ in F. Now, let $k(0)<k(1)<\ldots<k(t)$ be those nonnegative integers for which $\gamma_{k(i)}=$ $=y_{i} \xi_{i}, \xi_{i}$ in $V-\Sigma, y_{i}$ in V^{*}. (Clearly $k(0)=0$.) From this fact it immediately follows $\gamma_{k(i)+1}=y_{i} z_{i}^{R}$, where z_{i} is in V^{*} and $\xi_{i} \rightarrow z_{i}$ is in P. To this sequence of moves of M corresponds the derivation $\sigma=\gamma_{k(0)}^{R}=\xi_{0} y_{0}^{R} \Rightarrow z_{0} y_{0}^{R}=a_{0} \ldots$ $\ldots a_{k(1)-1} \xi_{1} y_{1}^{R} \Rightarrow a_{0} \ldots a_{k(1)-1} z_{1} y_{1}^{R}=a_{0} \ldots a_{k(2)-1} \xi_{2} y_{2}^{R} \Rightarrow \ldots \Rightarrow a_{0} \ldots a_{s-1}=x$ in G. Thus x is in L and $L \supseteq N(M)$.

From both inclusions $L=N(M)$ Q.E.D.

Lemma 3. For every bounded language L there exists a bpda M such that $L=$ $=T(M)$.

Proof. By Lemma 2 there exists a bpda $M_{1}=\left(K, \Sigma, \Gamma, \delta, Z_{0}, q_{0}, F\right)$ such that $L=N\left(M_{1}\right)$. Let us construct a bpda M as follows:

Let Z^{\prime} for every Z in Γ and p be abstract symbols.
$M=\left(K_{M}, \Sigma, \Gamma_{M}, Z_{0}^{\prime}, q_{0}, F \cup Q\right), K_{M}=K \cup Q, K \cap Q=\emptyset, Q=\{p\}$,
$\Gamma_{M}=\Gamma \cup\left\{Z^{\prime} ; Z\right.$ in $\left.\Gamma\right\}$ and define δ_{M} in this way:
For all a in $\Sigma \cup\{\varepsilon\}$, all Z in Γ, all q in $K-Q$ let $\delta_{M}(q, a, Z)=\delta(q, a, Z)$
$\delta_{M}\left(q, a, Z^{\prime}\right)=\left\{\left(t, Y^{\prime} \alpha\right) ;(t, Y \alpha)\right.$ is in $\delta(q, a, Z), Y$ in Γ, α in $\left.\Gamma^{*}\right\}$ if (t, ε) is not in $\delta(q, a, Z)$
$\delta_{M}\left(q, a, Z^{\prime}\right)=\left\{\left(t, Y^{\prime} \alpha\right) ;(t, Y \alpha)\right.$ is in $\delta(q, a, Z), Y$ in Γ, α in $\left.\Gamma^{*}\right\} \cup\{(p, \varepsilon)\}$ if (t, ε) is in $\delta(q, a, Z)$
and let $\delta_{M}(q, a, Z)=0$ otherwise.
It is clear now that x is in $T(M)$ if and only if x is in $N\left(M_{1}\right)$. Thus $T(M)=L$.
Q.E.D.

An immediate consequence of Lemmas 1 and 3 is the following

Theorem. A subset L of Σ^{*} is a bounded language if and only if there exists a bpda M such that $L=T(M)$.

Note. The definition of bpda can be simplified in the sense of using one final state only. It is possible by a little change of the definition of δ in Def. 2 and $N(M)$. The basic idea of the proof does not change.
(Received June 4th, 1968.)

REFERENCES

[1] S. C. Kleene: Reprezentation of events in nerve sets. Automata Studies, Princeton University Press, Princeton 1956.
[2] A. L. Rosenberg: A machine realization of the linear context-free languages. Information and Control X (1967), 2, 175-188.
[3] N. Chomsky: Context-free grammars and push down storage. Quarterly Progress Report No. 65, Research Laboratory of Electronics, Massachusetts Institute of Technology, 1962.
[4] R. J. Evey: The theory of applications of push down store machines. Mathematical Linguistics and Automatic Translation, Harvard Univ. Computation Lab. Report NSF-10, May, 1963.
[5] S. Y. Kuroda: Classes of languages and linear-bound automata. Information and Control VII (1964), 3, 360-365.
[6] S. Ginsburg, E. H. Spanier: Bounded ALGOL-like languages. Trans. Am. Math. Soc. 113 (1964), 2, 333-368.
[7] S. Ginsburg: The mathematical theory of context-free languages. McGraw-Hill, 1966.

Ohraničené zásobníkové automaty

Branislav Rovan

Jedným z hlavných problémov teórie jazykov a gramatík je: Nájst pre danú triedu jazykov \mathscr{E} triedu automatov, ktoré by príjmali práve jazyky z triedy \mathscr{E}. Článok sa zaoberá touto otázkou pre ohraničené bezkontextové jazyky, ktorých teóriu rozvádza S. Ginsburg v práci [7]. Uvedená je definícia ohraničeného zásobníkového automatu a veta, ktorá zaručuje, že ohraničené zásobníkové automaty príjmajú práve ohraničené jazyky. Ku kažđému ohraničenému jazyku v abecede Σ existujú slová $w_{1}, \ldots, w_{n} v$ abecede Σ také, že $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$. Ohraničený zásobníkový automat, ktorý prijma jazyk L sa potom skladá z n častí, ktoré pracujú postupne za sebou. i-ta čast automatu bude prijmat práve tú čast slova x z L, ktorá patrí do w_{i}^{*}.

Týmto je vyriešený jeden z problémov uvedených S. Ginsburgom v [7].

Branislav Rovan, Matematický ústav SAV, Štefánikova ul. 41, Bratislava.

