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KYBERNETIKA ČÍSLO 4, ROČNÍK 5/1969 

Bounded Push Down Automata 
BRANISLAV ROVAN 

The bounded push down automata, a special kind of push down automata, are defined in this 
paper. Bounded push down automata accept exactly bounded context-free languages, defined 
and studied in [6], [7]. 

The central problem of the theory of grammars and languages is that of determin
ing for a given class S of languages a class of automata which accept exactly the 
languages in S. This problem was solved for regular events [ l ] , linear languages [2], 
context-free languages [3], [4] and context-sensitive languages [5]. In this paper 
we are going to introducea utomata (the so called "bounded push down automata" -
bpda) which accept bounded languages, defined and studied in [6]. By this one of the 
Ginsburg's open problems [7] is solved. 

The basic ideas and notations of the theory of context-free languages are used 
just in the sense of those in [7]. From [7] is also the definition of bounded language: 

Definition 1. A context-free language L (briefly "language L" in the next) on 
alphabet I is said to be bounded, if there are words wu ..., w„ in I* such that L £ 
S W* ...w*. 

In the next we define a special class of push down automata which will accept 
exactly bounded languages, bpda which accept language L £ w* . . . w* will contain 
n parts which will work sequentially. The i-th part of automaton will accept for 
a given x in L exactly that subword of x which belongs to w*. 

Definition 2. A bounded push down automaton (bpda) is a 7-tuple M = (K, I, T, 
<5, Z0, q0, F u Q), where K is a finite nonempty set of states, I is a finite nonempty 
set of input symbols, F is a finite nonempty set of auxiliary symbols, d is a mapping 
of K x (Z u {e}) x r into finite subsets of K x F*, Z0 in F is a start auxiliary 
symbol, q0 in K is a start state, F u Q £ K is a set of final states, Q contains at most 



262 one element and the following properties are satisfied: 

1° There exists a partition of the set K — ({q0} u g ) = Kt u . . . u Kr, (K; n Kj = 
= 0 for i =1= j) such that if (t, Z,) is in S(q, a, Z) for g in X ; and f in Kp then i g j , 
where a is in 27 u {e}, Z in T, Zt in T*. 

2° Let there be an ordering {q[l), ..., q[l)} of the set K-, and let the following 
conditions be satisfied: 

A) % 0 , e, Z0) E {(g*!0, Z0); 1 <= i <= r} and % 0 , a, Z0) = 0 for all a in 27. 
B) If 1 <= i <; r, 1 <= j < kh then for exactly one a in 27 there is at least one Z 

in T such that <5(gj°, a,Z) * 0 and is <3(g<.0, a, Z) <= {(g(/ii, Z'), Z' in T*}. 
C) If 1 <= i <= r, then for exactly one a in 27 there is at least one Z in T such that 

S(q[i), a,Z) * 0 and is <5(g<°, a, Z) £ {(g^, Z'); i <= s <= r, Z' in T*} u £>', where 

Q' = {(P' y)}> P i n Q> y ^ r* 0-e. Q' = 0 if Q = 0). 
D) If g is in K - ({q0} u Q), Z in T, then d(q, E, Z) C {(g, Z'); Z' in T*}. 
3° F £ {g^0; 1 <, i £ r} u {g0}. 

Definition 3. Given a bpda M let "h" be the relation on K x 27* x T* defined 
as follows: For arbitrary g and p in K, x in I u {e}, Z in T, w in 27*, a and y in T* 
let (p, xw, aZ) 1- (g, w, ay) if (g, y) is in §(p, x, Z). Let "(*-" be the reflexive and transit
ive closure of the relation "(-". 

Definition 4. A word w is accepted by a bpda M, if (g0, w, Z0) (*- (a1, e, y) for some d 
in F u g and some y in T* (i.e. there exist states g0, qt,..., g„ = d and auxiliary 
words a0 = Z0 , a1; ..., a„ = y such that for w = x, ... x„, each x ; in 27 u {e} holds 
(q0,xx ... x„, a0) h (gj ,x 2 ... x„, ax) i- . . . h (g„, e, a„) = (d, e, y)). 

Notation. Let us denote by T(M) the set of all words accepted by a bpda M. 

Lemma 1. T(M) is a bounded language for each bpda M. 

Proof. It clearly follows from Def. 2 and Def. 4 that bpda are only a special kind 
of pda. Thus by Th. 2.5.2 of [7] T(M) is a language. 

Now we show that T(M) is a bounded language: Consider the same notation 
for M as in Def. 2. Let us denote M ; = (K, 27, T, 5h Z0, q0, F u Q), where <5; is 
a restriction of the mapping <5 in such sense, that <5;(a, b, c) = <5(a, b, c) for (a, b, c) 
in (Kt u {q0}) x (Z u {e}) x T and <5;(a, ft, c) = 0 otherwise. Then clearly T(M;) £ 
£ wf for some w; in 27*. (We can obtain this w; in this way: Let a[l\ ..., a[° be those 
elements of E for which is 3(qi/), af, Z}) # 0, 1 <= ; g /c;. Then w; = a(j° ... a ^ ) . 
From the definition of the bpda it clearly follows, that T(M) c (T(MX) U {E}) . 
. (T(M2) u {E}) ... (T(Mr) u {E}). Thus T(M) £ w* ... w*. 

Q.E.D. 



In order to prove the converse, we must introduce the notion of the set N(M) for 263 
given bpda M, which is similar to that one of Null (M) in [7]. 

Definition 5. Given a bpda M let beN(M) = {w in 27*; (q0, w, Z0) .*- (p, e, e), p in F}, 
where M is as in Def. 2. 

Lemma 2. For every bounded language L there exists a bpda M such that L = 
= N(M). 

Proof. Let L be a bounded language, i.e. L _; w* ... w*, where w; = x',0 ... Xy°, 
each x(

v'
1) in X. Let G be a grammar generating L, i.e. L = L(G), G = (V, 27, P, a). 

Let us construct a bpda M in the following way: 

M = (_C, 2J, F, <5, (7, a0, F), where K = {<??>; 1 ^ /c ^ w, l ^ t g j ^ u {a0}, 
F = V, F = {aj,0; 1 _g j £ n} u F „ F , = 0 if e is not in L and F , = {g0} other
wise. Let us define the mapping 8 as follows: 

5(q0, e, a) = {(q[n, uf); 1 g i 5_ n, u, in V* and _ -* U; is in P} 

<5(_„°, 4 ° , 4°) = {(*_3_,«)}, for 1 __ i _. n, 1 _g fc < jt 

<%</., x^, xjf) = {(a."0, e); / _S m < n}, for 1 <. i <. n 

a(a<s), e, £) = {(A<S), t>*); vh in V*, £ -+ vh is in P}, for 

1 _g s <. n, 1 __ r _S _ s, all <_ in V - I. 

_(a, a,Z) = 9 otherwise. 

It is clear that M is a bpda (with the set Q = 0). In the next we show that L = N(M). 
Let x be in L, then there is a left-most derivation o fx in G: o- => M,<_,., => M,M2<_2 . 

. t>2 =>...=> M, ... u„, X = M , . . . M „ , each M; in 27*. Then (q0, M, ... M„, a) h 
r («<», «, . . . u„ -?._«?) h- («#>, . . . . . „„, _-fo) h (a<*>, M2 ... M„, _?{.«*) ^ . . . I-
h (<?, e, e), where q must be in F. ]Therefore, if x = e then q = q0. The non-e word x 
from L (i.e. from wf,..., w*) is expended on the input of bpda M just in the moment 
when M moves from some g<° (expending the last symbol of w;) to one of the final 
states q\m) = a.] Thus x is in _V(M) and L __ _V(M). 

In order to prove the converse inclusion let x be in N(M), i.e. there exist a0, ... 
..., fls_, in I u {e} and y0, . . . , ._ in F* such that x = a0 ... a s _„ y0

 = °. . s = e 

and (a0, a0 . . . a s _ „ y 0 ) . (a(,°, a, ... a__„y_) r . . . h (a, e, ys) = (q, e, e), q in F. 
Now, let A;(0) < /c(l) < ... < k(t) be those nonnegative integers for which yfc(i) = 
= yt_t, {, in V - I, yt in V*. (Clearly /c(0) = 0.) From this fact it immediately 
follows 7, ( (0+ , = y,-f, where z, is in V* and <_; -» z ; is in P. To this sequence 
of moves of M corresponds the derivation a = yf(0) = %0y0 => z0y0 = a0 ... 
••• a„(i)-i-i>'i -** «o ••• ^ ( D - I Z I ^ I = ao---afc(2)-i'.2y_ «** ••• =* «o ••• « s - i = * 
in G. Thus x is in L and L =_ N(M). 

From both inclusions L = N(M). Q.E.D. 



Lemma 3. For every bounded language L there exists a bpda M such that L = 
= T(M). 

Proof. By Lemma 2 there exists a bpda M, = (K, I, T, S, Z0, q0, F) such that 
L = N(Mt). Let us construct a bpda M as follows: 

Let Z' for every Z in T and p be abstract symbols. 
M = (KM, 27, TM, Z0, a0, T u 6), KM = K u Q, K n Q = 0, Q = {p}, 
rM = r u {Z'; Z in T} and define 8M in this way: 

For all a i n l u {e}, all Z in T, all q in K - Q let dM(q, a, Z) = d(q, a, Z) 
SM(q, a, Z') = {(f, Y'a); (t, Ya) is in d(q, a, Z), Y in T, a in T*} if (f, E) is not in 

8(q, a, Z) 
bM(q, a, Z') = {(t, Y'a); (t, Ya) is in §(q, a, Z), Yin T, a in T*} u {(p, e)} if (t, e) 

is in S(q, a,Z) 
and let oM(q, a,Z) = <D otherwise. 
It is clear now that x is in T(M) if and only if x is in N(Mt). Thus T(M) = L. 

Q.E.D. 

An immediate consequence of Lemmas 1 and 3 is the following 

Theorem. A subset L of I* is a bounded language if and only if there exists 
a bpda M such that L = T(M). 

Note. The definition of bpda can be simplified in the sense of using one final 
state only. It is possible by a little change of the definition of 5 in Def. 2 and N(M). 
The basic idea of the proof does not change. 

(Received June 4th, 1968.) 
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Ohraničené zásobníkové automaty 

BRANISLAV ROVAN 

Jedným z hlavných problémov teorie jazykov a gramatik je: Nájsť pre danú triedu 
jazykov $ triedu automatov, ktoré by príjmali právě jazyky z triedy S. Článok 
sa zaoberá touto otázkou pre ohraničené bezkontextové jazyky, ktorých teóriu 
rozvádza S. Ginsburg v práci [7]. Uvedená je definícia ohraničeného zásobníkového 
automatu a veta, ktorá zaručuje, že ohraničené zásobníkové automaty príjmajú 
právě ohraničené jazyky. Ku každému ohraničenému jazyku v abecedě I existujú 
šlová wu...,wn v abecedě I také, že L £ w*...w*. Ohraničený zásobníkový 
automat, ktorý príjma jazyk L sa potom skládá z n častí, ktoré pracujú postupné 
za sebou. í-ta časť automatu bude príjmať právě tú časť slova x z L, ktorá patří 
do w*. 

Týmto je vynesený jeden z problémov uvedených S. Ginsburgom v [7]. 

Bronislav Rovan, Matematický ústav SA V, Štefánikova ul. 41, Bratislava. 
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