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KYBERNETIKA CISLO 4, ROCNIK 5/1969

Bounded Push Down Automata

BRANISLAV ROVAN

The bounded push down automata, a special kind of push down automata, are defined in this
paper. Bounded push down automata accept exactly bounded context-free languages, defined
and studied in [6}, [7].

The central problem of the theory of grammars and languages is that of determin-
ing for a given class & of languages a class of automata which accept exactly the
languages in &. This problem was solved for regular events [1], linear languages [2],
context-free languages [3], [4] and context-sensitive languages [5]. In-this paper
we are going to introducea utomata (the so called “bounded push down automata” —
bpda) which accept bounded languages, defined and studied in [6]. By this one of the
Ginsburg’s open problems [7] is solved.

The basic ideas and notations of the theory of context-free languages are used
just in the sense of those in [7]. From [7] is also the definition of bounded language:

Definition 1. A context-free language L (briefly “language L’ in the next) on
alphabet X is said to be bounded, if there are words wy, ..., w, in Z* such that L <
< wi...wh

In the next we define a special class of push down automata which will accept
exactly bounded languages. bpda which accept language L < w} ... w; will contain
n parts which will work sequentially. The i-th part of automaton will accept for
a given x in L exactly that subword of x which belongs to w}.

Definition 2. A bounded push down automaton (bpda) is a 7-tuple M = (K, 2, T,
8, Zo, 4o, F U Q), where K is a finite nonempty set of states, £ is a finite nonempty
set of input symbols, I is a finite nonempty set of auxiliary symbols, J is a mapping
of K x (Xu {e}) x I' into finite subsets of K x I'*, Z, in I' is a start auxiliary
symbol, g, in K is a start state, F U @ < K is a set of final states, Q contains at most
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one element and the following properties are satisfied:

1° There exists a partition of theset K — ({go} v Q) = K, U ... UK,,(K; " K, =
= @ for i = j) such that if (1, Z,) is in 8(g, a, Z) for q in K, and 1 in K, then i < j,
whereaisin X U {e}, Zin I, Z, in I'*.

2° Let there be an ordering {q{, ..., ¢{”} of the set K; and let the following
conditions be satisfied:

A) 8(qo, & Zo) = {(4%7, Zo); 1 < i < r} and 8(qo, a, Zo) = B for all a in 2.

B)If 1l <iZr 1 £j<k, then for exactly one a in ¥ there is at least one Z
in I' such that 6(q(') a,Z) + ¢ and is 5(¢%°, a, Z) = {(¢$2.1, 2’), Z' in I'*}.

C) If 1 £ i < r, then for exactly one a in X there is at least one Z in I" such that
gD, a,Z) + 0 and is 3(qi”,a,2) < {(¢52"); i £ s < r, Z' in I'*} U @, where
Q' ={(p,Y)}, pin Q, Yin I'* (i.e. Q' = 9if Q = 0).

D) If gisin K — ({go} v Q), Z in I', then &(q, £ z) < {(q,Z"); Z' in I'*}.

P Fe{g’ 1=sisriuig

Definition 3. Given a bpda M let “F” be the relation on K x XZ* x I'* defined
as follows: For arbitrary g and pin K, x in 2 v {s}, ZinT,win 2* o and y in ['*
let (p, xw, aZ) F (g, w, ay) if (g, y) is in &(p, x, Z). Let *“[*” be the reflexive and transit-
ive closure of the relation “F”,

Definition 4. A word w is accepted by a bpda M, if (qo, w; Z,) [* (d, &, y) for some d
in Fu Q and some y in I'* (i,e. there exist states qg, ¢y, ---, 4, = d and auxiliary
words og = Zo, oy, ..., &, = 7 such that for w = x, ... x,, each x; in X U {e} holds

(qos X1 o X #0) F @4y Xa oo Xy ) b oo F (@ & 21,) = (ds &, 7))
Notation. Let us denote by T(M) the set of all words accepted by a bpda M.
Lemma 1. T(M) is a bounded language for each bpda M.

Proof. It clearly follows from Def. 2 and Def. 4 that bpda are only a special kind
of pda. Thus by Th. 2.5.2 of [7] T(M) is a language.

Now we show that T(M) is a bounded language: Consider the same notation
for M as in Def. 2. Let us denote M; = (K, X, T, 8, Zo, 4o, F U Q), where '§; is
a restriction of the mapping 6 in such sense, that &,(a, b, ¢) = (a, b, c) for (a, b, c)
in(K; U {go}) x (XU {e}) x I'and 8a, b, ¢) = 0 otherwise. Then c]early T(M,) =
< wj for some w; in Z*. (We can obtain this w; in this way: Let a{’, ..., a? be those
elements of X for which is 8(¢\”, a$?,Z;) + 0,1 £j £ k;. Then w; = a’...ad).
From the definition of the bpda it clearly follows, that T(M) < (T( )u {e}).

A(T(M,) o {e}) ... (T(M,) U {e}). Thus T(M) < wi...w}.
QED.



In order to prove the converse, we must introduce the notion of the set N(M) for
given bpda M, which is similar to that one of Null (M) in [7].

Definition 5. Given a bpda M let be N(M) = {win X*;(qo, w, Zo) +* (p, &, ¢), pin F},
where M is as in Def. 2

Lemma 2. For every bounded language L there exists a bpda M such that L =
= N(M).

Proof. Let L be a bounded language, i.e. L < wy ... wy, where w; = x{” ... x{?,
each x( in X. Let G be a grammar generating L, ie. L = L(G), G = (V, I, P, o)
Let us construct a bpda M in the following way:

} v {go},

M= (K,%I,0,0, g0, F), where K={¢¥; 1<k=n, e
{qo} other-

1=i
I=V,F=1{¢";1<i<n}UF,, F,=0ifeisnotin Land F,
wise. Let us define the mapping ¢ as follows:

S

go, £, 0) = {(q$", uf); 1 S i £ mujin V¥ and 0 - u; is in P}

3(g®, x0, xP) = {(gft ), for t S i 1 Sk <j;
8(a%?, xP, xPy = {(¢,e); ism<n}, for 1<i<n

5P, & &) = {(¢. v§); v, in V¥, &>, is in P}, for
lgs<n 1Ersj,all £in V- X,
&g, a, Z) = B otherwise.

It is clear that M is a bpda (with the set Q = @). In the next we show that L = N(M).

Let x be in L, then there is a left-most derivation of x in G: 0 = u, &0, = wu,&, .
Uy = ... = Uy ... U, X=u;..u, each u; in Z* Then (qﬂ, Uy ... ou, o)k
F (@, uy.ouy 056U 2 (@0, uy o u,, KE) (@, uy u,, vREUS) L
F(q, & ¢). where g must be in F. ]Therefore, if x = ¢ then ¢ = g,. The non-¢ word x
from L (i.e. from w}, ..., w}) is expended on the input of bpda M just in the moment
when M moves from some q h ) (expending the last symbol of w;) to one of the final
states g™ = g.] Thus x is in N(M) and L < N(M).

In order to prove the converse inclusion let x be in N(M), i.e. there exist a, ...

sa,_;in Tu{e} and o, ..., 7y, in T'* such that x = ag... .y, 0 =0, 9, =&
and (qo, ao .- @51, 7o) F (@57, @y oo iy 1) F oo b (g, 6,7 = (4,8,8), g in F.
Now, let k(0) < k(1) < ... < k() be those nonnegatlve integers for which y,;, =
=y, & in V= X, y; in V* (Clearly k(0) = 0.) From this fact it immediately

follows yiy+1 = y;zX, where z; is in V* and ¢, - z; is in P. To this sequence
o H R R R
of moves of M corresponds the derivation ¢ = ?k{w) = Eopo = ZoYo = dg ---
R R _ R —
S AGy-18VL = do oo Gyay-1Z4 Y1 = Qoo Ayzy-182V2 = ... = dg - Gy = X

in G. Thus x is in Land L 2 N(M).
From both inclusions L = N(M). Q.E.D.

263



264 Lemma 3. For every bounded language L there exists a bpda M such that L =
= T(M).

Proof. By Lemma 2 there exists a bpda M, = ([(, I, T,98,Z qo, F) such that
L = N(M,). Let us construct a bpda M as follows:

Let Z' for every Z in I" and p be abstract symbols.
M =(Ky, %, Ty, Z5, 40, FU Q). Ky =KV Q, KnQ =0, ¢ ={p},
Iy =Tv{Z';Z in I'} and define 6, in this way:

ForallainZu {g},all Zin T, all g in K — Q let 3,(q, a, Z) = (g, a, Z)

Su(g, a, Z') = {(t, Y'a); (1, Yo) is in 6(q, @, Z), Yin I, « in I'*} if (t, ¢) is not in
8(g, a, Z)

Su(g, a, 2"y = {(t, Y'a); (1, Ya) is in &(q, @, Z), Yin I', a in I'*} U {(p, &)} if (1, &)
is in &(q, a, Z)

and let 8,(q, a, Z) = @ otherwise. B

It is clear now that x is in T(M) if and only if x is in N(M,). Thus T(M) = L.

Q.E.D.

An immediate consequence of Lemmas 1 and 3 is the following

Theorem. A subset L of X* is a bounded language if and only if there exists
a bpda M such that L = T(M).

Note. The definition of bpda can be simplified in the sense of using one final
state only. It is possible by a little change of the definition of & in Def. 2 and N(M).
The basic idea of the proof does not change.

(Received June 4th, 1968.)
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VYTAH

Ohranicené zdsobnikové automaty

BRANISLAV ROVAN

Jednym z hlavnych problémov tedrie jazykov a gramatik je: Ndjst pre dan triedu
jazykov & triedu automatov, ktoré by prijmali prive jazyky z triedy &. Clénok
sa zaoberd touto otdzkou pre ohranitené bezkontextové jazyky, ktorych tedriu
rozvddza S. Ginsburg v prdci [7]. Uvedend je definicia ohraniteného zdsobnikového
automatu a veta, ktord zaruCuje, Ze ohranifené zdsobnikové automaty prijmaji
prdve ohranitené jazyky. Ku kazdému ohraniCenému jazyku v abecede ¥ existuju
slovd wy,...,w, v abecede ¥ také, ¢ L < w}...w} Obhranieny zdsobnikovy
automat, ktory prijma jazyk L sa potom skladd z n Casti, ktoré pracuju postupne
za sebou. i-ta ¢asf automatu bude prijmaf prdve tu Cast slova x z L, ktord patri
do wi.

Tymto je vyriedeny jeden z problémov uvedenych S. Ginsburgom v [7].

Branislav Rovan, Matematicky ustav SAV, Stefanikova ul. 41, Bratislava.
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