
Kybernetika

Michal P. Chytil
Crossing-bounded computations and their relation to the LBA-problem

Kybernetika, Vol. 12 (1976), No. 2, (76)--85

Persistent URL: http://dml.cz/dmlcz/124638

Terms of use:
© Institute of Information Theory and Automation AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124638
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 12 (1976), N U M B E R 2

Crossing-Bounded Computations and their
Relation to the LBA-Problem

MlCHAL P. CHYTIL

The space and the crossing complexity measures for one-tape off-line Turing machines are
investigated. For nondeterministic machines an equivalence relation between the two measures
is established.

1. INTRODUCTION

A relation between two important complexity measures (ammount of tape and
maximal number of crossings of bounds between tape squares) will be established
in this paper. We shall prove that the class of languages recognizable nondetermi-
nistically with the tape bound j is the same as the class of languages nondeterministic-
ally recognizable with the crossing bound j , provided (Vn) (j(n) 2: n). Since the
crossing-bounded computations are at least as powerful as tape bounded ones in the
deterministic case, it follows that deterministic crossing-bounded computations
are "between" deterministic and nondeterministic computations with the same tape
bound. The positive answer to the well-known LBA-problem (i.e. all context-sensitive
languages could be recognized by deterministic linear-bounded automata) would
therefore imply that tape-bounded and crossing-bounded computations are equally
strong also in the deterministic case. That is why a solution of the question about
the relation between these two types of deterministic computations would be interesting
in any case. Negative answer would obviously imply negative answer to the LBA-
problem, positive answer would establish a nontrivial equivalence relation between
tape and crossing complexities.

2. BASIC NOTIONS

Machines we are interested in are one-tape off-line Turing machines (deterministic
or nondeterministic). We assume that the alphabet (denoted A throughout this

paper) of every such a machine M contains the blank symbol b. Suppose for simplicity 77
that A is disjoint with Q x A, where Q is the set of states, for every machine. The
instantaneous description (ID) of a machine M is then every string of the form
v1(q,a)v2, where vt,v2eA*, (q,a)eQ x A. Such an ID vi(q,a)v2 denotes the
total configuration in which the tape contains the word v1av2 (all other squares are
blank), the head is scanning the symbol a and the finite control of M is in the state q.

If wt and w2 are ID and M can change the configuration described by w, into the
configuration described by w2 in one step, then we say that the ID w2 is next to the
ID w^w-t \~M w2). Let <5 : Q x A -> subsets of (Q x A x {/ejf, right}) be the next-
state function of M. Then aqe Q is final iff <5(a, a) is empty for every (q, a) e Q x A.
A machine M accepts a word w iff there is a computation beginning in the the initial
state q0 on the leftmost symbol of w and terminating in a final state. A machine M
recognizes a language L £ (A — fe)* iff for every w e (A \ {6})*

w e L o M accepts w .

Let f:N-*N. We shall say that the language L is nondeterministicically (determi-
nistically) recognizable with the tape bound f iff L is recognizable by a nondeter-
ministic (deterministic) machine M such that for every w e L there is a computation
of M accepting w and using not more thanj(|w|) tape squares. Replacing the words
"using not more thanj([w|) tape squares" by the words "crossing no bound between
tape squares more than j(|w|)-times", we get the definition of languages nondeter-
ministically (deterministically) recognizable with the crossing bound f.

In the sequel, the following notation will be used:

DS(f) is the class of languages which are deterministically recognizable with the

tape bound j ,

S(j) is the class of languages which are nondeterministically recognizable with

the tape bound j ,

DC(f) is the class of languages recognizable deterministically with the crossing

bound f,

C(f) is the class of languages nondeterministically recognizable with the crossing

bound j .

3. RELATIONS BETWEEN THE MEASURES

1. Theorem. Let j be an arithmetic function such that (V») (j(») 2: n). Then

1. DS(f) s DC(f),

2- S(j)s C(f):

78 Proof . Let M be a Turing machine (deterministic or nondeterministic) recognizing
a language L with the tape bound / . We can construct a machine M' recognizing
the same language with the crossing bound / . Moreover, if M is deterministic,
then M' is deterministic, too. We give only an outline of the algorithm performed by
M'.
1. M' begins with an input v =- xx ... xn on its tape. It rewrites it to vt =

= (<2o> xi) x2 ... x„ (i.e. the initial ID for M);
2. M' rewrites a copy of vx to the right end of the input word, so that these two

identical IDs are separated by a marker (e.g. *) and one blank. (The tape contains
the word Dj * bvu now.)

3. M' rewrites the right ID ux to an ID v2 next to t>.. (Simulation of one step of M.)
4. M' writes a copy of the rightmost ID (v2 now) separated by * and one blank

behind the rightmost nonempty symbol.
5. M' rewrites it to a next ID.
And so on.

M' can obviously simulate every computation of M. It stops iff there is no ID next
to the rightmost one, i.e. it accepts the input word iff the simulated computation
accepts it. Every "simulating step" needs no more than 2 crossings. Most crossings
are due to the "copying part" of the computation. If M' is constructed so that it
can "remember" blocks of k symbols, then every ID w can be copied within
2 . [|w|//c] — 1 crossings. The "copying part" of the computation is deterministic;
if M is a deterministic machine then the "simulating part" of the computation is
also deterministic.

An open problem is whether a converse of the first assertion of Theorem 1 holds,
i.e. whether DC(f) = DS(f). The negative answer would imply the negative answer
to the LBA-problem, as will be shown in the fourth paragraph of this paper. The
positive answer would e.g. imply the linear speed-up result for the crossing measure
(namely: DC(f) = DC(s . /) for every e > 0, f(n) ^ n), because of the linear speed
up for the tape measure (cf. [1], p. 137).

Let us turn our attention to the nondeterministic case, now. We shall use a slightly
modified notion of M-matrix, introduced by M. S. Paterson [2].

2. Definition. Let M be a Turing machine with the state-space Q and the alphabet A.
A matrix Ji formed by elements of (Q x A) u A will be called M-matrix iff the
following condition holds:
if u is the i-th row and v the i + 1-th row of Ji, then there are au pu a2, /?2 e (A u
u (2 x A))* such that atuPt and a2vfi2 are IDs of M and axu$x Y-M a2vfi2.
Apparently, every row of Jl is either an ID of M or a word in the alphabet A.

3. Definition. Let Jt be an M-matrix. We. shall say that a row of Jt is

1) of type a (absence of the head) iff it is a word in the alphabet A,
2) of type p (the head is present), otherwise.

It may easily be seen that M-matrix is a convenient tool for describing the full
history of a part of a computation restricted to a tape segment.

4. Definition. Let J4 be an M-matrix. Let Rt and R2 be its first and last row,
respectively. Let Sj and S2 be its first and last column, respectively. We shall say
that Ji is

1) a computation M-matrix (notation: CompM(.#)) iff St = S2e {b}* & R2 is
a terminal ID,

2) over w = Xj . . . x„ iff R1 = b"'(q0, Xj) x2 . . . x„bp for some m, n, p _i 0.

By Definition 2 and Definition 4 it immediately follows that all rows of a computa
tion M-matrix are TDs of M and if u, v are two subsequent rows, then u \- Mv. There
fore, the following fact is only a reformulation of definitions introduced in the
second paragraph of this paper.

5. Fact. A word w is accepted by a machine M iff there is an M-matrix Jl over
w such that CompM(^#).

Recall the notion of crossing sequence due to Trachtenbrot, Hennie and Rabin
(cf. [1], p. 143). Every computation of a machine M with an input w determines for
every bound between two tape squares a crossing sequence a = q(l)... q(n).
The i-th member of the sequence is the state in which the head crosses the bound
for the i-th time. We shall modify the notion so that every member of a crossing
sequence will also contain the information about in what direction the bound was
crossed.

6. Definition. For a given Q, let Q~* and Q*~ be disjoint sets of pairwise distinct
symbols such that card Q~~ = card Q*~ = card Q. A crossing sequence is then every
sequence st ... s„e (Q~* u Q~~)* such that

~ie Q^ -** si+1 e Q~ a n d st e QT -» si+1 e QT f ° r every l g i < « ,

A one-one correspondence between Q~* and Q (and between Q*~ and Q) can be
chosen. In the sequel, we shall assume that such underlying correspondences are
fixed and q~ and q~* will denote the elements corresponding with q e Q in Q*~ and
Q", respectively.

7. Definition. Let Ji = (ai}) be an M-matrix with n columns, n 2: 2. We shall
say that Jl has

1) left entry point i iff the i-th row of Jl is of type a and ai+iA e {q} x A, for
some q. {q~*} is then called the set adjacent to the left entry point i;

2) right entry point i iff the f'-th row of Jl is of type a and ai+l „ e {q} x A for
some q. {q*~} is then called the set adjacent to the right entry point i;

3) left exit point i iff ait e Q x A and the / + 1-st row is of type a. {q*~; ({q} x
x A x {/ejt}) n <5(a;i) + 0} is then called the set adjacent to the left exit point i;

4) right exit point i iff a ; „ e Q x A and the / + 1-st row is of type a. {q~*; ({q} x
x A x {n'a/.t}) n <5(a;„) =f= 0} is then called the set adjacent to the right exit

point i.

All points introduced sub l) - 4) are limiting points of . / / .

Let p.., ..., p* are the all limiting points of .//, in the natural ordering. We shall
say that Ji is normal iff the following two conditions hold:

a) pt is a left exit point => pi+l is a left entry point,

b) pt is a right exit point => pi+l is a right entry point, for \ <.i < k.

Normal M-matrices apparently reflect the fact that when the head leaves the left

end of a tape segment, it cannot come back from the right and vice versa.

8. Definition. Let Ji be a normal M-matrix; lu ...,lm all its (naturally ordered)

left entry and exit points; ru ..., r„ all its right entry and exit points, again in natural

ordering. Let at = s j , . . . , s] and a2 = su ..., si be crossing sequences. We shall

say that ax and a2 are adjacent to Ji (denote Adj(ff1(Ji, a2) iff

1) I = m&k = n,

2) s] is in the set adjacent to /; for every 1 :g i <, m,

3) sf is in the set adjacent to r ; for every 1 <, i <. n.

9. Lemma. Let Jil and Ji2 be M-matrices with the same number of columns and
let Adj(ffx, Jii, a2), Adj(cr3, Ji2, aA) for some au a2, a3, aA. If the last row u of Jlx

and the first row v of Ji2 are of type p and such that u\-Mv, then Adj(<Ti(73, Ji,
a2a4), where

Proof. Ji is an M-matrix, by the assumption about u and v. The last limiting
point of Jit is an entry point and the first limiting point of Ji2 is an exit points, by
the same assumption. Ji is therefore normal and also the conditions 1) —3) of Defi
nition 8 obviously hold.

In an M-matrix some blocks of a-rows can occur. If the matrix is interpreted as
the history of a computation on a tape segment, then the vertical dimension of such
a block denotes the number of steps during which the head is continuously out of
the tape segment. In the sequel, we often use only the information that the head is
absent and we are not interested in how long it is absent. That is why the equivalence
relation m is introduced.

10. Definition. Define the relation ~ in the set of M-matrices as follows:
for any M-matrices Jt, Jf let Jt ~ Jf iff

Jt = \ , Jí = w

where ^ and ^#2 are some M-matrices (may be empty) and w is a row of type a.
Then ~ define as the equivalence relation generated by ~ (i.e. the reflexive,

symmetric and transitive closure of ~) .

11. Lemma. Let Adj(ffl5 Jtv a2)& Adj((72, Jt2, cr3)& cr2 #= X (X will denote the
empty sequence). Then there are Jt\, Jt'2 such that Jt\ x Jt\, Jt'2 x Jl2 and
Ad}(au Jt, C73) for Jt = (Jt\Jt'2).

Proof. By induction.

I. Let |(72| = 1, e.g. (72 = q*~ for some q. a2 determines the single right entry point
of Jtv This point cuts the matrix Jtt into matrices Jt[l) and Jt(2)

y(2)

All rows of Jt^ are of type a, by Definition 5. Similarly, C72 determines the single
left exit point of Jt2 and consequently matrices Jt(

2\ Jt(
2
2) such that

(i)

Jt[2)

and Jt2 ' contains rows of type a only. By adding or omitting a-rows matrices
Jt\V) x Jt{P and Jt2

2) x Jt2
2) can be constructed such that Jt' = (Jt[1]]Jt2

X))
and Jt" = (Jt(2)J{2

2)) are M-matrices. Moreover, Adj(vTl3 .Jt[2), X) and Adj(A,
Ji2

X), <T3). Therefore Adj((Tj, Jt", X) and Adj(A, Jt', CJ3). For the last row w' of Jt'
and the first row w" of Jt" the condition w' I— M w" holds, by Definitions 7 and 8.
This implies Adj(c7,, . # , CT3) for

by Lemma 9. Let us define

Then obviously Jt\ x J4v J4'2 x Jt2 and Jt ~ (Jt\Jt'2).

/>,mаaг

ÍŠ . . ^ . •

%) and Л2 = Њ2)

The case a2 = q~* is quite analogous.

II. Let \a2\ > 1, e.g. a2 = q~*a'2 for some a and \a'2\ ^ 1. The first left entry point
of Ji 2 determines matrices .Z /^ , .//(

2
2) such that

Ji^ contains rows of type a only and Adj(o"2, Ji(2), a3). The first right exit point
of Mi determines matrices Ji[l), Ji[2) and crossing sequence a[l), a(2) such that

ff. = a\ l)oia>, Adj(<7
(
1
1), , /Z^ , A), Adj(cr(2), Jf[2), a'2). An M-matrix J ^ « ^Z,1

such that
j?' ~ (j/^ J^)

is an M-matrix can be formed simply by adding or omitting a-rows. Then Adj^ 1 * ,
Ji', X). By induction hypothesis an M-matrix Ji" exists such that Adj(oi2), Ji", a3).
Moreover, Ji" is of the form

Ji" = [Ji"vM"2) ,

where Jt\ w .^(,2), ^ / 2 w .//(
2

2).

As the first row of J4(2) is of type p and as J4\ x M(2) w is also the first row
of Ji\. It is easy to see that for

Adj(<T], Ji, a3) holds by Lemma 9. At last, let us define

(Ji(^

and the theorem follows, because the case a2 = q^a'2 is analogous.
The preceding lemma will be used in the proof of the converse of the second part

of Theorem 1. For this purpose the space requirements of the recognition of the
predicate Adj are estimated in the following lemma.

12. Lemma. Let M be a Turing machine (* $ Q~* u Q" u A). Then the language
L = {ffj * a2 * w; au a2 are crossing sequences such that there is an M-matrix Ji

for which Adj(<rl5 Ji, a2) and w is its first row}
can be recognized by a LB A.

Proof. For the notion of linear bounded automaton (LB A) we refer to Hopcroft,
Ullman [1]. The reader acquainted with it can immediately see that the following
nondeterministic algorithm for recognizing Lean be performed by a LBA. w-segment

denotes the segment of tape containing the input word w at the beginning of the com- 83
putation. Let

<j1 = s\ ... si , ff2 = sf ... sf

0: i: = 0;

j : = 0;
if w is not a row of any M-matrix then REJECT;
if w is a row of type a then go to 1 else simulate M until M leaves the w-segment;
if M leaves the left end of the segment in a state ql then i : = i + 1 and go to 4;
if M leaves the right end of the w-segment in a state qt then j : = j 4- 1 and go to 6;
if M enters a final state without leaving the w-segment then go to END;

1: if s\ = q~* for some q then go to 3 else go to 2;

2: if s? = a" for some q then go to 5 else REJECT;

3: if s] £ Q~* then go to END else (i.e. sj = q~" for some q)
beginning on the leftmost square of the w-segment in the state q, simulate M
until M leaves the w-segment;

if M leaves the left end of the w-segment in a state ql then i :~ i + 1 and go to 4;
if M leaves the right end of the w-segment in a state q t then ;': = j + 1 and go to 6;
if M enters a final state not leaving the w-segment then go to END;

4: if / > k then REJECT;
if 5} 4= qX then REJECT
if i < k then i : — i + 1 and go to 3

else go to END

5: if sj £ Q" then go to END else (i.e. sj = q*~ for some q)

beginning on the rightmost square of the w-segment in the state q, simulate M
until M leaves the w-segment;

if M leaves the left end of the w-segment in a state qx then i : = i + 1 and go to 4;
if M leaves the right end of the w-segment in a state qt then j : = j + 1 and go to 6;
if M enters a final state not leaving the w-segment then go to END;

6: if J > / then REJECT;
if Sj? + q^ then REJECT;
if j < / then ; : = j + 1 and go to 5

else go to END

END: if i = k and j = I then ACCEPT
else REJECT.

13. Lemma. Let M be a nondeterministic Turing machine, / an arithmetic function
such that (Vn) (/(n) ~~% n) and let L{M) denote the language recognized by M. If

1) for every w _ L(M) there is an M-matrix Jl over w which can be written in
the form

Jt = (J/„sJ/„s+1,...,J/-1J/0J?1,...,.J?r)

such that Jf0 is over w and every matrix Jit(— s = i = r) is of type m x n ; for some
m and n ; ^ j(|w|) and there are crossing sequences <r_s, <T_S+1 , ..., a0, o_, ..., ar+1

such that
\at\=f(\w\)(-s=i = r+l),

Adj(<r,-, Mt, ai+1) (-s = i < r + I),

as = <7r+1 = X and at 4= X for —s<i = r\

2) there is no such a matrix for any w <£ L(M),
then L(M) e S(j).

Proof . Let L be the language defined in Lemma 12. To verify the existence of
a matrix Jt of the described properties for a given w = xx ... x„ it is sufficient to test
gradually whether

(— s) <r_s * <r_s+1 * b"~s e L for an n_s ^ j(n) = j(|w|),

(— l)o"_! * c 0 * tV"1 _ L for an n _ t ^ j (n) ,

(0) cr0 * a1 * b l(_0, Xj) x2 ... xnb
} e L, where q0 is the initial state of M, / + _ +

+ n ^ j(n),

(1) (Tj * cr2 * b"1 e L for an n t = f(n),

(r) ar * <rr+! * b"r E L for an nr ^ j(n)

This can be done nondeterministically by choosing all o_ and nf arbitrarily. More
over, by Lemma 12, for every — s <\ i <. r the space 3. j(n) is sufficient to verify the
condition (i), provided |o_|, |<ri + 1 |, n ; ^ j(n). For some time it is necessary to keep
the input word w in the memory. No other extra memory is necessary and so the
space 4. j(n) will do. Then by linear speed-up (c.f. [1], p. 137) the space j(n) is suffi
cient.

By Lemma 13, the converse of the second part of Theorem 1 immediately follows.

14. Theorem.* Let j be an arithmetic function such that (Vn) (j(n) = n). Then

• c(j) = S(j).

* The results stated as Theorem 1 and Theorem 14 in this paper were announced in [3],
Theorem 14 was known to R. Freivalds independently [4], as the author has recently been in
formed.

Proof. I. S(j) £ C(f) by Theorem 1.

II. Let Le C(j). Then there is an M such that L(M) = L and for every we L there is
an M-matrix Ji satisfying conditions of Lemma 13 and for w $ L there is no such
a matrix. By Lemma 13 then LeS(j).

4. RELATION TO THE LBA-PROBLEM

Let us list several open problems:

(LBA): Does DS(id) = S(id) hold? (id is the identity function: id(n) = n.)
(DS-S): Does DS(f) = S(j) hold for every j such thatj(n) = w?
(DS-DC): Does DC(f) = DS(f) hold, provided j(n) = nl
(DC- C): Does DC(f) = C(f) hold, provided f(n) = n?

The problem (LBA) is the well-known long opened LBA problem. By a result
of Hartmanis and Hunt III [5] the problems (LBA) and (DS —S) are equivalent,
i.e. answers to them are either both positive or both negative. Let us denote this
fact thus:

(LBA) = (DS-S).

Theorem 1 and Theorem 14 of this paper imply that the answer to the problem
(DS - S) is positive iff the answers to both of the problems (DS - DC) and (DC - C)
are positive. Thus symbolically:

(DS-S) = (DS-DC)&(DC-C).'

The nature of the problem (DC —C) resembles the deterministic-versus-nondetermi-
nistic nature of the LB A-problem. The problem (DS - DC), on the contrary, concerns
deterministic machines only. The study of the relation between deterministic tape
and crossing complexities therefore could be of some importance also for the solution
of the LB A-problem.

(Received November 27, 1975.)

REFERENCES

[1] J. E. Hopcroft, J. D. Ullman: Formal languages and their relation to automata, Addison-
Wesley, 1969.

[2] M. S. Paterson: Tape bounds for time-bounded Turing machines. JCSS 6, (1972), 116—124.
[3] M. P. Chytil: Crossing-bounded automata and their relation to the LBA-problem. In "Tagung

liber Automatentheorie und Formale Sprachen, 1974", Universitat Dortmund.
[4] R. V. Freivalds, oral communication.
[5] Ĵ Hartmanis, H. B. Hunt III: The LBA Problem and its Importance in the Theory of Com

puting. TR 73—171, May 1973, Cornell University.

RNDr. Michal Chytil, Matematicko-fyzikdlni fakidta UK (Faculty of Mathematics and Physics
— Charles University), Malostranske nam. 25, 110 00 Praha 1. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T02:25:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

