
Kybernetika

Miloslav Nekvinda
On the complexity of events recognizable in real time

Kybernetika, Vol. 9 (1973), No. 1, (1)--10

Persistent URL: http://dml.cz/dmlcz/124649

Terms of use:
© Institute of Information Theory and Automation AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124649
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 1

On the Complexity of Events Recognizable
in Real Time

MILOSLAV NEKVINDA

In the article, events recognizable in real time on multitape automata are studied. It is proved
that there exists a nontrivial classification of these events with respect to memory requirements.

1. INTRODUCTION

Nowadays, a number of articles dealing with the complexity of events exists.
The complexity of a given event can be measured, e.g., by the maximal number
of tacts which needs a Turing machine for recognition of words with respect to their
length. The events can also be classified by the number of cells needed for the recogniz-
ation. These questions were studied in [4], [5] for various types of growing automata.
P. C. Fischer poses in [2] this problem: being given a complexity class of events with
respect to the time measure, classify the class furthermore with respect to the memory
measure. We shall show that for the events which are recognizable in real time
(in the sense of M. O. Rabin (see [6])) a nontrivial classification with respect to the
memory requirements exists.

2. DEFINITIONS AND BASIC PROPERTIES

In the following, N denotes the set of natural numbers, iV0 the set of nonnegative
integers. If X is a nonempty set, then the symbol X°° stands for the set of all finite
sequences (words) of elements of the set (alphabet) X, including the empty word.
If x e Xx, then symbol |x| denotes the length of the word x; thus, if x = xxx2 ... x„,
where x ; e I f o r i = 1, 2,..., n, then |x| = n. Being given two words x = x^x2 ...
... xmeXm, y = yty2 ••• y„ eXx, then the symbol xy denotes concatenation of the
words x and y, i.e., the word xxx2 ... xmyxy2 ... y„. Under an event over the alphabet
X we understand any subset Ac X™.

Definition 2.1. Let n eN. Let be given finite nonempty sets (alphabets) F (the
alphabet of internal states), Z (the input alphabet), St (the alphabet of .'th tape), i =
= 1,2,.. .,n, 77 (the output alphabet), P = { - 1 ; 0; 1} (the alphabet of moves). Under
an automaton 7 with input and output and with n (in both directions infinite) work
ing tapes we understand a finite set of (3n + 4)-tuples of the form

(2.1) (s,; ay S,., Sh, ..., Sin; SJt, SJ2,..., SJn; mu m2,..., m„; sk; /?,),

where s(eF; ajeZ', SjpeSp, SJpeSp, p = 1,2, ..., n; mteP, i = 1,2, ..., n;
sk e F ; /L e 77. We assume that for any combination of the first n + 2 symbols in (2.1)
just one such (3n + 4)-tuple exists.

Remark. The rules (2.1) are interpreted in the usual manner. The activity of the
automaton is divided into tacts. In a given tact, the automaton being in the internal
state s,-, the symbol a,- on input, and the symbols Sip on the active (just scanned)
cells of tapes, it acts as follows: the symbols on tapes are changed to SJp, the reading
heads move (to the right if mp = 1, left if mp = — 1, the head does not move if
mp = 0), the automaton goes over to the new internal state sk and the symbol pr

is printed on the output. Further, we assume that in the first tact the automaton 7
is in an initial state s e F, and all tapes are blank.

Definition 2.2. Let Z and 77 be two alphabets and $ be an operator (mapping)
which maps Zm into 77°°. We say that the operator $ is a machine-operator (see [3])
if two following conditions hold:

1. \<P(x)\ = \x\ for any x e T ;
2. for any two words x e Zm, u e Z™ there is a word v e 77°° that

<P(xu) = <P(x) v .

It is evident that any automaton 7 described in definition 2.1 defines (realizes)
some machine-operator &t. But, there are machine-operators which cannot be
realized by any automaton of the above type.

Definition 2.3. Let be given a machine-operator $ which maps Z00 into 77". We say
that <J> is realizable in real time if an automaton 7 from definition 2.1 exists so that
<$>! = <P. The class of such operators we denote by symbol R.

If we deal with recognition of events over alphabet Z, we usually choose the output
alphabet consisting of two elements, e.g., 11 = {0; 1}. The word xeZm is then
accepted, i.e., x e A, if the word 4>(x) ends with symbol 1, else x $ A. The event 4eZ°°
is thus characterized by the machine-operator $, which maps Zx into {0; 1}°°.

Definition 2.4. We say that an event A c Z™ is recognizable in real time if the
operator 0 which characterizes the event A is realizable in real time.

Let be given an automaton / with m tapes. Let x e X00, |x| = n. When working 3

on the word, automaton J (during the first n tacts) uses on ith tape qt(x) cells, i =

= 1, 2,..., m. Denote

rt(n) = max qt(x) .

Define function M

and function Ml

M(n) = max Гi(n)

Mx(n) = t ф) .

It is evident that inequalities

(2.2) M(n) g n , M,(n) g mn

hold for any n e N.

Definition 2.5. Let be given a nondecreasing function L mapping N into the set

of nonnegative numbers (integer values are not assumed). Such a function we shall

call a complexity function. We say that automaton J works with space limitation L if

M(n) ^ L(n)

holds for almost all n e N (i.e., for all natural numbers from a certain on).

We say that J works with total space limitation L1 if for almost all n e N

Mt(n) S L,(n) .

Immediately from the definition it follows that an automaton I with m tapes which

works with space limitation L works with total space limitation L1 = mL. By the

theorem of space compression (see [4]), there exists an automaton Iu which works

with space limitation 1/mL, and thus with total space limitation L. Thus when studying

the complexity of operators with respect to memory requirements, we can deal only

with the function M.

Definition 2.6. Let be given a complexity function L. We say that an operator

$ e R belongs to the complexity class R(L), <P e R(L), if an automaton J exists

such that

1 . < P . = d>;

2. automaton I works with space limitation L.

We say that an event A belongs to the complexity class R(L) if the operator 0

which characterizes the event A, belongs to the class R(L).

It is evident that finite automata realize operators with space limitation L(n) =

= const; e.g., we can define L(n) = 1 for all n eN.lt means that the class of operators

which are realizable by finite automata is equal to the class R(l). From (2.2) it follows
that for any operator R, which is realizable in real time, $ e R(E) holds, with E(k) = k
for k e N. Thus, R = R(E). The theorem of space compression implies that if L
is a complexity function and c > 0, then R(L) = R(cL). Further, if Lu L2 are two
complexity functions such that L^n) < L2(n) for almost all n, then R(Lt) c R(L2).
From these two remarks it follows: if Lu L2 are two complexity functions and
a constant c > 0 exists that Li(n) 5S cL2(n) for almost all n, then R(L^) c R(L2).
If lim Lx(n)fL2(n) exists and 0 < lim Lj(n)/L2(n) < +oo, then R(L,) = R(L2).

In the following, we shall show that there exist infinitely many distinct complexity
classes between the simpliest class R(l) and the class R = R(E) of operators realizable
in real time.

3. BASIC THEOREMS ABOUT CLASSIFICATION

We begin with a theorem which gives information about the lower bound of the
hierarchy of complexity.

Theorem 3.1. Let for a complexity function L hold

hminf^M = 0,
n-<=o log n

where log n = log2 n. Then

R(L) = J?(l) ,

i.e., each operator realizable with space limitation L is realizable by a finite
automaton.

This theorem was formulated for some classes of growing automata in [4]. The
proof given in [4] can be basically reproduced in our case, and we leave it out.

We introduce some other notions so that we could formulate the second basic
theorem about classification.

Definition 3.1. Y-automaton (automaton of Yamada's type, or autonomous
automaton) is an automaton from definition 2.1, the input alphabet of which consists
of one element.

Remark. These automata and generated functions were studied in detail in [7]
and [8].

It is clear that Y-automaton can be interpreted as an automaton without input.
Such an automaton generates an infinite sequence of elements of the output alphabet.
Naturally, each of the above given definitions of complexity of operators remain
valid for autonomous operators, i.e., for operators realizable by Y-automata. Let

the output alphabet consist of two elements, suppose that 77 = {0; 1}. In this case,
Y-automaton generates a sequence

(3.1) a = a1a2a3 . . .

of 0's and l's. If the sequence (3.1) contains an infinite number of l's, we call it regular.
To any regular sequence we assign a function / (see [7] and [8]) mapping N into TV:

(3.2) f(n) = min {p; p e N, £ «. = „} .
i=l

It is clear that / is increasing. We denote by F the mapping which assigns to any
regular sequence (3.1) the function / according to the rule (3.2), thus / = F(a).
On the other hand, to any increasing function / mapping TV into N we can assign
just one sequence a of the form (3.1) so that F(a) = / . Naturally, not any sequence a
can be generated by an Y-automaton.

Definition 3.2. An increasing function / mapping N into TV is called countable
if an Y-automaton I exists which generates the sequence a so that F(a) = / . In this
case, we say that automaton I generates /

We can assign to the sequence (3.1) also a function which is, roughly speaking,
inverse to / Denoting this assignment Fu we can define the function cp = Fx(a)
by the rule

(3.3) cp(n) = t «. •
i = l

The function defined in (3.3) has following properties:

1. cp is a nondecreasing mapping from TV to TV0, cp(\) = 0, or cp(l) = 1;
2. cp(n + 1) — cp(n) ^ 1 for any n e TV;
3. for any regular sequence a, lim cp(n) = + co holds.

Definition 3.3. A function cp mapping N into TV0 is an i-function if an Y-automaton I
exists which generates regular sequence a such that Ft(a) = cp.

It is evident that there exists a one-to-one mapping between i-functions and
countable functions given by / = F(F[i(cp)).

Definition 3.4. An i-function cp is simple if an Y-automaton I exists which generates
the function (i.e., the corresponding sequence a) with space limitation L = cp. In this
case, we shall also use the adjective simple both for the Y-automaton and the countable
function / .

It appears that simple i-functions form an important subset of complexity functions.

Theorem 3.2. Let Lx be a simple i-function. Then there exists an event A such that

1. AeR(Lx);
2. if L is another complexity function such that \im inf L(n)jLx(n) = 0, then

A$R(L).

Proof. I. First, we construct the event A. We denote I = {0; 1; *}, Ix = {0; 1],
Let 11 be an Y-automaton generating the i-function Lx with space limitation Lx.
Such an automaton exists because Lx is simple according to the assumption. Let /
be the countable function generated by the automaton Ix; thus, / = E(Ef 1(L1)).
Define the event A as the set of all words over alphabet I of the form

(3.4) a.xu,2 ••• an * oc'ma'm_x ... a[,

where

aieS1, a.jeSl, i = 1, 2, ..., n; j — 1, 2, ,.., m ,

and the following conditions hold

(3.5) m = Lx(n) ; a / (0 = a';, i = 1, 2 , . . . , m .

(If Lx(n) = 0, then the word from (3.4) reduces to axa2 ... «.„*.)
Less formally, from the sequence axa2 ... a„ we remember the symbols which are

on the input when automaton Ix prints symbol 1. Having written the symbol *,
we write the selected sequence in inverse ordering.

II. Now, we shall show that the constructed event can be recognized in real time
with space limitation Lx. To this end we add another tape and input to the
automaton Ix. The tape will serve for writing down symbols of I, which will be also
on the added input. Actually, we have constructed a new automaton / which contains
the automaton Ix. Naturally, we add new internal states to those of Ix, if necessary.
Leaving out such details, we now describe the activity of I. As a matter of fact, the
activity of J follows from the definition of the event A. It can be divided into two
stages:

Stage 1. The sequence axa2 ... ate Ix is on the input. Now, the automaton copies
on the added tape from the left to the right the symbols which are on input when Ix

prints symbol 1. The main thing is that the space needed on that tape equals Lx(n),
the needed space (i.e., the needed cells) on other tapes being less or equal to Lx(ri)
as well (Ix is a simple automaton). Thus, the automaton J works during this stage
with space limitation Lx.

Stage 2. Let symbol * appear for the first time on the input. Now, with respect
to (3.4), (3.5) the head on the added tape, where "the important" symbols of the
input word are written, goes from the right to the left comparing its symbols with
those read. During this stage the space limitation L1 is also respected (we can even
stop the activity of the subautomaton Ix). It is evident that automaton / recognizes
the event A in real time (organization of the output symbols is evident).

III. Now, we shall show that the event A is too complicated for any automaton
which works with space limitation less than Lx. Let L be a complexity function
fulfilling the assumptions of the theorem. Suppose that A e R(L), i.e., that there
exists an automaton J which recognizes the event A with space limitation L. The
overal state of the automaton in any tact can be characterized by: 1. internal state;
2. words that are written on each tape (the words are finite, their length equals to the
number of cells which were active, i.e., were scanned); 3. position of reading heads
on tapes. This information together we call a configuration of the automaton I.

Let F be the alphabet of internal states, and S; be the alphabets of tapes. Denote
s = card F (the number of elements of the set F), r ; = card S;, i = 1,2,..., m,
r = max rh i = 1, 2, ..., m (automaton J is supposed to have m tapes). Let G(n)
be the number of all possible configurations of/ in the ith tact. As I works with space
limitation L, obviously

(3.6) G(n) S srmLW Lm(n) .

Automaton / must be able to distinguish any two sequences which differ
on "important" places. These important places in the sequence a ta2 ... a.„ are given
by indices j(l),j(2), ...,f(m), the number of those, of course, equalsm = Lt(n)
(see (3.5)). This implies existence of 2m = 2Ll(n) sequences which differ on important
places. As any two such sequences necessarily transfer the automaton / into different
configurations after n tacts, we have, with respect to (3.6)

2 L i « g s f.»IW jm^ ;

for all neN. Logarithming gives Lx(n) :g logs + m(l + log r) L(n) from which
we get inequality liminf L(n)/Li(n) = l/(m(l + log r)) > 0 what is a contradiction

with the assumption of the theorem. Thus, A e R(L) cannot hold, and theorem
is proved.

A simple consequence of the above theorem is the following one which we state
without proof.

Theorem 3.3. Let Lj be a simple i-function and L be such complexity function
that

lim L(n)/Li(n) = 0 .

Then R(L) | l R(LL), i.e., the complexity class R(L) is a proper subset of the class

R(LJ.

Theorem 3.4. Let q> be an i-function (not supposed to be simple), let I be an
automaton generating q>. Then the function M defined in (2.2) is either bounded
or there exists such c > 0 that for almost all n

M(n) > c log n .

Proof. Suppose, the assertion of the theorem does not hold. Thus, let M be un
bounded and

(3.7) lim inf M(n)/log n = 0 .
n-»oo

Now, we modify the activity of J in this way: automaton / (assume that it has m
tapes) will print on output symbol 1 just at those tacts when some reading head
on tapes reaches a cell which has not been scanned. Evidently, this situation can
be easily recognized by an appropriate modification of alphabets on tapes. The
modified automaton we denote Ix. Clearly, the automaton Ix works with the same
space limitation as automaton I. Thus, we see that if <px(n) is the number of l's which
automaton Ix has printed on output up to the nth tact, then

M(n) ^ (Px(n) <; m M(n), neN.

From this follows that i-function cpx generated by automaton Ix is a simple one.
We see from (3.7) that for <px we have

lim inf cpx(n)\logn = 0 .

Now, by theorem 3.1, the class R(q>x) is the class R(l). On the other hand, theorem 3.2
states that R(q>x) is richer than R(i). This contradiction proves our theorem.

Theorem 3.5. Let cp be a simple i-function. Then there exists a constant c > 0
that for almost all n e N

(3.8) <p(n) > c log n .

Proof. Let J be an arbitrary simple Y-automaton generating the i-function q>.
If J e R(l), then it is equivalent to a finite automaton, and because the activity
of a finite automaton is periodic, we have for the function <p that q>(n) ^ Cn for
almost all n, where C > 0 is a certain constant. All the more, condition (3.8) holds.
If / $ R(l), then from theorem 3.4 it follows that for the function M defined in (2.2)
M(n) > c log n for almost all neN, where c > 0 is a constant. As I is simple,
q>(n) > M(n) for almost all neN. This implies that for almost all neN the in
equality (3.8) is valid, completing the proof.

The above theorems give us insight into possible existence of nontrivial hierarchy
of complexity classes. Nonetheless, they do not assert that such a hierarchy does
exist. That depends on the existence of simple i-functions. Even theorem 3.1 does
not guarantee that the class JR(log n) is richer than the class R(l). To prove this,
it is necessary to show that the function log n is basically a simple i-function. In [8],
the countability of the function 2" is proved, implying that [log n] is an i-function.
The mentioned proof does not guarantee the simplicity of the function.

Theorem 3.6. There exists such simple i-function cp that

(3.9) 0 < lim inf <p(n)/log n £ 1 .

Proof. We construct an Y-automaton I with one tape on which the binary codes
of consecutive integers 1, 2, 3 , . . . will be written. Automaton J will print symbol 1
just at those tacts when the numbers of the form 2k, keN0 are witten for the first
time on the tape. At the other tacts, it gives symbol 0. In order to distinguish uniqually
these situations, we shall mark the extreme left symbol 1 with 1L. The extreme right
end we denote 0R or 1R intead of 0 or 1. Symbol B denotes the blank symbol. Adding
unity, we get on tape a sequence of configurations (words), the position of the reading
head being marked by posing the letter q before the read symbol. The first configur
ation will give the situation on the tape after the first tact and so on. For the sake
of better orientation we describe several initial configurations (leaving out the
internal states of the automaton I):

glR, qB0R, glL0R, lLgOR, lLglR , glL0R, qB00R, glL00R, lLg00R, lL0g0R, lL0glR,

lLg00R, lLglOR, lLlg0R , lL lglRALgl0R , glL00R, g£000R, glL000R , . . .

The sequence on the output has the form

(3.10) 10100001000000000010 ...

It follows that if there is a word of length k + 1 on the tape, then automaton J has
printed at least k units. This implies that the i-function q> belonging to the sequence
(3.10) is generated by / with space limitation L, where L(n) = cp(n) + 1, n eN. If we
reduce one cell, we can generate the function q> with space limitation L = <p. Thus,
(p is simple. By theorem 3.5, there is a constant c > 0 such that for almost all n,
<p(n) ^ c log n. On the other hand, for any k e iV0, the number of tacts necessary
for the production of the code of the number 2k is greater or equal 2k (supposing
that we managed to add unit always in one tact, the number of tacts needed would
be 2k), which gives for q> the inequality <p(n) < log n + 1, (again, adding units in one
tact gives cp(n) = [log n] + 1, because the corresponding sequence (3.10) would
have the form 1101000010 . . .) . The combination of inequalities gives

c log n ^ (p(n) < log n + 1

for almost all n, which implies immediately (3.9), completing the proof.

Remark. It can be shown that for the i-function q> belonging to (3.10)

(3.H) lim <p(n)/log n = 1

holds. A detailed analysis does give that the countable function / belonging to

(3.10) equals

f(n) = 3 . 2 " - 1 - n - 1 , neN .

This implies (3.H).

Theorems 3.1, 3.2 and 3.6 imply that the class R(L), with L(n) = log n, is in the
classification hierarchy just above the class R(l) realizable by finite automata. As we
have mentioned above, the existence of complexity classes is a consequence of the
existence of simple functions. It appears that not any countable function is simple
(and therefore not any i-function is a simple one). In [8], f.e., it is proved that 2"
is countable. Using theorem 3.5 (for the corresponding i-function), we get that
the function cannot be simple.

The existence of a sufficiently rich class of simple functions will be discussed
in a future paper. There, it will be shown that for any rational number r e (0; 1)
there is a simple /-function q> that

lim n'\(p(n) = 1

holds. This implies validity of the following theorem.

Theorem 3.7. There exists an infinite hierarchy of complexity classes of operators
realizable in real time. If rt,r2 are any two rational numbers that 0 < r1 <r2 = \,
then for the corresponding classes R(nn), R(nr2) proper inclusion

R(n") | R(n«)

holds.

(Received January 27, 1972.)

REFERENCES

[1] Becvar, J.: Real-Time and Complexity Problems in Automata Theory. Kybernetika 1 (1965),
6, 475-497.

[2] Fischer, P. C : Multi-tape and infinite-state automata. International Colloquium on Algebraic
Linguistics and Automata Theory, 1964, Jerusalem, Israel.

[3] FnyuiKOB, B. M.: CHHTC3 mi(J>poBbix aBTOMaTOB. <3?H3MaTrn3, Mocraa 1962.
[4] Hartmanis, J.; Lewis, P. M.; Stearns, R. E.: Classifications of Computations by time and

memory requirements. IFIP Congress, New York 1965.
[5] Hartmanis, J.; Stearns, R. E.: On the computational complexity of algorithms. Trans. Amer.

Math. Soc. 117 (1965), 285-306.
[6] Rabin, M. O.: Real time computation. Israel J. of Math. / (1963), 203 — 211.
[7] Yamada, H.: Real-time computation and recursive functions not real-time computable.

IRE Trans, on Electronic Computers EC-11 (1965), 753-760.
[8] Yamada, H.: Counting by a class of growing automata. PhD Thesis, Moore School of Elect.

Eng., University of Pennsylvania, 1960.

RNDr. Miloslav Nekvinda, CSc, Vysokd skola strojni a textilni v Liberci (The College of
Mechanical and Textile Engineering in Liberec), Hdlkova 6, 46117 Liberec 1. Czechoslovakia.

		webmaster@dml.cz
	2012-06-04T22:51:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

