
Kybernetika

Jaroslav Morávek
A localization problem in geometry and complexity of discrete programming

Kybernetika, Vol. 8 (1972), No. 6, (498)--516

Persistent URL: http://dml.cz/dmlcz/124660

Terms of use:
© Institute of Information Theory and Automation AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124660
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 6

A Localization Problem in Geometry
and Complexity of Discrete Programming*

JAROSLAV MORAVEK

The algorithmical complexity of following problem is investigated: Given an arbitrary point
of the Euclidean space, we want to determine whether it belongs to a given convex polyhedral set.
An application to the theory of discrete programming is discussed.

1. INTRODUCTION

In this paper we shall use some basic concepts from the theory of convex polyhedral
sets and the theory of directed graphs. The reader who is not familiar with these
subjects may consult the many existing reference books, e.g. [1] or [2] (for convex
polyhedral sets) and [3] or [4] (for graphs).

Let £" denote the n-dimensional Euclidean space, and let C be a convex polyhedral
set (which will be referred to in this paper as CPS) in E", i.e. a nonempty set which
can be expressed as

(1) C = PtnP2n...nPf,

where Pt,P2, ...,Pf are closed halfspaces of £", and / is a nonnegative integer.
(If/ = 0 we put C = £", thus £" is also a CPS.) In addition we assume in this paper
that any CPS has dimension n, and that the integer/ occuring in (1) is chosen minimal.
This minimal/(which depends only on C) will be denoted by f(C) and called number
of faces of C.

We shall deal with the algorithmical solution of the following problem: For an
arbitrary point x e £" we want to determine whether x 6 C or x <£ C. This problem
will be called problem of localization of points of E" with respect to C, briefly C-loca-
lization problem.

* This paper was presented at the Summer school "Combinatorial Structures and Graph
Theory" organized in Zlata Idka by the Association of Slovak Mathematicians, May 1971.

The class of algorithms which will be allowed for the solution of C-localization 499
problem can be characterized intuitively by the requirement that each of their ele
mentary steps (elementary operations) consists in determining the relative location
of x with respect to a certain oriented hyperplane prescribed by the algorithm, i.e.
answering the following question: Either x belongs to the positive open halfspace
determined by the hyperplane, or x belongs to the corresponding non-oriented
hyperplane, or x belongs to the corresponding negative open halfspace.

The described elementary step will be called localization of x with respect to
a (given) hyperplane, briefly hyperplane localization (which will be referred to in
this paper as HL). The algorithms will be called localization algorithms for C,
briefly localization algorithms (which will be referred to in this paper as LA) if there
will be no danger of confusion.

An LA for C performs a series of HL's where the choice of the next HL depends
on the result of the previous HL's. After the algorithm has finished its work, the
point x is "located" in a set S (i.e. x e S) which is the intersection of a finite system
of open halfspaces and/or hyperplanes of £". Now for S it must hold either S c C
or S c £* - C; in the first case the C-localization problem is answered by "yes"
in the second by "no" .

The number of HL's occuring in an LA depends on the choice of x. As complexity
index (measure of complexity) of LA we introduce the maximum of all these numbers
over all x e £". Our main result consists in the derivation of a certain lower bound
for the complexity index of any LA for C.

In Section 2 a formal definition of LA is presented, the purpose of which is to
substitute the intuitive concept of LA by an adequate but precise mathematical
concept. The formal definition of complexity index is also presented, and the follow
ing problem is proposed: Given a CPS C, it is to determine an LA for C, having mini
mum value of its complexity index.

In Section 3 the localization problem for an arbitrary convex polygon in E2 is
investigated. In this special case we can indeed determine an LA with the minimum
complexity index. The results of Section 3 illustrate the general concepts introduced
in Section 2, and are used to construct certain convex polyhedra requiring "almost
minimum" number of HL's.

In Section 4 we obtain a lower bound for the number of HL's required for the
solution of the C-localization problem. This lower bound depends on the number
of extreme points of C.

In Section 5 a countable sequence of convex polyhedra is constructed, and it is
shown that the lower bound of Section 4 is asymptotically the best possible.

An analogous lower bound for the number of HL's of Section 4, but depending
on the number of extreme halfiines of C, can also be obtained. The formulation of
the corresponding results is presented in Section 6 without proofs.

In the concluding Section 7 an application of the localization problem to the

500 theory of algorithmical complexity in the discrete programming is discussed by
using as an illustration the well-known travelling-salesman problem.

2. LOCALIZATION ALGORITHMS

In Section 1 the concept of LA was introduced intuitively by an algorithm using
as elementary operations hyperplane localizations. This consists in the determination
of the location of the considered point x e £" with respect to an oriented hyperplane.
An oriented hyperplane, by definition, is a hyperplane together with a prescription,
according to which one of the open halfspaces, faced by the hyperplane, is called
negative and the opposite positive.

Given an oriented hyperplane H we denote by

H + — the corresponding positive open halfspace
H~ — the corresponding negative open halfspace
H° — the set of all points lying on the corresponding non-oriented hyperplane.

From the formal point of view we are going to identify an LA for C with a certain
trichotomic tree. The root and inner vertices of which are assigned to certain oriented
hyperplanes, and to each of its output vertices there is assigned either set C or
£" — C. The tree corresponds intuitively to a flow-chart of an algorithm where:

1. The work of the algorithm starts from the root.
2. The calculation is running along a branch which corresponds to a realization

of the algorithm and which is uniquely determined by the choice of x.
3. After a finite number of HL's the calculation finishes in an output vertex. If

C (respectively E" — C) is assigned to this output vertex then x e C (respectively
X€£" - C).

After these preparatory considerations we present a formal definition of LA for C.
Our formal concept of LA is related to the concept of linear-separating algorithm
discussed in [5] and [6]. Let us consider a finite directed rooted tree with the set of
vertices V, the root denoted by v0, and the set of directed edges £. Further we assume
that the tree satisfies following conditions:

a) Either three or no directed edge start from each vertex v e V.
b) Exactly one directed edge leads into each vertex v e V — {v0}, and there is no

directed edge leading into v0.

The finite, directed, rooted tree with properties a) and b) will be called a trichotomic
tree (with the root v0) and denoted by (V, £). A vertex v e V will be called an output
vertex of (V, £) iff there is no directed edge starting from it. A vertex v e V will be
called an inner vertex iff v =f= v0 and v is not output vertex. Let us put V, (resp. Ve)
for the set of all inner (resp. output) vertices of V. Thus we have V = {v0} u Vs u Ve.
(Observe that ({v0} u Ve) n Vj = 0 but {v0} n Ve may be nonempty; in this case,
however, Vs = 0 and Ve = {v0}.) An edge starting from u 6 V and leading into
v e V will be simply denoted by (u, v).

Now, it is well known that to each v e Ve there is a unique (directed) path starting
from v0 and ending in v; this path is uniquely determined by the order of all its
vertices v0, v l s ..., vr_1, vr = v. The path will be called a branch (from v0 to v),
and since there is a one-to-one correspondence between branches and sequences
v0, v1, ..., v r_1 ; vr = v, we shall speak briefly about a branch v0, v1; ..., v r_1 ; vr = v.

Further, let us consider a mapping #C of £ into the set of all subsets of £" where #e
has following properties:

1. For any (u, v) e £ the set ,W(u, v), assigned to (u, v) by Jf, is either a non-
oriented hyperplane or an open halfspace of £".

2. For any u e V — Ve there is an oriented hyperplane H of £" such that the sets
J^(u, Vj), tf(u, v2), Jf(u, v3), assigned respectively to the edges (u, v t), (u, v2),
(u, v3) starting from u (see condition a) of the definition of (V, £)), coincide after an
appropriate permutation with the sets H+, H°, H~, i.e.

{JT(U, v,), j r (u , v2), jf(u, v3)} = {H\ H°, H~} .

Now, by using mapping M7, we introduce a mapping G of V into the set of all
subsets of £" as follows: For v = v0 we put G(v0) = £"; for v e V — {v0} we put
G(v) = ^ (v 0 , Vj) n 34?(vly v2) n . . . n ,?f(vr_1, vr) where v0, v1; ..., v r_ l 5 vr = v is
the uniquely determined path from v0 to v.

At last, we shall consider a mapping \fi: Ve ~» {C, £" - C}, and we denote the
image of v e Ve in the mapping f by ^(v).

Definition. The trichotomic rooted tree (V, £) satisfying conditions a) and b),
together with the mapping 2? satisfying c), and with the mapping i/> will be called
a localization algorithm for C if the following condition is satisfied:

d) For any v G Ve

if «P(v) = C then G(v) «= C,

and

if T(v) = £" - C then G(v) e_ £" - C .

According to our definition, an LA for C is uniquely determined by the ordered
quadruple (V, £, #C, \j/). Instead of this complicated notation, we shall denote
localisation algorithms by single capitals, e.g. s4', s4r, etc. It follows from the definition
of an LA for C that the family {G(v) | v e Ve} is a disjoint decomposition of £", i.e.

G(v') n G(v") = 0 if v' 4= v" ,

and

U G(v) = £" .
v s V .

Further it follows that the family {G(v) | v e Ve} is a refinement of {C, £" - C},
i.e. for every v e Ve either G(v) c C or G(v) cz £" — C.

We shall introduce notations for concepts concerning the LA for C. Vertices,
edges, paths and branches of the corresponding tree (V, £) will be called resp. vertices,
edges, paths and branches of the algorithm. The number of edges lying on a branch
(i.e. number of vertices minus one) will be called length of the branch. The set G(v)
will be called a set induced (or generated) by the algorithm in the vertex v. The
family {G(v) | v _ Ve} will be called a decomposition induced (generated) by the
algorithm.

Now we are going to introduce the complexity index for localization algorithms.
Let s4 be an LA for C. Put L(s4) for the maximum integer k such that there is a branch
v0, v_, ..., v___, vk = v having length k and the property G(v) + 0. The number
L(stf) will be called the complexity index of stf. From the intuitive point of view
L(stf) can be interpreted as follows: The number of HL's required by ja. depends
on x, and L(s4) equals the maximum number of HL's occuring in s4.

Proposition 2.1. For every CPS C there is an LA si for C such that

L(s*) = f(C) .

Proof. The set C can be written as*

C = < f f r > n < f f 2 - > n . . . n < H ; > ,

where / = f(C), and where H_, H2, • • •, Hf are certain oriented hyperplanes. We shall
first describe the algorithm intuitively. In this algorithm, HL's are performed with
respect to ff_ successively for j => 1, 2 , . . . , / , and the condition x e <i?;> is checked.
If x e <ff;> for ally = 1, 2, .. . , / then x e C; if x e fft for some; 6 {1, 2, . . . , / } then
x ^ C. This procedure can be easily converted into a formal LA for C. Let us denote
it by srf0 and observe that L(s/0) = f(C) what completes the proof. D

The set of all LA's for C will be denoted by 91(C). It follows from the Proposition
2.1 that 31(C) =j= 0 for any CPS C <= £", and hence we introduce the following nota
tion. Put

J_? (C) = min {L(sf) \ s4 e 31(C)} .

Jz?(C) will be called a complexity index of C. Intuitively S?(C) is the complexity index
of the "optimal" LA for C.

Now the following problem arises: For any CPS C we want to determine ££{€)
and to find s4 e 31(C) such that L(sd) = JS?(C) (the "optimal" LA for C). The problem
formulated in this general way seems to be rather difficult, and it follows from the
discussion of Section 7 that any progress in its solving would probably lead to some

* The symbol <A">, where X c £", denotes here and in what follows the closure of X with
respect to the natural topology of E".

non-trivial results concerning the algorithmical complexity of certain difficult pro
blems in discrete programming, as e.g. the travelling-salesman problem.

For this reason, our aim is more modest. We shall obtain a lower bound for £?(C)
which depends on the number of extreme points of C. Furthermore, we show that
this lower bound is, in some sense, the best possible. Let us notice that our problem
is trivial in E1. In the next Section we shall deal with the first non-trivial case where
n = 2 and where C is an arbitrary convex polygon.

3. LOCALIZATION PROBLEM FOR POLYGON

Let Pr be a convex r-gon in E2 where r ^ 3. In this Section let us choose a fixed
orientation of E2, and with respect to this orientation choose a numeration o1, a2, . . .
..., ar of vertices of Pr such that.

1. ae and og + 1 (Q = 1,2, ...,r — 1) are neighbouring vertices of Pr,
2. au a2, ..., ar are numbered anti-clockwise.

Since Pr is a CPS in E2 it is meaningful to talk about the /^.-localization problem.
Oriented hyperplanes in E2 are oriented lines where the orientation of a line in E2 is
induced by the orientation of E2 in an obvious way. Thus we shall speak about line
localizations. An oriented line D divides E2 into three disjoint subsets:

D+ - the corresponding positive open halfplane.
D° — the corresponding non-oriented line.
D~ — the corresponding negative open halfplane.

Our aim is to determine J£(Pr). In view of Proposition 2.1 there exists an LA for
Pr having complexity index r. We shall construct a "better" LA for Pr, requiring
at most 1 +] log 2r [localizations*. The algorithm will first be described in an
intuitive fashion and it will be clear that it can be extended to a formal definition.

For the description of the algorithm we shall use in addition following notations:
For any pair of distinct points x, y of E2 let us consider the line passing through x
and y, and choose the orientation of the line such that if a point moves on the line
from x to y then the negative open halfplane lies on the left-hand side. This oriented
line will be denoted by D(x, y); notations D(x, y)+ , D(x, y)°, D(x, y)~ have obvious
meaning. Further, let us choose an arbitrary fixed interior point j of the segment
with terminal points av a] (1 + r) / 2 [, and at last put or + 1 = o^

Algorithm. The algorithm consists of two parts denoted by I and II.

Part I. A sequence of ordered pairs of integers

(2) («,., A) , ...,(«* /?„),-••>(«,>&)

*] ? [: : = minimum integer a such that a > ".

5°4 is constructed where

1 < a, < ... < av < ... < a„ < j8„ <§ Pv £ . . . = /?. £ r + 1 ,

and

ft, = «„ + 1 •

The sequence (2) is constructued in accordance with following recursive rules:
(i) Perform localization with respect to D(at, o](1 + r) / 2 [) and distinguish the follow

ing cases:

a) * X 6 < D (0 1 , 0 K 1 + r) / 2 [) _ > ,

b) xeD(a1,a](1+r)/2[)
+ .

In case a) put (ax, j8,) = (] (1 + r)/2 [, r + l), in case b) put (a,, /?,) = (1,] (1 +
+ r)/2 fj.Pass to the following step (ii).

(ii) Let us assume that the pair (av, Pv) has been already constructed. If /?„ = av + 1
put n = v; in this case, the construction of sequence (2) is finished, and we pass to the
Ilnd part of the procedure. If /?„ > av + 1 we perform the localization with respect to
D(J, oj(«v+0v)/2r) a n c ! distinguish the following cases:

a) X6<I)(i><,](«v+M/2l)">>

b) x€D (j , o] (a v + / (v) / 2 r)
+ .

Put

(] ^ [, / ,) mease a)

7 •ja. + ^ n . ,,
av, - Jin case b) ,

and with the pair (av + 1, /?v + 1) return to the beginning of the step (ii).

Part II. Let us assume that a pair (a,,, /?J with the property /?„ = a„ + 1 has been
constructed. Then perform the localization with respect to D(aXft, af), and distinguish
following cases:

a) Jfe<I)KH>°/!J
_>>

b) xeD(aX(i,ap>iy.

The work of the algorithm is finished.
The described algorithm solves the ^-localization problem in the sense of the

following proposition the easy proof of which is ommitted.

* (D(...)y denotes the closure with respect to the natural topology of £ .

(av + 1 , / ? v + 1) =

Proposition 3.1. If the described algorithm stops in Ha) (respectively in Hb)) then 505
xePr (resp. x $ Pr).

In the next proposition an upper bound for the number of line localizations
required by the described algorithm is determined.

Proposition 3.2. The maximum number of line localizations required by the
algorithm does not exceed] log2 r [+ 1.

Proof. Since in the Hnd part of our algorithm exactly one localization is required,
it is sufficient to prove that the maximum number of localizations occuring in its
1st part does not exceed] log2 r [. But in any realization of our algorithm the number
of localizations occuring in its 1st part is [i (i.e. it is equivalent the length of sequence
(2)). It follows, however, from the description of the algorithm that \x equals the
minimum value of the subscript v such that j8» — a, -= 1. On the other hand we have

•mm-o-M B! — OÍJ ;Ş max I r + 1

and

A ł l _ . l l S m Ҷ A _] ^ [,] ^ .) ^
(v = l,2,...)

which by the induction yields

ř . - a] ^ [(v = i,2,...)-

Putting v =] log2 r [in the last inequality we obtain J3V — ocv g 1. Thus p ^
^] log2 r [which completes the proof. •

The algorithm for Pr just described in an intuitive fashion can be easily converted
into a formal LA for Pr; let us denote it by $ir Hence we obtain from propositions
3.1 and 3.2.

Proposition 3.3. It holds sir e 3I(Pr) and £(Pr) g L(s?r) ^] log2 r [+ 1 for
r = 3, 4, 5,

Further we are going to show that sir is "optimal".

Theorem 1. For r = 3, 4, 5, . . . it holds that

J?(Pr) = L K) =] log2 r [+ 1 .

In order to prove this theorem we shall use following lemma.

Lemma 3.1. Ler s4 e ^(Pr) and L(stf) ^] log2 r [. Then there is an output
vertex u ins/ such that the set* G(u) is open** and has a nonempty intersection with
at least one side of Pr.

Proof. It is sufficient to construct a branch v0, v lf ..., v, having the following
property: G(Vj-) in open and has nonempty intersection with at least] r . 2~J [sides
of Pr (j = 0, 1, ..., /). The sequence v0, v 1 ; . . . , v, will be constructed by the induction
with respect to j = 0, 1, ..., I, and at the same time the required property of G(v,)
will be verified:

(i) The set G(v0) = E2 is open and it has nonempty intersection with all r =

=] r . 2~° [sides of Tv
(ii) Let us assume that Vj has been constructed and distinguish following cases:

If Vj is an output vertex put / = j and stop the construction. If Vj is no output vertex
then there are in s4 two distinct vertices v(1) and v(2) determined uniquely by the
conditions

je(vj, v(1)) = H~ and #(yp v(2)) = H+

(where &f denotes the mapping from the definition of LA, and H the line correspond
ing to v,-). Now we have clearly G(v(1)) = G(vj) n H~ and G(v(2)) = G(vj) n H+ and
therefore G(v(1)) and G(v(2)) are open according to the induction hypothesis. Further
more, according to this hypothesis G(vj) has nonempty intersection with at least
] r . 2~J [distinct sides of Pr, and since Vj is no output vertex we have./ g L(s4) — 1 <.
—] log2 r [— 1 < log2 r, hence] r . 2~J [^ 2. Thus there exists an s e {1, 2} such
that G(v(s)) has nonempty intersection with at least]] r . 2~J _.2~1 [=] r . 2~ , '~1 [
distinct sides of Pr. Hence setting vJ + 1 equal to the corresponding v(s) we accom
plish the inductive construction of the sequence v0, v l5 v 2 , . . . , q.e.d. •

P r o o f of T h e o r e m 1. In view of proposition 3.3 it is sufficient to prove that
L(stf) ^] log2 r [+ 1 for any s4 e <&(Pr). Assuming on the contrary that L(s4) ^
=] 1°S2 r [f ° r some s4 e 1l(Pr) we obtain from lemma 3.1 that there is an output
vertex v in s4 such that G(v) is open and it has nonempty intersection with a side
of .Pr. Hence G(v) n Pr =t= 0 and G(v) n (E2 - Pr) + 0 which is a contradiction
with the fact that the family (G(v) | v is output vertex of A} must be a refinement
of {Pr, E2 — Pr}. The obtained contradiction proves the theorem . •

4. LOWER BOUND FOR jSf(C)

In this Section we are going to derive a lower bound for &(£) where C is an ar
bitrary CPS in E". This lower bound depends on the number of extreme points of C.

* Induced in u by J / .

** In the sense of natural topology of E2.

A point x 0 e C is called an extreme point (which will be referred to in this paper
as EP) if x 0 cannot be expressed as the center of a pair of distinct points x (1) and x (2)

of C. Let us write

C = n (H°} u HJ) = n <Hjy,

where Hj (j = 1,2,..., f(C)) are certain oriented hyperplanes. The following cha
racterization of EP's is well-known.

Lemma 4.1. Let be x0 e C. Then x 0 is an EP of C iff there is an n-tuple of hyper
planes HJt, Hj2, ..., HJn (1 <. j t < j 2 < ... < ;'„ < f(C)) such that

{x0} = H (°) n H (°) n . . . n H (°) . Q

It follows from lemma 4.1 that there is an injection of the set of all EP's of C into
the set of all n-element subsets of {1, 2, ..., f(C)}, hence we have:

Lemma 4.2. Every CPS C contains at most (" ' \ EP's. •

Let us denote the set of all EP's of C by V(C) and put v(C) = card (V(C)), thus

0 <; v(C) <, (") • A lower bound for the number of HL's required for the solution

of the C-localization problem can be derived from following lemma.

Lemma 4.3. Let Cu C2, ...,CS and C be CPS's of £", and let

(3) C t u C2 u . . . u Cs = C .

Then

<f* »(C)<_s(l

where
/ * = max{f(C,.)|j = l , 2 , . . . , 5 } .

Proof. It follows from (3) that

F (C) c : l J V (C ;) .
J"=I

Combining this inclusion with lemma 4.2, we obtain our assertion. •

Theorem 2. For arbitrary CPS C in £" it holds that

2*™ . (^C)\ = v(C).

508 Proof. Let s4 e 91(C) and L(sJ) = ££(C), and let us consider the decomposition
S = {G(v) | v e Ve} induced by s/. Put

6 0 = {<G(v)> I v e Ve A dim (G(v)) = » A G(v) c C} .

According to the definition of LA, the family S is a refinement of {C, £" — C},
hence

(4) U {<G(v)> J <G(v)> e S 0} = C .

Further, sets of S 0 are CPS's, and the number of faces of each of them does not
exceed the length of the longest branch of &4, i.e.

(5) f « G (v) » ^ L (^) if < G (v) > e S 0 .

At last, it holds that

(6) card (S0) = 2L(^>

since from each vertex u e V — Ve exactly two edges (u, v) start such that

dim(jf(u, v)) = n.

Now we apply lemma 4.3 to the finite family S 0 and obtain from (4), (5), (6) and
lemma 4,2

v(C) = card (S0) . (max { (^ ^ |<G(v)> e 6 , 1) = 2™ . (L^A

which completes the proof. D
The meaning of the proved theorem is more simply observable from following

corollary. This corollary will be formulated by using asymptotical inequalities:
Let {aJJLj and {bj}f=1 be arbitrary countable sequences having almost all mem

bers positive. We shall write

aj > bj (j -> 00) iff limes inferior -1
 = 1 ,

bj

a j < bj (j -+ co) iff bj > a} (j -+ 00) ,
and

a j ~ bj (j -* 00) iff a j ^ bj and bj > aj (j -• 00).

The relations > and <, are called asymptotical inequality relations, and ~ is called
asymptotical equality.

Corollary. Let {Cj}f=l be a countable sequence of CPS's in E" and let

lim v(Cj) = 00 .
J-.CO

Then 509

£?(Cj) > log2 v(Cj) (j -> co).

5. LOWER BOUND IS ASYMPTOTICALLY EXACT

Now, we are going to show that the lower bound obtained in the preceding Section
is asymptotically exact. We shall construct for any integer n ^ 3 a countable sequence

{C(v)}v=n+Un + 2,...

of convex polyhedra* in E" such that C(v) contains exactly v EP's, and J£(C(v)) ~
~ log2 v (v ->• oo).

Remark. Such a construction cannot be performed in E1 since each CPS in E1

contains at most two EP's. On the other hand there is no lost on generality when
ommitting this case since the localization problem is trivial in E1. Furthermore,
we ommit also the case of E2 since it is covered by theorem 2 of Section 3.

Construction of C(v). Let us choose in E" a two-dimensional linear variety U and
an arbitrary convex r-gon Pr in 17 where r = y — n + 2, v > n + 1 (hence r >. 3).
Further, choose a fixed orientation in _7 and let Oj, a2, ..., ar be the sequence of
vertices of Pr such that

1. ac and o e + 1 are neighbouring vertices

(_ = l , 2 , . . . , r - 1)

2. a1, o2, ..., ar are numbered anti-clockwise.
At last let us choose arbitrary n — 2 points bu b2, ..., b n _ 2 in E" — 17 such that

the affine hull of {at, ..., ar, b1 ; ..., bn_2} is equivalent to E", and put C(v) for the
convex hull of

{a1,...,ar,b1,...,bn_2}.

The set C(v) is a convex polyhedron in E", and we shall describe an LA for C(v)
which will be based on the similar idea as that from Section 3 used in the case of the
jP.-localization problem.

First, let us introduce some notations: Let (x, y) be an ordered pair of distinct
points of 17. Put D(x, y) for the oriented line passing through x and y where the
orientation is chosen such that if a point moves on the line from x to y then the
negative open halfplane in _T lies on the left-hand side. The symbols D(x, y) + ,
D(x, Y)~ and D(x, y)° will denote resp. the corresponding positive open halfplane
in II, the corresponding negative open halfplane and the corresponding non-oriented

* Convex polyhedron ::= bounded CPS.

510 fine. Further, it follows from the definition of C(v) that the points x, y, ->«» ..., bn_2

are linearly independent, hence there is a unique non-oriented hyperplane containing
these points. Let us denote by H(x, y) the corresponding oriented hyperplane with
the orientation chosen such that

D(x, y)~ e H(x, y)- .

Further, there is a unique non-oriented hyperplane containing the set 77 u {bu
..., bk_u bk+1,..., b„_2) where k = 1,2,... , n - 2. Let us put Gk for the correspond
ing oriented hyperplane with the orientation chosen such that bke Gk. At last choose
a fixed interior point j of the segment with the terminal points a1 and a](1 + r) / 2 [, and
put o r + 1 = fl,.

The localization algorithm for C(v) will be described first in an intuitive fashion.

Algorithm for C(v). The algorithm consists of three parts denoted by I, II and III.

Part I. A sequence of pairs of integers

(7) K/y, . . . ,^, &),...,(«,,,/g
is constructed where

1 <. « ! < . . . < ccv < ... <. ce„ < ft, < .. . < j3v < . . . < / ? ! < r + 1 ,

and ft, = a„ + 1. The construction is performed by the induction:

(i) Perform an HL with respect to H(at, fl](1+r)/2[) and distinguish two following

cases:

a) xe{H(au o] (1+r) /2[)~> ,

b) xe77(o 1 , o] (1 + r) / 2 [)
+ .

If a) takes place put (a., j8.) = (, r + 1 J, and

if b) takes place put (a l t Pi) - (1,) • I n b o t h c a s e s P a s s t 0 t h e n e x t s t eP (iJ)-

(ii) Let us assume that a pair (av, /?„) has been constructed where v is an integer.
Check the relation fiv - av = l;lf fiv - av = 1 then put ju = v, stop the construction
of (7), and pass over to the Ilnd part of the algorithm; if /?„ - av > 1 perform an
HL with respect to 77(/\ fl](«v+pv)/2[) and distinguish following cases:

a) x e < 7 7 (j , a] (a v + w / 2 L T > ,

b) * e 7 7 (; , a K a v + /) v) / 2 [)
+ .

0 -In case a) put (av+1 , /Jv + 1) = ("" + - , ffvj; in case b) put (av+1 , jSv

= {av, — - \ . With the obtained pair (av + 1, Pv + i) Pass to the beginning of

step (ii).

Part II. Let us assume that a pair (a„, /?J with the property jff,, — aM = 1 has been
obtained. Then we perform an HL with respect to H(aXv, o^) and distinguish follow
ing cases:

a) x e < H (o v f l J - > ,

b) x e H ^ a j J - .

In case a) pass over to the Illrd part of the algorithm. In case b) stop the procedure.
Part III. Let us perform a series of HL's with respect to hyperplanes Gk, succes

sively for k = 1, 2 , . . . , « — 2, and stop the procedure as soon as x e Gk. Following
cases can occur:

a) xeGko for some k0 e {1, 2, ..., n — 2}

b) xef)<Gk->.

k=i

In both cases the procedure is finished.

The described algorithm solves the C(u)-localization problem in the sense of

following proposition.

Proposition 5.1. 1. / / the algorithm has stopped in Illb) then x e C(v).
2. If the algorithm has stopped in lib) or Ilia) then x 4 C(v).

Proof. 1. If the algorithm has stopped in Illb) then according to its construction
it holds that x e C0 where

C0 = <H(j, oJ-> n <H(/, afiy> n (H(a^, oJ~> n ("VlW)) •
k=i

Co is a simplex in £" with the vertices o^, oP(i, j , b l 5 ..., b„_2. Since

K.«vA-i U cC(t;)
we obtain at last x e C0 <= c(v), q.e.d.

2. If the algorithm has stopped in lib) or Ilia) then there is an oriented hyperplane
H such that x e H+ and C(z?) <_ <H"> (i.e. H strictly separates x from C(v)). Indeed,
we can put H = H(aXix, afii) i n c a s e ub) and H = Gko in case Ilia). Hence, x $ C(v)
what completes the proof. Q

512 Now, let us estimate the number of HL's in the algorithm. Similarly as in the
Section 3 it can be proved that the total number of HL's occuring in parts I and II
does not exceed 1 +] log2 r [. Further the number of HL's occuring in the Illrd
part does not exceed n — 2. Thus we have the following .

Proposition 5.2. The maximum number of HL's occuring in the described algo
rithm for C(v) is at most

] log2 r [+ n - 1 =] log2 (i > ~ n + 2) [+ n - l . D

Remark. It can be proved by a more detailed investigation of our algorithm that
the maximum number of required HL's equals in fact] log2 r [+ n — 1, see the
analogous result of theorem 1 Section 3.

The obtained results can be summarized as follows:

Theorem 3. The sequence {C(u)}„=„ + i,„ + 2,... has following properties:

1. C(v) is a convex polyhedron in E" and r>(C(t>)) = v.
2. Se(C(v)) ~ log2 v (v -* oo).

Proof. The property 1 obviously follows from the construction of C(v). Now,
according to theorem 2, it holds that Se(C(v))> log2 v (v -* oo). The described
algorithm for the C(y)-localization problem can be described formally as a formal
LA for C(v). Let us denote it by stf(v), hence Jf(v) e 2I(C(u)) and proposition 5.2
yields

Se(C(vj) ^ L(s4)(v)) =] log2 (v-n + 2)[+ n - l .

Therefore Se(C(v)) <; log2 v (v -> oo) what completes the proof. O
The results of Sections 3, 4 and 5 can be now summarized in the following compact

form:

Theorem 4. Let us put

X(v) = min {Se(C) \ C is a CPS in E" and v(C) = v] .

Then X(v) ~ log2 v (v -• oo).

6. LOWER BOUND WITH RESPECT TO EXTREME HALFLINES

In this Section we state without a proof a result analogous to the Theorem 4
where instead of extreme points extreme halflines are considered. A lower bound
which depends on the number of extreme halflines can be useful e.g. in the case of
a convex polyhedral cone since each convex polyhedral cone contains at most
one EP (the vertex of the cone), hence the Theorem 2 is not efficient in this case.

Let C be a CPS in E". A halfline D _ C will be called an extreme haflline (which 513
will be referred to as EHL) of C iff there is no pair of distinct halflines D' and D"
contained in C and such that

1. D' H= D 4= D"
2. D is contained in the convex hull of D' u D".

It is well-known that each CPS C contains at most | ^ ') EHL's: let us denote
\n~ V

this number by v0(C), hence 0 ^ t>0(C) _ (" ').
\» - v

The following theorem can be proved analogously as theorem 4:

Theorem 4'. LeJ n ^ 3 be an integer, and let us put

X(v) = min (jSf(C) | C is a CPS in E" and o0(C) = v} ,

1(D) = min {^(C) \Cisa CPS in E" and n(C) + »0(C) = v) .

Then X(v) ~!(z>) ~ log2 v (v --> oo) .

7. CONCLUSION — AN APPLICATION IN DISCRETE PROGRAMMING

We are going to discuss an application of our approach to the study of algorith-
mical complexity of certain discrete programming problems. This approach is
related to that originating in [5] and [6].

For the sake of simplicity, we shall discuss this for the case of a special problem
in discrete programming, the co called travelling-salesman problem (see e.g. [7] or
[8]) which will be referred to as TSP. One of the most common versions of this pro
blem can be essentially formulated as follows:

Let m be a given positive integer, and let us consider the set T> of all square matri
ces

U ~ {ai,j)i=l,...,m (rows)

the entries ditj of which are real numbers and where d;;; = 0 (i = 1, 2 , . . . , m).
Further, let gf denote the family consisting of all permutations (i1? i2, ..., im) of

the set {1, 2,..., m}. Two permutations (iu i2, ..., im) e g and (j1,j2, •••, jm) s g
will be said equivalent iff one of them can be obtained from the other by means of
a cyclic permutation, i.e. there is an r e {1, 2 , . . . , m} such that

; _ j Jk+r if fc + r _ m ,

I Jk+r-m if fc + r > m

(fc = 1, 2, ..., m). The introduced relation is indeed an equivalence relation. Let us
denote the corresponding family of all equivalence classes by g*. Elements of g*

514 will be called cyclic sequences of integers 1, 2, ..., m, and they will be referred to as
CS's. Hence each CS can be represented by any of its elements (i l f i2, ..., im); the CS
containing the permutation (iu i2, ..., im) will be denoted by

(Thus -* it —> i2 - > . . . - > im -» = -> im -» j \ —> ... -> ira_x -» = .. . etc.)
Further, we assign to each -» i\ -> i2 -> .. . -> i„, -> e g* and to each D e l) the

value

D (/ 1 , i 2 , . . , g : = E ^ i t t l + <iim..-,.
k = l

(Let us observe that our definition is correct since the assigned value does not depend
on the choice of the representative (iu i2, ..., im) of the CS.)

Now the TSP consists in the determination of an HC -» i t -> i2 -» . . . -» im -» such
that D(i t , i2, ..., im) is minimum. The number D(i., i2 , . . . , im) is called a D-length
of -» i\ -» i2 -* . . . -» im —>, and hence we shall say that our problem consists in
finding the D-minimum CS.

The most efficient algorithms for the solution of the TSP, known to the author,
are not satisfactory enough since the maximum number of required additive opera
tions (i.e. additions and/or subtractions in them equals asymptotically m2 . 2m, and
the same asymptotical estimate is true for the maximum number of required com
parisons.*

Our present unability to solve the TSP "more quickly" is very probably connected
with the fact that we do not have any "sufficiently efficient" algorithmical criterium
for answering the question whether a given CS is D-minimum or not. (Let us compare
this situation e.g. with the general linear programming — continuous case — or with
the ordinary transportation problem where such criteria are known and where we
have at our disposal "efficient" algorithms based on them.) Thus we are going to
discuss following auxiliary problem:

Given an arbitrary matrix

D = (d,J_1;:::;meD

and a CS -* ix -» i2 - » . . . - * im -» e g , we have to determine whether -» ix -» i2 -» . . .
. . . -» im -» is D-minimal or not.

A trivial necessary and sufficient condition for ~» i. -» i2 -* . . . -» im -> to be

* Observe that Edmonds has introduced in [9] a useful working terminology for the classifica
tion of discrete programming algorithms. According to Edmonds an algorithm is called "good"
iff the number of elementary operations in it increases at most as a polynomial of the "dimension"
of the problem, i.e. as 5C where 5 means the "dimension", and c is a positive constant. In our case,
the dimension is essentially m, and hence the known algorithms for the TSP are not "good" in
the sense of Edmonds.

D-minimal is that

(8) D 0 ' 1 . i 2 , - - . , g g D (i 1 , j 2 , . . . , ; m)

holds for all -»• j t -* j 2 -* . . . -> j m ->• e g*. System (8) determines a convex poly
hedral cone in 35 considered as an Euclidean space, i.e. D = (dttJ) are considered as
vectors with coordinates dtJ. (The dimension of 35 is m . (m — 1).) Thus the solution
of our auxiliary problem consists in determining whether a given point D e 35 belongs
to the cone (8) or not, and hence we come essentially to the localization problem for
this cone.

On the other hand, we want to show that it is "reasonable" to solve our localization
problem in the class of LA's. Indeed, the majority of algorithms used in discrete
programming (especially algorithms for the solution of TSP) can be built solely from
the elementary operations additions, subtractions and comparisons. (Such algorithms
do not use multiplications and divisions.) In the algorithms of this class, the values
of certain linear forms of D = (ditJ), computed in each step using a finite number
of additions and subtractions,* are mutually compared or, in other words, the values
of certain linear forms are compared with zero. In other words, the considered algo
rithms perform certain HL's in the Euclidean space 35, and hence they can be inter
preted as certain LA's. Thus in any realization of such an algorithm the number of
comparisons equals the number of HL's where the algorithm is interpreted as an LA.

In conclusion then if we had an "efficient" LA for the cone (8) then the existence
of an „efficient" algorithm for TSP would be plausible. But on the other hand (and
this is even more important from the theoretical point of view) if we have proved that
no "efficient" LA for the cone (8) exists then there should be no "efficient" "addi
tive" algorithm for TSP at all.

The described approach can be extended to many discrete programming problems,
and we hope that it can be of some use in the search, in some cases, for „more effi
cient" discrete programming algorithms, and in the search, in other cases, for the proofs
of the non-existence of "efficient" algorithms. Certain non-trivial lower bounds for
the number of comparisons required by various discrete programming problems have
been obtained by the author in [5] and [6].

(Received November 19, 1971.)

REFERENCES

[1] Kuhn, H.; Tucker, W. A.: Linear Inequalities and Related Systems. Princeton Univ. Press,
Princeton, N. J. 1956.

[2] Grünbaum, B.: Convex Polytopes. Interscience Publishers, London—New York—Sydney
1967.

[3] Berge, C: Théorie des graphes et ses applications. Dunod, Paris 1958.

* Thus the coefflcients of these linear forms are integers.

516 [4] Ore, O.: Theory of Graphs. American Mathematical Society, Colloquium Publications 38
(1962).

[5] Moravek, J.: On the Complexity of Discrete Programming Problems. Aplikace matematiky 14
(1969), 6, 442-474.

[6] Moravek, J.: A Note Upon Minimal Path Problem. Journal of Mathematical Analysis and
Appl. 30 (June 1970), 3, 702-717.

[7] Bellman, R.: Dynamic Programming Treatment of the Travelling Salesman Problem. J.
Assoc. Comput. Mach. 9 (1962), 1, 61 — 63.

[8] Held M.; Karp R. M.: A Dynamic Programming Approach to Sequencing Problems. J. Soc.
Industr. and Appl. Math. 10 (1962), 1, 196-210.

[9] Edmonds, J.: Paths, Trees and Flowers. Canad. J. Math. 17 (1965), 449—467.

Lokalizační problém v geometrii a složitost diskrétního programování

JAROSLAV MORAVEK

Pro danou konvexní polyedrickou množinu C Eukleidova prostoru se zkoumá
algoritmické řešení tohoto problému: Pro libovolně zvolený bod prostoru máme
určit, zda leží v C, nebo v komplementu k C. Tento problém nazýváme lokalizačním
problémem a řešíme jej ve třídě algoritmů, jejichž každý elementární krok záleží
v určení relativní polohy bodu vzhledem k nějaké orientované nadrovině předepsané
algoritmem. Popsané elementární kroky nazýváme nadrovinovými lokalizacemi.
Je získán jistý dolní odhad počtu nadrovinových lokalizací, nutných pro řešení
lokalizačního problému vzhledem k C. Dále je ukázáno, že získaný dolní odhad
je asymptoticky přesný a na příkladu úlohy o obchodním cestujícím se ukazuje sou
vislost studované problematiky s problematikou určování algoritmické složitosti
problémů diskrétního programování.

RNDr. Jaroslav Moravek, CSc; Matematický ústav ČSA V (Mathematical Institute — Czecho-
slovak Academy of Sciences), Žitná 25, Praha 1.

		webmaster@dml.cz
	2012-06-04T22:38:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

