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K Y B E R N E T I K A — VOLUME 31 ( 1995 ) , NUMBER 4, P A G E S 3 9 5 - 4 1 1 

SIMULTANEOUS STABILIZATION BASED ON 
OUTPUT MEASUREMENT 

HERBERT WERNER AND KATSUHISA FURUTA 

Based on a recent convex programming algorithm for simultaneous stabilization by linear 
state feedback, we propose two types of control law for stabilizing a family of systems, when 
either a simultaneously stabilizing state feedback gain or a simultaneously stabilizing output 
injection matrix exists, and complete state information is not available. The proposed 
control laws are illustrated by a numerical example. 

1. INTRODUCTION 

The problem of simultaneously stabilizing a whole family of plants has received con-
is derable attention for many years. The present work was motivated by a recent 
result [1] that provides a relatively simple algorithm for solving the following prob­
lem: Given a family of plants in state space representation ($,•, T,), i = 1 , . . . , M, 
find a linear state feedback gain F such that (<£,- + T.E) is stable for i = 1 , . . . . M, 
or determine that no such F exists. This method is based on mapping the set of all 
simultaneously stabilizing linear feedback gains into a convex set, and employing a 
cutting plane technique involving a sequence of linear programming problems. In 
this note, we discuss ways of utilizing this approach for the case where complete 
state information is not available. 

Dynamic Compensators 

One way of approaching the simultaneous stabilization problem with incomplete 
state information is to use observer-based control laws, i.e. dynamic compensators. 
Necessary and sufficient conditions for the existence of simultaneously stabilizing 
compensators were given in [2], using coprime factorization. However, these con­
ditions are tractable only for the case of two systems. In [3] it is in fact shown that 
for three or more systems the existence of a stabilizing compensator is "rationally 
undecidable" (i.e. there exists no explicit criterion). 

Turning to the convex programming approach, the problem with observer-based 
controllers is that state feedback and state estimation cannot be separated in face 
of the uncertainty represented by a whole family of systems. Assuming that a 
simultaneously stabilizing state feedback gain has been found, it is possible to use 
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the above-mentioned algorithm to search for a simultaneously stabilizing full order 
observer gain, but this search is dependent on the state feedback gain previously 
obtained. If no stabilizing observer for this state feedback exists, nothing can be 
said because there may exist stabilizing observers for different feedback gains. 

In order to search directly for the compensator parameters, the problem can be 
transformed into an equivalent static output feedback problem; the difficulty in this 
case is that the set of all stabilizing output feedback gains cannot be mapped into a 
convex set. A way of attacking this problem is to search for a matrix which belongs 
to a convex set, and whose inverse belongs to another convex set. In [4] an algorithm 
for this problem is discussed, but this algorithm involves solving a sequence of convex 
programming problems, and its convergence is not guaranteed in general. 

Periodic Output Feedback and Fast Output Sampling 

Our approach taken here is based on the well known fact that if a system is con­
trollable and observable, the poles of the system discretized at output sampling rate 
can be arbitrarily assigned by piecewise constant periodic output feedback, pro­
vided the number of gain changes during one output sampling interval is not less 
than the systems controllability index [5]. We show that the existence of a simul­
taneously stabilizing output injection matrix generically implies the existence of a 
simultaneously stabilizing piecewise constant periodic output feedback gain. The 
algorithm proposed in [1] can be used to search for such an output injection matrix, 
and any such matrix defines a set of stabilizing feedback gains, namely those which 
realize this output injection for the whole family of systems. Naturally it is desirable 
to choose within this set a feedback gain that yields the 'best performance' in some 
sense. Moreover, the condition that an admissible gain realize the same output in­
jection for every system of the family is unnecessarily restrictive, and we propose an 
optimization procedure that allows to relax this condition and therefore to search 
for the optimal gain over a larger set. 

The effect of using piecewise constant periodic output feedback can be viewed 
as increasing the number of inputs of an associated discrete-time system, such that 
the range space of that systems input matrix becomes the whole state space. This 
approach is different from simultaneous stabilization by periodic dynamic compen­
sators proposed e.g. in [6]. The latter are essentially based on dividing an output 
sampling interval into as many subintervals as there are plants to stabilize, and to 
include a deadbeat controller for each plant. Unlike the approach taken here, in this 
case no attention is paid to performance considerations. 

In addition to periodic output feedback for the case where a simultaneously stabil­
izing output injection matrix exists, we consider the dual case where a simultaneously 
stabilizing state feedback gain can be found. The dual approach then requires to 
increase the row rank of the measurement matrix of an associated discretized sys­
tem, which can be achieved by sampling the output several times during one input 
sampling interval, and constructing the control signal from these output samples. 
We give conditions for the existence of a simultaneously stabilizing control law of 
this type. 

This paper is organized as follows. Problem definition and preliminary results are 
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given in Section 2. Section 3 presents results on periodic output feedback, and in 
Section 4 fast output sampling is discussed. In Section 5, the results are illustrated 
by a simple numerical example. 

2. PROBLEM FORMULATION, PRELIMINARY RESULTS 

We consider the problem of stabilizing simultaneously the collection of systems S = 
{Ai,Bi,d}, defined by 

x(t) = Atx(t) + B{u(t) (1) 

y(t) = Cix(t), i=l,...,M. 

yv\thAe$nxn,Be$lnxm,Ce$pxn. 
We assume that each (Ai,Bi,d) is controllable and observable. 
Two types of control laws will be considered. 

a) Periodic Output Feedback 

Output measurements are available at time instants / = kr, k = 0 , 1 , . . . . The 
control signal is generated according to 

u(t) = Kiy(kT), kT + lA<t<kT + (l+l)A, Kj+N = Ku (2) 

for / = 0,1, . . . , where a sampling interval r is divided into N subintervals A = r/N. 
Note that the sequence of gain matrices {KQ, 1\\,..., IOv-i}, when substituted into 
(2), generates a time-varying, piecewise constant output feedback gain K(t) for 
0 < t < r. 

b) Fast Output Sampling 

Here output measurements are taken at time instants t = /A, / = 0,1, . . . , whereas 
a constant control signal is applied over a period r. The control signal is generated 
according to 

u(t) = [L0 Li . . .Lлг-i] 

y(kт -т+A) 
y(kт -т + 2A) 

y(kт) 

kт<t<(k + l )r . (3) 

Convex Programming 

We briefly summarize the convex programming approach proposed in [1], in its 
version for discrete-time systems. 

Let $ t E 9Rn x n, r,- 6 & n x r , q = n + r. Given a family of systems 

5={Ф t -,Г,}, ѓ = l , . . . , M , 
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one can define a convex cone C(S) C 3ft?M and a mapping g : ^qxq -* ?RrXn with 
the properties 

3 F : p(^i+TiF)<l) i=l,...,M 

C(S) -* 0 

and 

WeC(S), F = g(W) => p($i + TiF)<l, i=l,...,M, 

where p() denotes spectral radius. Moreover, by defining a convex function ?RqXq —• 
9£ with the property 

f(w)>n 
one can formulate the search for a simultaneously stabilizing gain F as a convex 
programming problem 

min f(W), 
W£C(S) ^ J 

where the minimization yields a matrix with an upper bound on its norm minimized. 
This problem can then be solved by Kelley's cutting plane algorithm [7], i.e. by 
solving a sequence of linear programming problems. Because of the structure of the 
constraint region, computing separating hyperplanes is particularly simple in this 
case and involves only an eigenvalue problem. 

The above algorithm is guaranteed to converge, if a solution exists, or other­
wise the linear programming problem becomes unfeasible after a finite number of 
iterations. 

3. PERIODIC OUTPUT FEEDBACK 

Consider a system 

x = Ax + Bu, (4) 

y = Cx, 

and let $ = eAA, F = L eAs B ds. Applying periodic output feedback (2) yields 
a closed loop system that satisfies 

x(kT + r ) = ( 4 * + TKC) x(kr), (5) 

where 

r = [$JV"1r...rj, 
K T = [A' 0

T . . .AT_ 1 ] . 

Note that asymptotic stability of (5) implies asymptotic stability of (4). Turning to 
the problem of stabilizing a family of systems {A{, B{, d}fL1, equation (5) suggests 
the following: search for an output injection matrix G with the property 

p($? + GCi)< 1, i=l,...,M, 
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and, if it exists, find K such that 

T t K = G, i = l , . . . , M . (6) 

Any K that satisfies (6) yields a simultaneously stabilizing periodic output fedback 
gain when the corresponding matrix blocks are substituted into 

K(t) = Kh lA<t<(l+l)A, i = 0 , 1 , . . . 

Existence of a Simultaneously Stabilizing Periodic Output Feedback 
Gain 

We show that the existence of a simultanously stabilizing output injection matrix 
generically implies the existence of a simultaneously stabilizing output feedback gain 
K. By 'generically' we mean the following [8]: denote by Q the set of all control­
lable families of systems S for which a simultaneously stabilizing output injection 
matrix exists, and by Q the subset of Q for which a stabilizing periodic output gain 
exists. Then Q is open and dense in Q. (Here we consider Q and Q as subsets of 
SfoM(n2+nm+np) \ 

To prove the above claim, assume G is simultaneously stabilizing, and define 

Ф = 

Фi 

then the linear equation 

Ф 

0 

Фм 

І V - 1 -

Гм 

G 

G 

G 

(7) 

K, 

K N-l 

= G (8) 

has a solution if (<3>, f) is controllable with controllability index Dc, and N >vc; and 
any solution satisfies (6). 

The following Lemma completes the proof. 

Lemma 3.1. Controllability of ($,, r t ) , ii = 1,..., M, generically implies control­
lability of ($, f ) . 

P r o o f . See the appendix. • 

Thus we have established the following 

T h e o r e m 3.1. For a family S of controllable systems, existence of a simultaneously 
stabilizing output injection matrix generically implies the existence of a simul­
taneously stabilizing periodic output feedback gain. 
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Remark. For the case where the matrices $ 1 . . . $ M have no common eigenvalue, 
it follows from the proof of Lemma 3.1 that existence of a simultaneously stabilizing 
output injection matrix always implies the existence of a simultaneously stabilizing 
periodic output feedback gain. 

Closed Loop Performance 

The above result is concerned with the existence of simultaneously stabilizing output 
feedback gains. Now we consider the closed loop performance under a simultaneously 
stabilizing control law. This point is crucial because a time-varying feedback gain 
may, even if stabilizing, cause excessive control action. 

Assume that for a given family of plants a simultaneously stabilizing output injec­
tion matrix exists. Fix N > vc, then the solutions of (8) form a set of simultaneously 
stabilizing gains. Within this set, we wish to find a gain that minimizes a perfor­
mance index. But this set is unnecessarily narrow. If G is obtained by convex 
programming as discussed in Section 2, then it corresponds to an interior point of 
the convex cone C(S). By the nature of the cutting plane technique employed, a 
solution point will always lie on the boundary of a closed convex set contained in 
C(S), thus having a certain distance from the 'stability boundary'. Therefore, by 
not insisting that a feedback gain achieve the same right hand side in (6) for every 
system of the family, minimization can be carried out over a larger set, thereby im­
proving performance. Requirement for simultaneous stability is of course that the 
G.in 

[" Ko 1 [ Gi " 
[^-^...f] : = : (9) 

KN-\ J [ GM 

are all stabilizing. 
To accommodate the above considerations, we define a performance index as 

follows. Consider the auxiliary discrete-time system ($, T, C), with $ and T defined 
as in (7), and 

C = JJ[CI...CM]-

Denote the auxiliary state by £j, i.e. 

6+1 = $ & + - > , 

and consider the N-periodic output feedback law 

ukN+i = KiC£kN, I<i+N = Ki. 

Choose weight matrices 

R, Q = diag(Q1 . . . QM), P = diag(Pi . . • PM), 

whith Re^mxm, Qi, Pi e & n x n positive definite and symmetric. Let ^N denote 
the state that would be reached at instant / = JbN, given £(jb-i)w, if the gain K 
would satisfy (8), i.e. 

ekN = (*N+GC)t(k-1)N. 
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Then we want to find the gain that minimizes 

J(K) = J_Kf uj\ 
1=0 

Q 0 
0 R 

6 
Щ 

+ YJ{íkN-ІlN)TmN-CkN)- (Ю) 
i t = l 

Before we show how to (approximately) minimize this cost function, we discuss 
the effect the two cost terms and its weights have on the solution. Roughly speaking, 
the first term represents 'averaged' state and control energy of all systems of the 
family, whereas the second term penalizes deviation of the 6Vs in (9) from G. As 
stated in Corollary 3.1 below, G{ —* G for i = 1,. . . , M as P —»• oo. 

To see the relation between the first term and the performance of the systems to 
be stabilized, partition £T = [a:(1) ... ;r(M) ] T , and consider the closed loop solution 
of the auxiliary system 

.(1) 

.(M) 

iT*i 

U Ф м J 

1 + ж 
" ФІ_1Гi 

. <Ьlмlтм 

. . . Гł ' 

• • • Гм . 

KQ 

. Ä ' ._l 

фi + м-FІKCi M-FІK C2 

Г r ( 1 ) 1 
~o 

\ 
r 

1 • • -Cм] 

x(м) 

. ° 
/ 

MF[KCM 

M-F.KC! # i + ^ F ^ K C 2 

.(i) 

XM) 
MFMKCi ••• . . . $ M + ^ F ^ K C M 

where F'- = L $ t

- 1 r j .. .T,]. Assuming that the individual systems all start at the 
same initial state, it follows that 

x(t') = (^. + F:-KC7)^0) 

1 м 

đ=жX> 
i=i 

This shows that summing over £TQ£ gives the combined state energy of all systems 
to be stabilized, with the measurement matrices d replaced by their mean-value C. 

Now let <tci be the matrix that satisfies 

£kN+N = ®cl£.kN, 

define Ho = diag(Lb • • • Po), fo = £o£T, and let __ be the solution of the discrete-time 
Lyapunov equation 

Ф c / Ľ Ф ^ - Ľ + Po = 0. (П) 

Then we have 
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Theorem 3.2. The periodic output feedback gain K = {KQ, ... A'AT-I} that min­
imizes (10) is given by 

Ki = -R-lYTKh l = 0,...,N-l (12) 

where A/ is obtained from the solution of the two-point boundary value problem 

Гż/+i 
. л o i 

= н 
. л i . 

+ ' 0 ' 

. 7< . 

with 

H = [ -$-TQ$ $-^(/ + c)fH-1fT) . 

7/ = - ^ - T C ) ^ ' + 1 E C T ( C ' E C ' T ) - 1 , 

and boundary conditions 

fio = 0, AJV = $-1P(nN-G) 

P r o o f . See the appendix. D 

Remark 1. The forcing term in the above two-point boundary value problem 
depends on $ci (via E), which is itself dependent on K. In order to obtain an 
approximate solution, one can replace <£ci by ($N + GC). To justify this, consider 
that the rationale behind the cost function (10) is to allow the 67.'s in (9) to move 
around in a neighborhood of G. So \\d — G\\ will be small, and for this case the 
above will be a close approximaton of $ci. Moreover, a s P - > oo, this approximation 
becomes exact (see Corollary 3.1). 

Remark 2 . The boundary condition on AJV is expressed in terms of QN. To 
compute AJV, partition Hl as 

# ' 
"21 " 2 : 

(13) 

and define 

i=o 

ГІV N. 5ř = /г 2 Пf T -П J

2

v

T , 

then 
AN = h2QN ~ 9-

Combining this and the boundary condition yields 

kN = (I-h2p-l$>)-l{h2G-g). 

Comparing (14) and (15), immediately gives the following 

(14) 

(15) 
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Corollary 3 .1 . For K as in (12), the Gi on the right hand side of (9) satisfy 

Gi —> G as P —• oo. 

Also, for P 
to 

oo, the solution of the two-point boundary value problem simplifies 

Ai = h Í - І V / Í 
21 G 

N-l 
i-j-i 
22 Ъ' 

(16) 

To sum up the results of this section: We have shown that existence of a sim­
ultaneously stabilizing output injection matrix for a family of systems generically 
implies the existence of a simultaneously stabilizing periodic output feedback gain. 
The algorithm in Section 2, applied to {($N)T, CT}, can be used to determine if 
such a matrix exists, and if so to find one. If it exists, Theorem 3.2 provides a 
way to compute an output feedback gain. One can start with P large, which forces 
Gi —• 67, i = l,..., M. To relax this condition and allow searching over a larger 
set of gains (and at the same time put more relative weight on performance), one 
can solve the two-point boundary value problem for decreasing values of P, until 
a satisfactory performance is achieved, or the solution ceases to be simultaneously 
stabilizing. 

4. FAST OUTPUT SAMPLING 

In the previous section, we considered the case where a simultaneously stabilizing 
output injection matrix exists, and a periodic output feedback law (2) is used to 
increase the column rank of the input matri: of the system discretized at output 
sampling rate. In this section, we consider the dual case, where a simultaneously 
stabilizing state feedback gain exists, and fast output sampling (3) is used to increase 
the row rank of the measurement matrix of the system discretized at input sampling 
rate. 

Consider again a continuous-time system (A,B,C). Let ($,T,C) denote this 
system sampled at rate 1/A, and (<3>T, r r , C) the same system sampled at rate 1/r. 
Assume F is a state feedback gain such that ($T+TTF) is stable and has no poles at 
the origin. Let yT

T = [y T ( fcr-r+A) . . . yT(kT)]T, and use ykT+T — (C0+DE).CjfeT 

and (3) to obtain the closed loop system 

xkт+т = (Фт + Г T LC) xkr = (Фт + Г T F) xkт, 

where 

and 

C 0 = 

L = [LQ .. .Lлг-i], 

C = ( C 0 
+ D E ) ( Ф т + Г т E ) - \ 

" CФ ' 
CФ2 

, D = 

Cľ 
CФľ 

CФN . CY^ 

(17) 

(18) 
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A matrix L that satisfies LC = F exists if FT g Im (C T ) . Introduce the following 
condition: 

Definition 4 .1. For an observable system (<$, T, C), let 

Tt = [(#'-1)TC7T ...CT], 

then a gain matrix F is said to satisfy condition (*) for this system if 

J 

$. ImT., l = l,...,v0, (&)TCT + FTrTT. 
I 

where v0 is the systems observability index. 

The following is straightforward to verify. 

Lemma 4 .1 . An output feedback gain matrix L that satisfies (17) exists if (<$, C) 
is observable and F satisfies condition (*). 

Now we turn to the problem of simultaneously stabilizing a family of systems 
{Ai, Bi, Ct}fLi. Assume there exists F such that (<&T.i + TT,iF) is stable and has no 
poles at the origin for i = 1 , . . . , M. Define 

<l = diag($i . . . $ M ) , $r = d i a g ( $ i . T . . . $ M . T ) , 

f = diag(rx . . . TM) , f T = diag(IYT . . . TM,T), 

C =[C\.. .CM], 

E = d i ag (F . . .F ) . 

It follows from Lemma 3.1 that observability of ($,C) generically implies observ­
ability of (<I>,C7). Thus, assume that ($,C) is observable with observability index 
v0, fix N > v0, and let C be the matrix obtained when substituting the above into 
(18). Then we have 

Theo rem 4 .1 . If F satisfies condition (*) for ($,T,C), then 

LC = [F ... F] 

has a solution L, and any such solution simultaneously stabilizes {Ai,Bi,d} when 
substituted into (3). 

Remark . Note that the state feedback gain F is assumed to be such that there 
is no closed loop pole at the origin for the whole family of systems to be stabilized. 
When using the convex programming algorithm introduced in Section 2 to search 
for a simultaneously stabilizing F, it is straightforward to change the definition of 
the convex cone C(S) such that (&T.i + TTjF) has all roots inside the unit disc and 
outside a disc with radius e around the origin for i = 1 , . . . , M. 
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5. NUMERICAL EXAMPLE 

In this section we illustrate the two proposed types of control law with a simple 
numerical example. 

We consider the problem of stabilizing the system 

Xi 

. *2 . 
= 

" 0 a, " 
- 1 0 

Xi 

. x - . 
+ 

' 0 " 
1 

y = [(i 0]x, xf = [1.0 1.0], 

under two operating points 

a i = 0 . 5 , < i = 3 . 0 , 

and 
a 2 = 1.5, C2 = l-0. 

Discretized at a sampling interval r = 1.0, state and input matrices for these oper­
ating points are 

$ r . l = 

$r.2 = 

0.760 0.459 
-0.919 0.760 , lYi = 

0.240 
0.919 

0.339 1.152 " 
-0.768 0.339 , Гт.2 = 

' 0.661 " 
0.768 

Periodic Output Feedback 

Using the convex programming algorithm presented in Section 2, a simultaneously 
stabilizing output injection matrix obtained after 15 iterations is 

GT = [0.1061 -0.1817]. 

For N = 4, ( $ , f ) is controllable. We choose 

R=l, Q = 
1 0 
0 1 

P= p 
1 0 
0 1 

Q = diag(Q,Q), P = diag(P,P). 

For p = 106, application of Theorem 3.2 yields a gain sequence 

{A',} = {6.77,-17.06,16.27,-6.42}. 

The closed loop response to XQ under the control law (2) with this gain is shown in 
Fig. 1. 

Reducing the terminal cost to p = 104, gives a gain sequence 

{Ki} = {0.95,-0.25,-0.39,-0.76}. 
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The corresponding closed loop response is shown in Fig 2, 

55.0 

37.4 

aj System 1 b) System 2 

Fig . 1. Closed-loop response with periodic output feedback, p = 106. 
Above: states, below: control signal. 

Fast O u t p u t S a m p l i n g 

By convex programming, a simultaneously stabilizing state feedback gain obtained 
after 14 iterations is 

F = [-0.2467 0.5100]. 

For N = 4, (<£, C) is observable. Using Theorem 4.1, an output gain is computed as 

L = [7.45 - 25.75 30.53 - 12.20]. 

The closed loop response to x0 under the control law (3) with this gain is shown in 

Fin;. 3. 

-1.71 
0.00 4.00 8.00 12.0 16.0 20.0 20.0 

3 81 

2.09 

0.37 

-1 36 

-3.08 

-4.81 

Ћ kм^ irTгV--" 

O.OO 4 . 0 0 8 . 0 0 1 2 . 0 l б . O 

И 
-ţfVWW a-%-

4.00 8.00 

a.) System 1 b) System J 

Fig . 2. Closed-loop response with periodic output feedback, p = 104. 
Above: states, below: control signal. 

16.0 20< 
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-1.01 

-0.37 [ 

0.00 4.00 8.00 12.0 16.0 

a) System 1 b) System 2 

Fig . 3 . Closed-loop response with fast output sampling. 
Above: states, below: control signal. 

A P P E N D I X 

P r o o f of L e m m a 3 .1 . 

Let Q be the set of families S = {<!>{, L\} of controllable systems for which a simul­
taneously stabilizing output injection matr ix exists, and Q the subset of Q for which 
(<$, T) is controllable. We have to show tha t Q i open and dense in Q, or equivalently, 
tha t the following holds 

(i) VSeQ, 3t>0:B£(S)cQ 

(ii) JS$Q, V e > O : t 3 e ( 5 ) n g ^ 0 , 

where Bt(S) denotes a neighbourhood of S with radius e. 
We show tha t (i) holds. Consider any S 6 Q. Controllability of ( $ , ? ) implies 

tiiat no left eigenvector g of $ is orthogonal to T 

q(X)Ф = Xq(X) í(A)ř#[0...0]. (19) 

Let Vj(X), j = l , . . . , / i (A) be the indices of those matrices <&Uj of which A is an 
eigenvalue. Part i t ion q = [qi .. - 9 M ] , then (19) is equivalent to 

quW&uj = A g V i ( A ) 

X X ( A ) r < ^ [ 0 . . . 0 ] , VA€«r(*). 
3=1 

(20) 

Define 

c(X) 

KA) 

Ě ^ І Í A ) ^ >0 . 
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Now let S be perturbed to S + AS; assume first that the perturbation affects only 
the input matrix T. ($, f + A T ) is controllable if every left eigenvector q of $ satisfies 

^ g ^ ^ + A r j ^ O . J ] , VAe<r($) 

3-1 

This clearly holds if 

Y^Я^WAT^ 
i=i 

<c(A), V A Є Í T ( Ф ) , 

which shows that there exists a neighborhood of f for which ($, f + Af) is con­
trollable. (For multiple eigenvalues, the argument can be adjusted by considering 
invariant subspaces.) 

Next, consider a perturbation of the state matrix <£ to $ + A<&. Let AqVj denote 
the change in the eigenvector partition with index Vj as defined above, caused by this 
perturbation. Then (<$ + A$, T) is controllable if every left eigenvector of $ + A $ 
satisfies 

KA) 
X > „ i ( A ) + AqVj(X)) TVj # [0.. .0], V A e *(*) 
J'=I 

This holds if 
M(A) 

E Д . Ï » Í W Г . І 
І = I 

<c(A), VAє<r(Ф), 

which shows that there exists a neighborhood of $ for which (<$ + A$, f) is control­
lable. 

Combining these two results shows that there exists a neighborhood of S which 
is contained in Q\ since S was arbitrary, this proves (i). 

To show that (ii) holds, consider any family S for which ($, T) is not controllable. 
Then there exist some eigenvectors q of $ such that qT = [0 . . . 0]. Density of Q 
follows from the fact that it is possible to choose an arbitrary small perturbation 
that makes qAT ^ [0 . . . 0]. This completes the proof. • 

Remark. The fact that controllability is a generic property, is well known; see [9], 
where a somewhat different definition of genericity is used. What has been shown 
here is that generically, the parallel connection of controllable systems as in (7) is 
also controllable. It follows from the proof that the parallel connection is always 
controllable if the systems share no common eigenvalues. Moreover, if they do share 
eigenvalues, the families of systems whose parallel connection is not controllable, 
can be identified as belonging to a union of fis linear varieties determined by (20), 
where fis is the number of shared eigenvalues. 
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Proof of Theorem 3 .2 . 

It must be shown that K given by (12) minimizes J. We drop the tilde on system 
and cost matrices. 

The cost function (10) can be rewritten as 

J = t r X l V + fí.Cr" (K,C)T]\Q
0 ° 

1=0 

& + QjCKiC ] E 

+ tr CT(QN - G)TP(QN - G) C*E, (21) 

where 
j - i 

ft = £*,"i'"1n-i, (22) 
i=o 

and E is the solution of the discrete-time Lyapunov equation (11)-
Denote by SN the space of matrix sequences {Mo, Mi . . . MN-\}. Define an inner 

product on SN 
J V - l 

(M,N) = ] T t rM T N , 
/=o 

and the operator L : SN(^mxp) -> SN($nxP) by 

LM = {L0M, LiM,..., LN-iM}, 

/ - i 

L,M = ^ ^ - J ' - ^ M j , L0 = 0. 
j=0 

With these definitions, (21) can be written as 

J = <{$'} + LA'C,Q({$'} + L^C)E) + (A'C ,H^CE) 

+ t r C T ( f i J v - C ? ) T p ( f i i V - G ) C , S , (23) 

where K stands for the sequence {A'/}, and {$'} for {/, $ , . . . , $A r ~ 1 }. 
Employing the adjoint operator L*, and introducing the positive definite operator 

Y : SN($mXp) -+ 5^ (^ m x P) and the sequence x G SN(^miiri) defined by 

Y, = H+L*QL, 

Xl = L1Q{^1}, 

obtain 

J = (KC, (YKC + 2X) E) 

+ tr CT(QN - G)TP(QN ~~ G) CE 

+ (terms independent of K). (24) 
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For K to minimize (24), the first variation 6 J must be zero for all possible pertur­
bations K + cK 

8J = (jKC, 2(YKC + X + TT{$N-l-1}TP(LNK - G) c) s ) = 0, 

which holds if 
YK = - I S f - r T {$ A r - ' - 1 } T P(L A rA ' - 67) 

where 
^ = CT(CEC7T)-1 . 

Substituting for X and Y gives 

Ki = -R-1 (L*Q{LjK + fcJ"£tf} + TT(^N-l~1)TP(LNK - G)) . 

Using 
N-l 

L:M = YT j2 (fy-'^Mj 
i's-l+l 

nj=LjK, 

• 

A, = -p-1rTA/, 

and 

we get 

where 
І V - 1 

A, = ]jT ( ^ y - ' - ^ ^ j + $**£#) + ($ A r - ' - 1 ) T P(f i i V - C7). (25) 
j=i+i 

A/ and fi, as given by (25) and (22), are solutions of the difference equations 

A, = $TA,+ i + Q(Q,+i + $ / + 1 £t f ) , 

n/+i =$n, + rK,, 

with boundary conditions 

fi0 = 0, AAT = $-Tp(nN - G). 

Rearrangement yields the statement of the theorem. 

(Received September 6, 1994.) 
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