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K Y B E R N E T I K A - V O L U M E 26 (1990), N U M B E R 2 

CONTRIBUTION TO PRIOR TUNING 
OF LQG SELFTUNERS 

MIROSLAV KÁRNÝ, TOMÁŠ JENÍČEK, WERNER OTTENHEIMER 

A prior prediction of control quality achievable by the optimally tuned LQG selftuner of 
a fixed structure is proposed. The prediction helps to judge in advance the usefulness of the 
intended selftuner implementation. The proposed algorithmization makes also possible the off
line tuning of particular penalties in accordance with user's wishes. In this way, the used Bayesian 
methodology (together with existing solution of structure determination problem) provides 
algorithmic tools for systematic pre-tuning of majority of user's knobs. 

1. INTRODUCTION 

Selftuning controllers have made substantial progress both in the underlying 
theory and in the algorithmization [12]. In spite of success in some applications 
attempted, a significant market penetration has not been reached yet. There is a couple 
of causes of this state. In our opinion, relatively high complexity of the "tuning 
of selftuners" is one of them. Current design methodologies leave too many "knobs" 
to be committed by a user which cannot have deep knowledge of these controllers. 

The situation calls for a computer-based support for implementing selftuners. 
The need has been recognized by many investigators in the field and specialized 
expert systems have been proposed [13]. As a rule, selftuners are used in a sub
stantially simpler informational environment than that met in medicine, economy 
etc. This fact offers a chance to build up the discussed computer support in a tra
ditional, algorithmically oriented way. For instance, the choice of a structure of 
linear regression models which are used in majority of selftuners is essentially resolved 
[4], Recently, a promising procedure for data-based selection of a sampling period 
has been proposed [7]. 

The paper contributes to a dreamed up CAD by theoretically supported algorithms 
which transform the user's wishes and the data collected on the process into the 
structure and initial conditions of the designed selftuner. Specifically, a prior pre
diction of control quality achievable by the optimally tuned selftuner of a fixed 
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structure is proposed, helping to judge in advance the usefulness of the intended 
selftuner implementation. As a by-product some important user's knobs and initial 
conditions can be systematically pre-tuned. 

The layout of the paper is as follows: The general problem addressed is formalized 
and its Bayesian solution given. Then the application to the linear normal regression 
model and to the multistep quadratic criterion is given. A description of algorithmic 
aspects and possible ways of pretuning of some user's knobs is included. The ex
position is illustrated by a simulated example. 

In conclusions, the proposed algorithm is shown to complete the list of tools 
formerly developed for prior tuning of LQG selftuners. 

2. NOTATION 

In the paper, the following notation is used: 

' transposition (column vectors are assumed); 
t discrete time (t e {1, 2, ..., T}) ; 
Tcontrol horizon (Te {1, 2, ..., oo}) ; 
y(t) system output at time t; 
u(t) system input as time t; 
d'(t) = [ / ( t) , u'(t)~\ measured data; 
d(\ ...t) = {d(l),d(2),...,d(t)} ; 
z'(t) = \u'(t), d'(t — 1), ..., d'(t — n), 1] regression vector (n is system order); 
0 unknown parameters in system description (finite-dimensional case is assumed 

only); 
P matrix of regression coefficients; 
R covariance matrix of the stochastic component of the regression model: 
co design (multivariate) parameter (typically penalty on input increments); 
L(0(T, d(l ... T)) loss function specified by the fixed design parameter co; 
C control law (mapping C (available information): d(l ... t) -*• u(t + 1)); 
(c.) p.d.f. (conditional) probability density function; 
p(a | b, c) c.p.d.f. of random variable a conditioned on b, c (no distinction is made 

between random variables, their realizations and arguments of p(- | •)); 
p(a | t; b) = p(a | d(l ... t), b) ; 
Ec\_a | b, c] conditional expectation determined by the c.p.d.f. p(a | b, c) and a control 

law C; 
@u Qi> * = 1> 2, . . . ,N random samples generated in Monte Carlo study; 
R1/2 a square root of the matrix R; 
IX\\HX — ^x(x'H'xHxx) square of the weighted quadratic norm of a matrix x (if x 

reduces to a column vector trace operation tr( ') is superfluous); 
Sz(&) extended stationary Riccati matrix related to the regression model specified 

by the parameter 0. 
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3. GENERAL PROBLEM FORMULATION AND SOLUTION 

The relation of the system output y(t) at the time t to the system input u(t) and 
to the "past" input-output data d(l ...t—i) = {d(l), d(2), ..., d(t — 1)} (with 
d' = [y', u'~\) is assumed to be describable by a system model [11] determining 
the c.p.d.f. 

p(y(t)\t- l;u(t),0) (!) 

parametrized by a finite-dimensional unknown parameter 0. Available knowledge 
about the unknown parameter is expressed in terms of the prior p.d.f. 

p(&) = p(0 | preliminary data) (2) 

which has been constructed using Bayesian methodology [11] from the model (1), 
expert knowledge and data measured on the system within a preliminary identification 
stage. 

The system (1) will be controlled by a (selftuning) controller the control strategy 
of which is specified by a sequence of control laws, i.e. by a sequence of mappings 

Conformation available): d(l ... t) —> u(t + l) t = 1, 2, ..., T — 1 (3) 

where the control horizon T is assumed to be potentially infinite, i.e. T = oo is 
achieved by continuous extension of the finite horizon case [5]. 

The performance of the control strategy to be designed is measured by the loss 
function 

Lm(T,d(\...T)) (4) 

where co is a design parameter (typically, penalty on input increments). 
The loss function (4) does not suit for a prior evaluation of control strategies as 

it depends on the random constituents of the input-output relation and on the 
uncertain parameter 0. Instead of the loss function, if the parameter 0 is known, 
the (conditional) expectation 

Ec[Lm(T,d(l...T))\0] (5) 

is minimized with respect to admissible control strategies C(*). 
To our purposes, we can restrict to the loss functions which can be interpreted as 

sample moments of the measured data (typically, variance). For them, if the con
troller stabilizes the system characterized by the parameter 0, it can often be shown 
that 

LjT, d(l... T)) - Ec[Lw(T, d(l ... T)) | 0 ] - 0 as T -> oo (6) 

in some sense. 
Assuming validity of the asymptotic equality (6) the (expected) control quality 

can be predicted for a chosen control strategy if the complete system description 
is known. If, however, the parameter 0 is incompletely known the conditional ex
pectation Ec[- | 0 ] is uncertain, too. 
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The paper answers the question 

What prediction of the expected loss (5) can be made (at least for T -> oo) 
using knowledge of the c.p.d.f.'s (1), (2) only? 

in a special practically important case of the selftuners based on the enforced separa
tion of identification and control synthesis. The controllers of this type 
— construct recursively estimated @(t) of the unknown parameter 0 using the 

observed data d(\ ... t); 
— determine the control law C0(@(t)) minimizing the criterion (5) under the as

sumption that 0 = 0(t), i.e. 

Co(0(i)) = arg min EC[LW(T, d(\... T)) | 0(ij\ (as T - oo) (7) 
c 

— generate the new system input using this control law 

Co(0(t)):d(l...t)->u(t + I) (8) 

Ideally, it holds 

C0(@(t)) - Co(0) -> 0 as t -> oo (9) 

where Co(0) is the control law minimizing the loss function (5). 

We shall predict the control performance under the idealized situation assuming 
that the asymptotic relations (6), (9) hold. For ihQ fixed design parameter co, the 
predicted quantity will be 

qa{0) = min lim EC[L0,(T, d(l ... T)) | 0] (10) 
c(©) r->oo 

This equation can be taken (formally) as the definition of the mapping 

M: 0 -> q (11) 

Within Bayesian framework, prediction of the uncertain quantity qm(0) is given 
if its p.d.f. p(q) is specified. As the relation of the uncertain parameter 0 and of the 
minimum loss q(0) is deterministic, the solution is conceptually trivial: 

Find the p.d.f. p(q) if the transformation M: 0 
and the p.d.f. p(0) are given. 

Remarks. 

— The stationary expected loss is predicted under the ideal situation described by 
the assumptions (6), (9). In this sense, an "optimistic" lower bound of the practi
cally achievable loss is predicted. 

— For brevity, technical details related to the symbols like arg min, min ... are 
omitted. 
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— The design parameter co has been introduced in order to facilitate the subsequent 
task of its automated prior tuning (see the discussion in Section 6). In the body 
of the paper, it will not be used and will be hidden. 

— Our formulation could be generalized by analyzing the function defined as 
follows: Choose the control law 

Co(0) = arg min lim EC(@)[L(T, d(\ ... T)) | 0 ] 
C(@) T^oo 

and define, for this fixed control law, the function of the system parameter 0 
and its estimate & 

q(0, 0) = lim EC(@)[L(T, d(l ... T)) | 0 ] 
r->oo 

For the problem treated, practical significance of such sensitivity study is, how
ever, restricted. 

— The prediction problem has been formulated for loss functions depending on 
observable data. An extension to a state dependent loss is straightforward. 

4. CONCEPTUAL SOLUTION FOR LINEAR NORMAL REGRESSION 
MODEL AND QUADRATIC LOSS 

This section describes a specific choice of the p.d.f.'s (1), (2) and of the loss function 
(4). The prediction problem is then solved conceptually. 

4.1 Problem ingredients 

The c.p.d.f. (1) specifying linear normal regression model of a finite order n 
takes the form 

p(y(t) | t - 1; u(t), 0) = p(y(t) | z(t), P, R) = NyU)(P' z(t), R) (12) 

where we have denoted 

Ny(m, R) normal p.d.f. of y specified by the mean m and the covariance R; 
P matrix (of appropriate dimensions) of regression coefficients; 
z(t) regression vector consisting of linear functions (e.g. differences) of several 

delayed inputs and outputs. Typically, 

z'(t) = \u'(t), y'(t - 1), u'(t - 1), ..., y'(t - n), u'(t - n), 1]; 

with n denoting the order of the system. 
0 = (P, R) unknown parameters of the model. 

The model (12) serves as the basic one for majority of practically used selftuners. 
Its numerical feasibility and relatively high flexibility are the strongest reasons for 
its use. This also explains why the algorithmization has primarily been developed 
for this model in [3]. The present paper reports the achieved results adding to them 
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a parametric approximation of the required p.d.f. (see Section 5) and extending 
the exploitation of the evaluation performed. 

It can be shown [11] that Gauss-inverse-Wishart distribution is the self-reproducing 
prior p.d.f. p(0) = p(P, R) for the linear normal regression model (12). For this 
prior p.d.f., Bayesian identification which determines the p.d.f. (2) reduces algo-
rithmically to recursive least squares. 

The p.d.f. (2) will be (approximately) Gaus-inverse-Wishart if any prior p.d.f. 
(nonzero for possible values of G) has been modified by sufficiently informative 
preliminary data. Thus, without a substantial loss of generality, we can restrict 
to the prior p.d.f. of Gauss-inverse-Wishart form. Then any available algorithmiza-
tion of recursive least squares can be used for specifying the needed statistics from 
preliminary data. A factorized version [1] is preferable as its results fit to our next 
treatment. 

The predicted quantity will be the achievable control quality of selftuners optimiz
ing the expectation of the multistep quadratic loss 

Up, d(\ ...TO) = i {[Kr)!i, + i [iHOli + l-WliJ} (i3) 
1 t=\ 

where 
\X\HX — x'H'xHxx is square of the quadratic norm (of a vector x) with square-root 

weights stored in the matrix Hx; 
Thus the design parameter co consists of the matrices Hy, Hu, Hz. For stability reasons, 
the matrix Hz should have sufficient rank [5]. 

4.2 Solution 

It is well known that the minimal loss for the system with fixed parameters P, R 
can be found by solving the discrete-time Riccati equation or by algebraic meth
ods [8]. We have used the ready efficient algorithm for solving a factorized version 
of the Riccati equation as it fits to the overal design of the selftuners [5]. The specific 
way of the evaluation is, however, irrelevant to the next treatment. The existence of 
a numerically reliable algorithm which is able to evaluate the strongly nonlinear 
("Riccati") mapping 

9t\ P, R -> q e [0, oo) (14) 

is of importance for the approach. 
Numerical realization of the mapping prevents us a priori from evaluating the 

p.d.f. p(q) analytically. A version of the Monte Carlo method has been found [3] 
the only procedure without excessive requirements on computational power. The 
idea is quite straightforward: Selecting N independent random samples of 0, say 
©i i = 1, 2, ..., N, distribution according to the p.d.f. p(&) we find N independent 
samples of q, say qh i = 1, 2, ..., N, taking simply 

qv = a(et) (15) 
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The solved problem is then formulated as the estimation of an unknown p.d.f. 
p(q) from N independent samples having this distribution. 

Couple of methods have been elaborated for solving the task. As it was little 
known about possible shape of the searched for p.d.f. p(q), the most flexible non-
parametric Bayesian approach to the p.d.f. estimation in the vein [2] was adopted 
in [3]. The experience gained from the nonparametric estimation has given us the 
chance to search for a widely valid parametric version of this estimation part. The 
search has been motivated pragmatically: the nonparametric approach is time 
consuming. With surprising precision, the searched for p.d.f. has been found to be 
log-normal. Its estimation and other algorithmic details will be given in next section. 

Remarks. 

— The chosen loss function corresponds to the regulation problem with penalized 
inputs. It has been chosen because of notational simplicity. An extension to a non
zero setpoint and to the practically more sensible penalty on input increments 
is straightforward. 

— In the loss (13), LD or UD factorizations of the weighting matrices [1] are 
practically used. Simpler notation is the only reason for the description in terms 
of the square-root version. The same simplification will be applied to recursive 
least squares discussed in next section. 

— The need for numerical reliability of the algorithm realizing (14) can be recognized 
if we recall that the minimal loss q is finite only if the coefficients P specify 
a stabilizable system. The measure assigned by Gauss-inverse-Wishart distribution 
to the "unstabilizable" P's is zero. Formally, such coefficients make no harm 
when transforming the c.p.d.f. p(&) to the p.d.f. p(q). However, the probability 
that we shall select poorly stabilizable P's is always nonzero. 

5 ALGORITHMIC DETAILS 

The evaluation sketched in preceding section will be summarized here in a com
mented "flowchart". 

1. Data checking and structure determination 

Serious outliers are removed from the collected data set, the algorithms for structure 
determination [4] and sampling determination [7] are used for specifying the regres
sion model structure. This point is mentioned here for completeness only. 
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2. Construction of prior p.d.f. p(0 | preliminary data) 

Recursive least squares are applied to the available data under the assumption 
that the structure of the regressor has been selected. The initial conditions either 
reflect poor information before data exploiting or expert knowledge quantified 
in the way described in [6]. 

Gauss-inverse-Wishart p.d.f. p(P, R) can be characterized uniquely by 

df = number of data pairs + nonnegative initial condition; 

P = E[P | preliminary data] = least-squares estimate of the coefficients P; 

- r r n , . . . , -, remainder of least squares 
R = E[R | preliminary data] = ; 

df — dimension of output — 1 
RijGG' = covariance of ith columns of P with G being square-root of the regression 

matrix produced by least squares. 

3. Generating independent samples of parameters 

For Gauss-inverse-Wishart p.d.f. p(P, R), the coefficients P are normally distribut
ed on the noise covariance R. Thus, the required samples of Pt conditioned on Rt 

can be found by affinely transforming mutually independent, zero-mean and unit 
variance normal entries of a matrix E (of the same dimensions as P) available at any 
computer. Denoting R\12 a square root of ith realization of the covariance matrix 
R, the transformation can be written 

Pi = P + GE£R;/2 

The generating R;, which has inverse-Wishart distribution, is a bit more complicated. 
A transformation of normally distributed variables recommended in [14] is used. 

4. Generating independent samples of achievable loss 

For a fixed parameter 0 = (P, R), the transformation (15) has the following 
structure 

q(0) = UR1/2 S/<9)||2 (16) 

The matrix Sy(0) and related control law C(0), determining new input u(t + 1) 
as a solution of the linear relation C'(0) z(t + 1) = 0, are contained in the square 
root of the (extended) stationary Riccati matrix 

0 0" 
(17) sjfl) C( ) S/ ) 0 

A detailed structure of the matrix Sz(0) and an efficient algorithmization is described 
in [5]. For our presentation, it is important that the algorithm can be interpreted 
as successive approximations for constructing the matrix Sz(0). A dynamic-program-
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ming interpretation shows that the weighting matrix Hz is the proper initial condition 
of the performed iterations. 

The relation of null-space of Hz and properties of the system coefficients is decisive 
for achieving convergence to the optimal solution. For unknown parameters, the 
matrix Hz has to have sufficient rank. Specific values of Hz influence rate of con
vergence achieved (sometimes substantially). The latter property is recalled for 
stressing importance of the Hz choice. Other details or appropriate references can 
be found in [5]. 

5. Estimation of the p.d.f. p(q) 

The experience gained from the nonparametric estimation of the p.d.f. p(q) leads 
us to hypothesis that samples qt are log-normally distributed. Since that, the non-
parametric estimation has served us for comparison only. For this reason, the 
parametric version is sketched only. 

Log-normality of q means that the quantity £ = In (q) is normally distributed 
with an (unknown) constant mean Z, (= In (q) for some q > 0) and a variance s. 
The Bayesian estimation of the assumed trivial model 

p(C) = Nc(C,s) (17) 

reduces to recursive least squares. Using ready formulae given e.g. in [11] we find 

p(C\Cu..;CN) = p(C\qi,...,qN) = Sttf, S, N + 1) (19) 
where 
St^m, s, k) denotes Student p.d.f. of £ specified by the expectation m, the variance s 

and the number of degrees of freedom k; 
L, is the arithmetic mean of the random samples £,-; 
s is the remainder of least squares divided by N + 1; 
N is the number of samples used for constructing the predictive p.d.f. p(£ I qx, ..., qN). 
Transforming the p.d.f. £ back to the quantity of interest we find the final form 
of the searched for p.d.f. 

p(q \qx, ..., qN) = — (20) 

, l 1 + ' l n : M \ -
V (N+l)s W / 

where 
c is an appropriate constant normalizing the integral of the p.d.f. to unity; 
4 is the geometric mean of the random samples qx, ..., qN. 

Remarks. 

— The heavy tail of log-normal distribution reflects the expected loss when the 
selected P/s describe poorly stabilizable systems. 
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— The geometric mean is known to be always smaller than the arithmetic one. 
It characterizes a "center" of samples from a heavy-tailed distribution better 
than the arithmetic mean. 

— At present, a fixed number of the random samples is used. Of course, other 
stopping rules can be applied. 

6. OTHER OUTPUTS OF DATA ANALYSIS 

Our central problem, i.e. the prediction of achievable control quality, has been 
resolved in preceding sections. The evaluations performed can be (with little extra 
effort) used for deciding among options available for tuning of the controller. Pos
sibilities are judged in this section. 

Two types of the options can be distinguished: 

— Objective options reflect degree of knowledge available about the process to be 
controlled. Their choice can be and should be done automatically. 

— Subjective options correspond to user's wishes and preferences. They are true 
user's knobs. CAD should aid in expressing the requirements quantitatively or in 
transforming them from a user-friendly representation to a selftuner-friendly 
representation. 

The identification options belong to the objective class in the above dichotomy. 
Bayesian identification provides the needed (conceptual) algorithm, i.e. it gives 
rule how to combine prior knowledge and (preliminary) data for the controlled 
design. The information is compressed into the p.d.f. (2), which can be evaluated 
in the particular case treated: the statistics needed for the assumed Gauss-inverse-
Wishart distribution are gained by recursive least squares applied in the preliminary 
stage. 

The design parameters determining the used loss function are subjective in general. 
For the quadratic loss, the factors of the penalization matrices in (13) should be 
selected. The subsequent discussion of the terminal penalty Hz and of the pair Hy, H„ 
will be separated as Hz can be given objective character. 

1. Choice of H2 as initial guess of Riccati matrix. 

The selftuner working in real-time is able to search for the minimizing argument 
in (7) within a limited horizon only. It makes a quantitative choice of Hz important 
(because of the influence of Hz on the rate of convergence, see the first remark 
in. Section 4.2 and step 4 in Section 5). 

The highest rate is achieved if Hz in (13) is close to the matrix SZ(Q) (17) which is 
composed of the optimal stationary control law and of the square root Riccati 
matrix. It is thus reasonable to choose for real-time use 

Hz — Sz — a preliminary-data-based point estimate of Sz(&) 
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We have chosen 

£= l fS z (<9 ; ) 
N ;=i 

where S2(6>,) is the stationary value of the matrix Sz(&) (17) determined for /th 
parameter sample. This estimate can be justified by applying the nonparametric 
Bayesian estimation under poor prior information. This is clearly "cheap" by
product of the evaluations performed. Due to outliers, it is more probable that Sz(&) 
will be "overestimated" by Sz than "underestimated". This situation can be shown 
safer (both from stability and rate of convergence view points) than the opposite one. 

2. Choice of Hy, Hu. 

As a rule, user's wishes are expressed in other terms than in the terms of the 
quadratic loss. The developed tools give us a chance to tune the input and output 
penalties according to these wishes. The idea si simple: 

For fixed Hu, Hy and a sample 0U the full description of the closed loop behaviour 
is available. Consequently, the stationary distribution of the corresponding state 
can be evaluated, i.e. the distribution of the stationary state (which is uncertain 
due to © uncertainty) can be constructed and analyzed. If the results of the analysis 
are satisfactory from the user's view point, the tuning is stopped, otherwise the 
penalties are changed (either manually or automatically). 

Search for a balance between the input and output dispersions serves as an example 
of the sketched methodology. For each optimal closed loop realization, these disper
sions are evaluated and their distributions are constructed in the same way as that 
of q. Then, it is easy to see whether the ranges of the probable input-output data 
are acceptable or not. At present, an automatic search for proper input penalty 
for SISO systems is resolved. It uses regula falsi method resting on monotonic 
relation of the penalty and input dispersion. 

7. ILLUSTRATIVE EXAMPLE 

The following example illustrates behaviour and computational demands of the 
designed tool. 

Series of experiments have been performed on IBM PC AT compatible using 
a package for simulation, identification and control (SIC) [9]. This package contains 
also the mentioned algorithm for the structure determination of regression models 
[4]. SIC runs under a special monitor KOS (abbreviation of Czech name for an 
interactive supporting system) [10]. The intended CAD package will use services 
of KOS, too. 

A typical example of third order single-input single-output system is presented. 
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Simulated system 

p(y(t)\t- l;P,R) = Ny(l)(y(t),R) 

with the conditional expectation of the form 

P(t) = P' z(t) = 

[b0, au bu a2, b2, a3, b3, k] [u(t), y(t - 1), ..., y(t - 3), u(t - 3) 1]' = 

= 2-01j/(t - 1) + 0-00793u(t - 1) - l-35j;(t - 2) + 00236u(t - 2) + 

+ 0-301y(t - 3) + 0-00435«(t - 3) 

and the variance 

R = 1 

Identification 

White gaussian noise with zero mean and unit variance was used for exciting the 
system through the identification phase. Bayesian identification was used estimating 
the linear normal model with the correct third order. Recursive least squares produc
ing the needed statistics for Gauss-inverse-Wishart distribution were initialized 
as follows 

p = 0 , R = 1 , G = I, df = 3 

where I denotes unit matrix. 
Five hundred data pairs were processed without forgetting. 

Loss function 

Quadratic loss (13) predicted was specified by 

H2 = 1 , H2 = 0-2 , HZHZ = 100/ , T = 2000 

Simulation of selftuner behaviour 

The simulated system was controlled by the LQ selftuner which assumed the 
correct model structure and optimized the quadratic criterion specified by the weights 
given above. It used the enforced separation of identification and control design. 
The optimization was based on so called iterations-spread-in-time (1ST) strategy. 
1ST strategy computes single iteration of Riccati equation per identification step 
using the preceding results as initial condition (for details see [5]). Prior information 
was specified by 

P = [1, 0-9, 0, ..., 0] , R = 3 , G = 31, df = 3 

The long-run sample value of the assumed quadratic loss (10 000 simulation steps) 
was 42-3. 
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Results of prediction 

The result of the proposed parametric prediction based on 2000 samples can be 
seen in Figure 1. Plausibility of log-normal form assumed can be judged from Figure 2 
which shows results of the nonparametric estimation based on 1000 samples. The 

Fig. 1. Shape of the p.d.f. p(q) constructed under the log-normal hypothesis 
(t marks the realization of the sample loss through the adaptive control simulation). 
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Fig. 2. Nonparametric estimate of the p.d.f. p(q) 
(t marks the realization of the sample loss through the adaptive control simulation). 

sample loss found through the simulation of selftuning control is in good agreement 
with the prediction: its value falls in the range of highly probably loss values. 

Computation time was about 3 minutes in the parametric case, about 15 minutes 
in the nonparametric case. Substantial time saving has been reached by the smaller 
amount of samples needed for a comparable precision. This fact is of vital importance 
for the time-consuming optimization planned for the penalty tuning. 
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8. CONCLUSIONS 

A tool for prior evaluation of LQG selftuning controller and a step for its pre-
tuning have been described. 

The closed loop behaviour has been predicted under incomplete knowledge of the 

controlled system. The problem formulation reflects the practical aim: to facilitate 

by a necessary' software support the routine use of the selftuners described in [5]. 

Other sensitivity-type studies are of importance when alternative goals are followed. 

Of course, the presented algorithms are not able to bridge a gap between real world 

and models and they have to fail when, for instance, the controlled system is strongly 

nonlinear. Our experience, however, has shown that a range of real systems can be 

well controlled when relying on proper linear normal regression model. 

Within class of these models, this contribution completes a sequence which covers 
all (except experiment design) basic steps of automatic pretuning of SISO LQG 
selftuners. This fact is illustrated in the table below. Its first column lists the par
ameters which have to be selected for LQG controller, second column refers to 
algorithms for their prior tuning and the third gives information which has to be 
supplied by the user. Naturally, access to representative data measured on the process 
is necessary prerequisite of the referred tools. 

Table. Pre-tuning of key tuning knobs of LQG selftuners. 

Pre-tuned parameter See User asked for Remarks 

model order, transport delay, 
significant inputs and external 
variables 

[4] the structure of the 
most complex assumed 
model 

sampling period [7] admissible model 

complexity 

initial conditions for least 

squares 
[П] forgotten result of least squares 

gained from available data 

forgetting factor forgetting factor no ready solution: structure 

determination [4] applicable 

control horizon [5] avoided for favourite IST 

strategy 

terminal state and input 

penalizations 

here required range 

of inputs 

no ready solution for M I M O 

systems 

The real decrease of user's burden when he/she is pre-tuning the selftuner should 

be seen from the table. 

(Received June 30, 1989.) 
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