
Kybernetika

Jiří V. Outrata
Discrete optimal control problems with nonsmooth costs

Kybernetika, Vol. 12 (1976), No. 3, (192)--205

Persistent URL: http://dml.cz/dmlcz/124696

Terms of use:
© Institute of Information Theory and Automation AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124696
http://project.dml.cz


KYBERNETIKA —VOLUME 12 (1976), NUMBER 3 

Discrete Optimal Control Problems 
with Nonsmooth Costs 

M l V. OUTRATA 

In this paper three important discrete optimal control problems with nonsmooth cost func-
tionals are formulated. Various possibilities of their solution are discussed and demonstrated. 
For a special class of controlled systems a separable-programming technique is recommended 
which can be applied to many other control problems as well. 

1. INTRODUCTION 

This paper can be divided into 4 main sections (§ 2, 3, 4, 5). In § 2, 3 and 4 three 
various discrete optimal control problems with nonsmooth cost functional are 
formulated, namely so called minimum overshoot problem, two-sided minimum, 
overshoot problem and minimum output error problem. Usual optimality conditions 
cannot be applied to these problems. However, all of them can be easily transcripted 
into the form of a linear or separable-programming problem. In the case, when the 
size of the resulting problem is too big or when equality constraints are absent, 
an effective subgradient optimization technique can be applied. ([2; 5; 7; 8]). The 
application of separable programming is not restricted to problems mentioned above. 
A broad class of optimal control problems can be solved for instance by the <5-method 
of separable programming. This is explained in § 5. 

Numerical results are obtained by means of a linear-programming procedure 
included in the mathematical programming system MPS 360 Version 2 and all 
computations were executed on the IBM 370/135 computer. 

The following notation is employed: E" is the Euclidean n-space, <•, •> is the 
scalar product, xJ is the y-th coordinate of a vector x, AT is the transpose of a matrix 
A, E is the unit matrix, 9 is the zero matrix, f'(x, y) is the directional derivative 
of the function/at x in the direction y, A1 is the i'-th row of a matrix A. 



2. MINIMUM OVERSHOOT PROBLEM 

Given a linear stationary dynamical system described by the difference equation 

(1) xi+t = Axt + But, x , e £ " , Ui£Em , i = 0, 1, ..., k - 1 , 

where x{ is the state of the system and w; is the control applied to the system at time i, 
A resp. B is a \n x n\ resp. \n x m] constant matrix and k = 1 is a given integer. 
Let 

(2) *o = xo 

be the given initial state, 

(3) 

be the given terminal state of the system and 

(4) U = {u\uJe[-l, 1 ] , j = l , 2 , . . . , m} 

be the set of admissible controls. Let further 

(5) v, = (c, x,) , i = 0,l,...,k 

be the scalar output of the system (l) at time /', where c e E" is a constant vector. 

It is to find a control sequence u0, ut, ..., «*_. and a corresponding trajectory 
x0, xl, ...,xk determined by (l) and (2) which minimize the cost functional 

(6) cpl(u0,ul,...,uk^l)= max vt 
/ = 1,2...11-1 

subject to the constraints (3), (4) and (5). 

Here and in § 3 and 5 we shall assume that the controlled systems are controllable 
from the initial state x0 to the terminal state xT by admissible controls. 

Outputs vt as functions of controls u0, «,, ..., w,_, are continuous and therefore 
the cost <px is also continuous. Hence, this problem is a minimization of the conti
nuous function on the nonempty compact set, the solution of which allways exists. 
Moreover, the linearity of the functions vt implies the convexity of <pu Our problem 
is therefore that of convex programming. 

In its solution we can choose between two basically different ways: 

(i) Transcription into the linear-programming form by adding an artificial variable 
and some additional constraints. 

(ii) Using any subgradient method, capable to handle equality and inequality 
constraints. 

With respect to the efficiency of modern simplex algorithms, we suppose that the first 
way is more suitable in this case. This transcription can be carried out for instance 
as follows: 



194 Let c be an unconstrained artificial variable. Then our problem can be written 
down in the form 

c -* min 

subj. to 

0) 

Now we set 

<C*i> _á _> i = 1,2 fc - 1, 

x i + 1 = Axi + But, 

x0 = x0 , 

*k = "т, 

u ; є U , i = 0, 1,..., k - 1 . 

(8) zT = («$, ii», ..., u~, u\,..., < , . . . , «£_., 0 e £ ' " + I 

and transcript the problem (7) into the standart form of linear programming 

<?/!, z> -» min 

subj. to 

(9) 

where 

(.0) 

__, = 

A,z g Ь. , 

•42z = b2 , 

z ' є [ - l , 1 ] , / = 1,2, ..., fcm, 

иT = (0,0, . . . ,0, l ) є £ f c m + 1 

с Т 5 0 . . 
ст_4б СТВ 

0 - 1 

0 - 1 

с г ^ - 2 Б с т_4к _ 3В ... стВ 00 ... 0 - 1 is a [(fc — 1) x (km + 1)] matrix, 

A, = [A f c - 1 5 Ak~-B ... AB B 0] is a [« x (fcm + 1)] matrix, 

Ь. = - - c r Ax 0 

cTA2x0 

cTAk-'x0 є £ f c _ 1 and Ь2 = xт - A~x0 . 

The linear programming problem (9) has km + 1 variables (km lower and upper 
bounded), fc — 1 inequality and n equality constraints. Due to the special form 
of the matrix A^ the bounded variable revised simplex algorithm with a product 
form of the inverse will be very effective. 



We shall now clarify results of this method in the following example: 

Let the controlled system be given by the equation 

0-905 0-092 0 

0-932 0 

0 

0 

0 0 XІ + 
0 0 

0-97 0-095 

0 0-932 

0-095 0-005" 

0 0-097 

0005 0-099 

0-097 0 

* o - з" , xт = o" 
- 2 0 
- 5 0 

4 L° 

k = 25 

First we have solved this control problem irrespective of the overshoot (value of the 

cost (6)) as a two point boundary value problem. Afterwords we have minimized 

the value of q>l according to the method described above. Both sequences of outputs 

Fig. 1. 

Vi are depicted in Fig. 1. (To visualize the outputs, evolution curves are fitted to the 

respective points t>,-). 

The optimal control sequence of this minimum overshoot problem is presented 

in Table 1. 



i 0 1 
í 1 

2 j 3 4 
t i 

5 6 7 8 9 10 11 12 13 

u\ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

»ì 1 1 1 1 1 1 1 1 1 1 1 1 

i 

u] 

14 

- 1 

15 16 17 18 19 20 21 22 23 24 25 26 27 i 

u] 

14 

- 1 - 1 j - 1 -1 -1 -1 -1 ~l -1 -0-86 0-5 1 1 

«? 1 1 1 0-15 0-1 0-2 0-24 0-42 0-91 0-04 -0-49 -1 -1 -1 

3. TWO-SIDED MINIMUM OVERSHOOT PROBLEM 

Given a controlled system (l) with the output (5), the initial state (2), the terminal 
state (3), and the set of admissible controls (4). Let N and k be given integers, 1 ^ 
g N < k. It is to find a control sequence w0, „,, ..., dk-x and a corresponding 
trajectory x0, xt,..., xk determined by (l) and (2), which minimize the cost functional 

(П) ę2(u0, ux, ..., _*_.) m a x \Vi — i\ 
i=N,N+l,...k-l 

subject to the constraints (3), (4) and (5). 
This problem is that of convex programming again for the same reasons as in the 

one-side case and its solution also exists. 
In [1], [6] a method is described for treating of a certain class of discrete optimal 

control problems with the absolute value in their costs. In the case of problem 
beeing discussed we come to similar results, if we use the well-known d-method 
of separable programming. Moreover, this method can be applied for more general 
discrete systems as well, what will be shown in § 5. 

We introduce first the vector variable 

(12) z T = (u0,..., uZ, «},..., _?,.. .,«?_!, vN - vk, vN+l - vk, ..., »*_. - vk)e 

£. pkm + k—N 

and denote byg a maximal admissible value of \vt - vk\ioxi = N,N + l,...,k'— 1. 
(Evidently, if Q is chosen too small, the solution need not exist). Now we write 

(13) 

and 

(14) 

vi — vk — —Q + Si + ti 

\vi ~ vk\ ~ - •- si + ti 



where s,, t_ are new nonnegative bounded variables, 

(15) 0 _£ s„ tt S Q , i = N, N + 1 , . . . , fc - 1 . 

They must satisfy the following regularity condition: The variable tt can have a non
zero value, if 

(16) st = Q, i = N, N + 1, ..., fc - 1 . 

We shall call them "separating". Now we set 

(17) 
•7,T — (uX „ m u1 nm i,m c t c t c t \l=pkm + 2(k-N) 
z — {U0, ...,U0, „ ! , . . . , „ ! , . . . , Uk__, SN, tN, SN+_,tN+l, ..., S f c _ 1 , l k - i ) e £, 

and transcript our problem into the following form: 

max (—<e,-, z'> + <_,+ 1 , z'>) -* min 
; = fem+l,tm+3,...,km+2(fc-JV)- 1 

subj. to 

(18) A3z' = b3 , 

- 1 S zn S 1 for i = 1, 2, ..., fcm, 
0 ^ z" ^ g for i = fcm + 1 , fcm + 2, . . . , fcm + 2(fc - JV) 

and satisfy the regularity condition (16). In the equality constraints the 
[(n + fc - N) x (fcm + 2(fc - JV))] matrix 

(19) 

~Ak~lB Ak-2B ... Ak-NB 
cTAN~iB cTAN-2B ... cTB 
cTANB cTAN~1B ... cTAB 

A3 = 

Ak-N~lB ... AB B 0 0 
9 . . . 9 - 1 - 1 0 0 . . 
cтB . . . 9 9 0 0 - 1 - 1 . . 

_cTAk~2B cTAk'3B ... cTAk~N-lB cTAk~N-2B ... cTB 9 0 0 - 1 

and the vector 

(20) b3=y xT- Akx0 -]eEn+k-N 

<c, xT - ANx0} - Q 
< c , x T - A N + 1 X 0 } - Q 

- 1 

L<C*г---»-%> - Є J 

In the cost functional the vectors et are rows of the unit matrix E of order fcm + 

+ 2(fc - N). 

Using the same way as in § 2, we set now 

z" r = (z'r,^)6£'[m+2(t-A') + 1 , 



where £ is a new nonnegative scalar variable. The problem (18) can be now written 
down in the standart linear-programming form 

subj. to 

(22) 

</j2, z"> -> min 

A4z" = bA, 

A5z" = b5 , 

-1 = z'n = 1 for i = 1,2,..., km, 

0 = z'" = £ for i = km + 1 , km + 2,..., km + 2(fc - N), 

7»km + 2(k-N) + l > Q 

with the restriction, that z"' corresponding to separating variables must satisfy the 
regularity condition (16). In this programm 

(23) A4 = | A3 | 0 

is a [(n + k - N) x (km + 2(k - N) + 1] matrix, 

A* * - 1 1 
0 0 

0 0 . . 
- 1 1 . . 

. . . 0 - 1 

. . . 0 - 1 

0 0 - 1 1 - 1 

is a [(/c - N) x (km + 2(k - N) + 1)] matrix, 

fc4 = b3 and b^ = (-Q, —Q, -ô)єEk 

Due to the regularity condition, one could expect that the usual simplex algorithm 
cannot be applied for solving this problem. However, this is not true because of the 
validity of the following theorem: 

Theorem 1. Let z" be a solution of (22), obtained by any method of linear program
ming, omitting condition (16). Then the first km components of z" form the optimal 
solution of the two-sided minimum overshoot problem and the last component 
equals the optimal value of <p2 minus Q. 

Previous Theorem is an easy corollary of the general preposition, proved in [4]. 
Thus, we have obtained an usual linear-programming problem with km + 2(k — N) + 
+ 1 variables (km + 2(k — N) lower and upper bounded), k — N inequality and 
n + k — N equality constraints. 



Remark. According to the requirements put on the solved control problem, we 199 
can combine costs of both minimum overshoot problems as follows 

(24) q>3(u0, «!, ..., wk_,) = max {vt, \Vj - vk\] . 

4. MINIMUM OUTPUT ERROR PROBLEM 

In a number of practical control situations, we may be required to get the output 
of a dynamical system to agree "as closely as possible" with some desired value at 
a prespecified time ;. It we use the c0 norm of the sequence of errors, we can formulate 
this problem in the following way: 

Given a controlled system (1) with the output (5), the initial state (2), the set of 
admissible controls (4) and the prescribed sequence of outputs v*, v*, v*,..., v*, k 
is a given integer. It is to find a control sequence u0, uu ..., uk_x and a corresponding 
trajectory x0, xt, x2, ..., xk, determined by (1) and (2), which minimize the cost 
functional 

(25) <P4(M0, Mi, ..., i<t- i ) = max li?,- — yf 
1=1,2 k 

subject to the constraints (4) and (5). 

This problem and that in the previous section differ only slightly and therefore 
the method described in § 3 can be applied to the minimum output error problem 
as well. However, the last one seems to us to be a little bit easier because of absence 
of the equality constraints. This fact leads us to the proposal to use alternatively 
some subgradient method for solving this problem. Moreover, the theory of sub-
gradient optimization enables us to state the necessary and sufficient optimality 
conditions in a very compact form. 

First let us denote 

(26) r ; = <c, A(x0> - v* , 

Wt = [ A ' _ 1 5 A'~2B ... AB B 0 0 . . . 0] , 

(fc-f)mx 

s. = wfc, i = 1,2,..., k, 

zT =(u0,ul,...,um
0,u\,...,um,...,uk

n_l)eEk"', 

Q =U x U x . . . x U 

Then 

(27) vt - of » r ; + <s;, z> , i = 1, 2 , . . . , k 



200 and the minimum output error problem can be written down in the following form 

(28) <Ps(z) = max {rt + <si; z>, — rt — <sj; z>} -• min 
i=\,l,...,k 

subj. to 
zeQ . 

The vector w e E" is a subgradient at x. e E" of the convex function/on E" if 

(29) / (x 2 ) - f(xt) ^ <w, x2 - x t> for all x2 e E". 

The set of all subgradients at x is the compact convex set df(x) called the subdifieren-
tial. The function cps has the directional derivative at z in the direction d for any 
z, d e £*m and 

(30) <p'5(z, d) = max <d, w> . 
wed<p5(z) 

In our case 

(31) d<p5(z) m CO V(z) , 

where 

(32) V(z) = V 1 ( z ) u V 2 ( z ) , 

Vy(z) = {s,. I r{ + <Si, z> = <p5(z), i = 1, 2, ..., fe} 

V2(z) = { - S j | - r i - < s i , z > = <p5(z), i = l , 2 , . . . , f e } . 

Theorem stated below is an applications of the optimality conditions proved in [2] 
for our case. 

Theorem 2. The point z e Ekm is the solution of the minimum output error problem 
in the sense of (26), if and only if 

(33) min max <w, z - z> = 0 . 
zefi wecoF(2) 

In [7] and [8] a very general method was proposed for the minimization of a con
vex (possibility nonsmooth) functional on a specified set of a Hilbert space. In [5] 
the application of this method to problems with piecewise linear costs is recommen
ded. The method consists in the construction of the sequence 

(34) z v + 1 = Pfi(zv - avwv), v = 0 , l , . . . , 

starting in some feasible point z0 e Q. Pfi is the projector from Ekm onto Q i.e. 

(35) P«(z)e<2, | | - - P 0 ( z ) | | - i n f | | z - z 1 | > 

z,sJ3 

(36) wv e co V(zv) 



and av is an appropriate stepsize. In [7] the convergence of this method is proved 201 
under merely the conditions 

(37) a v = F l f ' A v - 0 , £;.v = ao. 
INI v = 0 

An effective choice of av, based upon the estimate of the optimal value of q>5, 
is suggested in [8]. Another subgradient methods, capable to treat even nonconvex 
problems, are collected in [2]. 

5. SEPARABLE PROGRAMMING IN DISCRETE OPTIMAL CONTROL 
PROBLEMS 

A broad class of discrete optimal control problems can be solved by methods 
of separable programming. If we use so called ^-method, the problem must be first 
recast into the form of a linear-programming one, where some or all variables have 
to satisfy a regularity condition of the type (16). This problem we call "approxima
ting" and for its solution a simplex algorithm with properly restricted basis entry can 
be applied. Therefore we find an optimal or locally optimal solution in a finite num
ber of simplex transformations. The detailed description of the <5-method can be 
found for instance in [4], Here we shall only specify classes of discrete optimal 
control problems, to which this method can be applied and show, how the approxima
ting problem can be obtained. 

Let the state space variables be constrained by inequalities 

(38) ai^xi-^fli, j - 1,2,..., k, j = 1,2,..., n, 

and the set of admissible controls be given by (4). Let further dynamical properties 
of the controlled system be described by the difference equation 

(39) x\+1 = £'<?j(xO + Z'p](«i), i = 0,1, ...,k - 1, J = 1,2,..., n, 
i = i . ;= i 

where lq{, lp'i\E
1 -* E1] are continuous functions, with the initial condition 

(40) £ V ( 4 ) = 0, / = 1,2.. ..,<?, Q^n, 
j '=i 

and the terminal condition 

(41) £V'(XJQ = 0 , * = 1,2, ...,o,o£n, 
/ = i 

where lrj, lsj[E1 —> E1] are continuous functions, k is a given integer. If we are to 
transfer the system (39) from an initial state satisfying (40) to a terminal state satis-



202 fying (41) in such a way that the cost functional 

(42) j . ( _ 0 , « . , . . . , Uk.t) = jr £ *f(«{) + 2 £ «P|(xO, 
i = 0 j = 1 i = 0 J = 1 

where $], •F'TE1 -> E1] are continuous functions, is minimized, then the ^-method 
can be easily applied. 

In the case the state space variables are unbounded, we have to restrict ourselves 
to systems, described by the equation 

(43) x\+1 = A\x, + X'pJ-(ui), i = 0 , 1 , . . . , _ - 1, I = 1,2,..., n, 
j = i 

where A; are constant \n x rc] matrices, and to cost functional of the type 

(44) J2(u0, „.,..., «*_.) = X 1 <*>i(«0 + I <c_ xf> , 
i = 0 j = l i=0 

where ct e E" are constant vectors. 
The construction of the approximating problem we shall now demonstrate on the 

minimum overshoot problem, where the linear controlled system (l) is replaced by 
the nonlinear system, described by the equation 

(45) x\+1 = A!x; + ^VYu^), i = 0, 1, ..., k - 1, 1=1, 2,..., n. 
J'=I 

This problem is much more complicated than that, discussed in § 2, because of its 
nonconvexity. Therefore, finding of mere local minima can be guaranteed. 

First we find sufficiently precise polygonal approximations of the functions 'pJ.. 
For this purpose we express all variables u\, the corresponding functions lpJ of them 
are nonlinear at least for one /, in the form 

(46) u{ = £ u{v, 
v = l 

where 
h 

(47) 0 ^ u{v ^Sv and Y. <5V = 2 . 
v = 1 

The variables u\v are separating variables and the regularity condition implies, 
that u{„ > 0 only if 

(48) u{„ = <5„ for all n = 1, 2,..., v - 1, i = 0, 1,..., k - 1 , j = 1,2, '..., m . 

The functions lpJ we polygonally approximate by piecewise linear functions lpJ 

h y(_i + ^ ( 5 / i ) _ y ( _ i +
v ^ ( 5 / i ) 

(49) y = y ( - i ) + £ ^ ^ i — „{, = ! P 0 + E lPiu{v. 



Now. we replace in our minimum overshoot problem the system described by (45) by 203 
another "approximating" system, where all nonlinear functions lpJ are replaced by 
linear approximating functions lpJ of separating variables u\y. Thus, if all functions 
V are nonlinear, we obtain an approximating problem 

subj. to 

(50) 

t, -> min 

<c, x;> = £ , i = 1,2,..., fc - 1 , 

Ъx^Axi + ťH + І ílPІ< 
У = l У = l v = l 

/ = 1, 2, ..., n , 

•*o = * 0 > 

Xk = xт 

0 ^ u l g dv, £ d* = 2 , i = 0, 1, . . . , fc - 1 , 
v = l 

and the variables «{v have to satisfy the condition (48). Now we set 

(51) zT = (tf, X2J,..., Xf, X\\ ..., ATr,..., AjfT., 0 6 E""*+ ' , 

where 

(52) Af = (uj'1,u{2, .... ui)eEh, i = 0, 1, ..., fc- 1 , j = 1,2, ..., m . 

The system equation can be now written in the form 

(53) 

where 

(54) 

X,+ 1 = AX; + C + DA;, 

я т = ( я ł г , я f , . . . , я п , i = 0,l,.. .,fc- 1, 

C = 

D = 

C1 

C2 

C" 

^ D 1 ^Ð2 . . . ' I Г 
2DX гDг ... гDm 

nDx nD2 ... nDm 

, C' = X ' P o , / = l ,2 , . . . ,n , 
y = i 

, iDJ = (iP{,lPJ

2,...,
iPJ

h)єEh. 



204 Using relations (53), (54), we come to the final form of the solved problem, to 
which a simplex algorithm with restricted basis entry can be applied: 

subj. to 

(55) 

<<7з, z> -* min 

A„z й Ьt 

A-jZ = fe7 

0 ^ z £ ^ < 5 v , i = ht + v , t = 0, 1,..., km - 1 , v = 1,2,.... h 

and zl > 0, if only zJ = d„ , j = ht + \i, t = 0,1 , . . . , km - 1, p. = 1, 2,..., v -
- 1. 
In (55) 

ni = (0, 0,0,..., l)eEkmh+1 

Aќ = 

is a [(k - 1) x (kmh + l)] matrix , 

A7 = [A"-^ Ak~2D ... AD D 0] is a [n x (/crah + l)] matrix, 

(56) 

and 

fi = - YcTAx0 + cTC 
стА2х0 + стАС + стС 

cTAk-1x0+Ydc
TAk-J~2C 

j = o 

Ek-

h1=xT- Akx0 - YJA
k~J~1C. 

j=o 

The detailed description of the simplex algorithms for various approximating 
problems can be found in [3]. The choice of an integer h and upper bounds <5V, 
v = 1,2, ...,h must respect the rate of nonlinearity of functions lpJ and the admis
sible error of the terminal condition. 

If the discrete systems appearing in problems of § 3 and 4 are of the type (43) or 
(39) (with state space constraints), the ^-method of separable programming can be 
applied to them as well. 



6. CONCLUSION 

All optimization problems discussed in §§ 2, 3, 4 are of the minmax form. There 

is a great variety of such problems and some of them are currently investigated in the 

literature. Our problems were formulated for linear systems. However, they can be 

solved for nonlinear systems as well, but then they are no more convex. In § 5 an 

effective method for special class of nonlinear systems is suggested. In case of general 

nonlinear systems we would prefere subgradient methods rather then a transcription 

to the mathematical programming form. 

Minmax criteria in control processes seems to us to be more suitable in many 

cases than various state space constraints. Therefore we hope, that numerical methods 

for solving of these problems will be further studied and developed. 

The author wishes to thank Ing. Z. Vostry CSc. for some important ideas and helpful comments 
during the development of the material reported above. 

(Received January 23, 1976.) 
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