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K Y B E R N E T I K A - V O L U M E 19 (1983), N U M B E R 6 

STOCHASTIC MULTIVARIABLE TRACKING 

A Polynomial Equation Approach 

MICHAEL ŠEBEK 

A new technique to design optimal multivariable tracking systems is presented for stochastic 
plants described by rational transfer matrices. The technique is based on polynomial matrices. 
The optimal controller is shown to consist of feedback and feedforward parts and it is designed 
essentially by solving two linear matrix polynomial equations whose coefficients are obtained 
by spectral factorization. 

INTRODUCTION 

The stochastic tracking problem is one of the most significant problems in optimal 
control. It can be solved in either frequency or time domain. The frequency domain 
solution based on Wiener-Hopf technique was given in [12] and [3] for the case 
of error-actuated controller. However, the error-actuated controller is only* sub-
optimal in g3nsral so that bstter results can be achieved when using a more general 
structure. On the other hand, the time domain solution described in [7] is applicable 
only for stable reference generators and only for dynamical systems. 

Recently, an alternative solution based on operations with polynomials was 
developed for single-input single-output plants [8] which covers both stable and 
unstable reference gsnerators. The aim of this paper is to generalize this approach 
for multivariable plants. The polynomial matrix techniques, employed recently 
by Kucera [6] when solving regulator problems, are extended here to accomodate 
the tracking problems. 

By a systematic use of matrix fractions, the design procedure is reduced to spectral 
factorization and the solution of two linear equations in polynomial matrices. This 
is believed to be computationally superior to existing methods and general enough 
to handle unstable and/or nonminimum-phase plants and reference generators 
with improper and rectangular transfer matrices, singular noise intensities and 
singular weighting matrices in the measure of performance 

453 



For a slightly less general discrete time version of this approach the reader is 
referred to [9]. 

A prominent tole throughout this paper will play polynomial matrices. They are 
treated in detail, e.g., in the books by Kailath [4], Kucera [5] and Wolovich [11]. 

PROBLEM FORMULATION 

Consider a linear time-invariant multivariable stochastic plant modeled by the 
equation (all quantities are Laplace transform) 

(1) X s ) = R(s) u(s) + S(s) w(s) 

where y is the vector output of the plant, u is the vector input of the plant and w 
is the background noise. Let the measured output of the plant be corrupted by an 
observation noise v. 

Further consider a reference vector output r, represented by an output of a linear 
system driven by a noise w, 

(2) r(s)=S(s)w(s) 

Let the available version of the reference be corrupted by an observation noise v. 

All four vector random sources v, w and v, w are pairwise independent zero-mean 

covariance-stationary white vector random processes with intensities A, Q and A, Q. 

respectively, which all are real nonnegative definite matrices. The R, S and 5 are 

real rational (not necessarily proper) matrices of appropriate dimensions. 

v 

Q 

-CЛ - p k > ^ R U^ 

Fig. 1. Block diagram of a tracking system. 

For a given plant the design of the optimal controller 

(3) u(s) = - P(s) (y(s) + v(s)) + Q(s) 0 0 ) + v(s)) 

evolves from minimization of the weighted sum of steady-state variances of the 

input and the tracking error, i.e., of the cost 

l n 
(4) J = ~-ш I S{u*(s) Ф u(s) + 0 . 0 ) - УM ЦҢS) - X s))ì ds 

2 я j J - j o o 
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with nonnegative definite weighting matrices <P and W, where for any matrix H the H* 
is defined by .H*(s) = HT( — s) and ${.} denotes ensemble average. 

Thus our design objective is to minimize (4) subject to the constraint that the 
tracking system defined by (1) through (3) and shown in Fig. 1 be asymptotically 
stable. To this effect, we shall assume that all the matrices <Z> + R*¥R, A + SQS% and 
A + SQS* are positive definite for s on imaginary axis and, consequently, that all the 
spectral factors defined below by (5)-(7) exist. 

DESIGN PROCEDURE 

Let us set aside for the moment all questions of solvability and let us attempt 
to construct P(s) and Q(s) starting with the primary data R(s), S(s), S(s) and <P, Q, 
A, Q, <P, W. For simplicity, the function arguments are omitted wherever convenient. 
The opt:mal design is carried out in the following steps: 

1) Find any left coprime polynomial matrix fraction decomposition of R and S 

A-^B C] = [R S] 

such that the matrix [AA, CO] is row reduced, then calculate any left and right 
coprime polynomial matrix fraction decomposition of R 

Ao^o^B^r1 =R 

such that J is column reduced, and a left coprime decomposition to S 

A_1C = S 

such that [AA, CQ\ is row reduced. 

2) Perform the spectral factorization to obtain stable polynomial matrices F, G, 
and G satisfying 

(5) Altk<PA1 + B^FB, = F*F 

(6) AAA* + CQC* = GG* 

(7) AAA* + CQC* = GG* 

3) Calculate a left coprime polynomial matrix fraction 

AVAj = AoA"1 

and right coprime polynomial matrix fractions 

B 2 G _ 1 = G~lB A2G1X = G - 1 A 

DE'1 = (A3G)"1A3B0 ^ G J 1 =» G" JA 
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4) Find any polynomial matrix solutions X, Y, Z and X, Y, Z of the equations 

(8) F,[X, Y] - Z,[B2, - A 2 ] = [At,$Glt B^WG2] 

(9) F,[X, F] - Z,[D, - A 2 ] = [A^cPE, B^VG,] 

5) Perform the two-sided division algorithms 

(10) (AAWB, = GZ) = GU,F* + V 

(11) (AAWBi = GZ) = GU,F, + V 

to obtain polynomial quotients U, U and reminders V, V(with elements v^, vtj) 
such that 

deg Vij < deg,.; G + degCJ- F and deg vu < degr;G + degCJ F where degH . 
(degCJ.) denotes the maximum degree occurring in ith row (/th column) 
of a matrix, and put 

(12) Xj. = X + UB2 , Y = Y - UA2 , Y=Y-UA2 

6) Calculate left coprime matrix fractions 

(13) Gol[X0, Y0] = [X&1, YGJ1] 

(14) G 0
l [X 0 , Y0] = [X.GT1, Y.G,1] 

7) The optimal controller is then defined by the transfer matrices 

(15) P = X0r
1Y0, Q = X0-

1Y0 

and must be realized as a single dynamical system of least order having two 
(vector) inputs y and r and the (vector) output «. 

There are efficient algorithms to implement all steps of this design procedure. 
The spectral factors can be calculated by means of various recurrent schemes. A ma
trix version of the polynomial algorithm developed by Vostry [10] is to be preferred 
for it combines efficiency with quadratic convergence. The other algorithms can be 
found gathered together, e.g., in [5], [6]. Besides, an alternative method of solution 
of matrix polynomial equations has been reported recently by Emre [ l ] and Emre 
and Silvermann [2]. 

EXISTENCE AND UNIQUENESS 

The design procedure above produces the optimal controller whenever one exists. 
This section is devoted to the proof of this claim. 

Theorem. The optimal tracking problem is solvable iff 

1) the polynomial matrix Xt is nonsingular; 
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2) the eight rational matrices 

(16) <PAtNA, 4>AtNSQ , 7BtNA, 7(1 - BtN) SQ 

(17) <PAtNA , <PAtNSQ , 7BtNA , 7(1 - fl.N) SQ 

with At, At given by (20), (21), are strictly proper; 
3) the greatest common left divisor of A and B is a stable polynomial matrix; 

4) the unstable part of A is a right divisor of A (i.e., A3 is a stable polynomial matrix). 
The optimal controller has the unique transfer functions (15). 

Proof. Defining rational matrices M, N and N by relations 

p = M_1JV , MA ! + NBt = I, Q = M~1N, 

simple algebraic manipulations yield 

(18) u = -AtNv - A1NA~1Cw + AtNv + AjJA"xCvi 

(19) r-y=> B,Nv-(I - B1N)A~1Cw - B,Nv+ (I - B1N)A-1Cw 

and the cost can be then expressed in the form 

j = _L |JC° (wt + wt)ds 
2rcjJ-jo0 

where 
Wt - (QAiNAN^A^ + <PA1NA-1CQC*A*1Nil:Alil.. 

+ 7BtNAN*Bt* + 7(1 - B,N) A-lCQC^\l - BtN)*) 

Wx - \x($AtNAN*At* + ®AtNA-xCQC*A^N*Atif 

+ 7BtNAN*Bt* + 7(1 - B^A^CQC.Ji1^ - BtN)*) 

Thus the cost splits into two independent parts: Wt and W2. The former part is inde
pendent of the reference and is related to optimal regulation. When solving the 
corresponding regulator problem, Kucera [6] derived the minimizing values 

(20) M = E^XiGT/1 and At = J ^ Y j G J 1 

The latter part is related to optimal tracking. It does depend on the reference and can 
be analysed analogously: 

Substituting (5) and (7), employing the identity t r U V = tr VU and completing 
the sqares, Wt has a form 

Wt = tr WW + tr (7A~xCDC*!*1 -

- Ft.Bi*7A-1CQC:¥G*1G-lCQC*Ai17B1F-1) 

where 

W= FNA-'G + FZ'B^AAxG*1 - Fi1Bt^7G2A2
1 
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Equation (8) yields FZ1Bl^G1A2
1 = YA2

 1 + F * % so that, substituting (11) 
and (12), we finally get 

W= T+ FI'V-MI1 

where 
T = (FNG2 - YO A2 

Repeating the discussion from [6], the second part of the cost attains its minimum 
when T = 0, that is, for 

(21) N = F'1?^1 

and, combining it with (14), the feedforward part of the optimal controller (15) 
results. 

As to the solvability conditions, (1) is clear. In order for the cost (4) to represent 
a finite weighted sum of steady-state variances it is necessaty and sufficient that the 
rational matrices (16), (17) appearing in (18), (19) be strictly proper (condition 
(condition 2)) as well as analytic in Re s >: 0. Matrices (16) are analytic in Re s 2: 0 
iff 3) holds and, analogously, so are (17) iff 4) holds. Asymptotic stability the resulting 
tracking system is assured by analycity of M, N in Re s >; 0 (see [6]). • 

It is possible to show that when all rational matrices R, S and S are strictly proper 
and real matrices <P, A and A are positive definite, then conditions 1) and 2) are 
satisfied automatically so that the problem is solvable iff 3) and 4) hold. In addition, 
instead of divisions (10), ( l l ) , simply the solutions of (8) and (9) are to be found 
for which YtAJ1 and Y1A2

i are strictly proper. 

CONCLUDING REMARKS 

A complete yet relatively simple solution to the steady-state minimum variance 
tracking problem has been presented for systems described by rational transfer 
matrices and zero-mean covariance-stationary random inputs. 

The design procedure involves spectral factorization and the solution of linear 
equations in polynomial matrices. Compared to the Wiener-Hopf approach, these 
algorithms manipulate polynomial rather then rational matrices and obviate the need 
to calculate partial fraction expansions. As to the state space approach, input-output 
models are easier to obtain than state-variable ones and our design is restricted 
neither to strictly proper R, S and S nor to positive definite <P, A and A. The computa
tional complexity of the used algorithms is compared in [6]. The numerical fea'sibility 
of our design procedure is particulary pronounced for single-input-output systems [8]. 

(Received January 17, 1983.) 
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