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K Y B E R N E T I K A — V O L U M E 32 ( 1 9 9 6 ) , N U M B E R 4, P A G E S 3 2 5 - 3 4 2 

AN AXIOMATIZATION 
OF EXTENSIONAL PROBABILITY MEASURES 

IVAN K R A M O S I L 1 

Replacing the demand of countable additivity (a-additivity), imposed on probability 
measures by the classical Kolmogorov axiomatic, by a stronger axiom, and considering 
only probability measures taking their values in the Cantor subset of the unit interval of 
real numbers, we obtain such an axiomatic system that each probability measure satisfying 
these axioms is extensional in the sense that probability values ascribed to measurable 
unions and intersections of measurable sets are functions of probability values ascribed to 
particular sets in question. Moreover, each such probability measure can be set into a 
one-to-one correspondence with a boolean-valued probability measure taking its values in 
the set of all subsets of an infinite countable space, e.g., the space of all natural numbers. 

1. INTRODUCTION 

Since the last two centuries probability calculus has continually played the role 
of the most powerful and most often used tool for uncertainty quantification and 
processing in various theoretical as well as practical domains of human activities. 
The axiomatic setting of this calculus by Kolmogorov in 1933 [3] enabled (1) to 
transform this calculus into a rigorous mathematical theory, (2) to escape from 
some philosophical and methodological difficulties, and (3) to take profit of rich 
and powerful mathematical appara ta offered by the theory of real functions and 
theory of measure. Moreover, Kolmogorov probability theory conserved the main 
philosophical idea of all former probability calculi according to which probability 
values (or degrees) are related to the corresponding relative frequences of occurrences 
of certain random events. Formalized mathematical expressions for this relation are 
the well-known laws of large numbers. 

However, due to the laws of large numbers the natural intensional (i .e. , non-
extensional) character of relative frequences has been transformed into the inten-
sionality of probability measures. This is to say, in particular, tha t there do not 
exist binary functions F, G, taking pairs of real numbers from the unit interval 
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Agency of the Czech Republic and by the grant No. A1030504 of the Grant Agency of the Academy 
of Sciences of the Czech Republic. 
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(0,1) into (0,1) and such that for all random events A, B, for which their prob
abilities P(A), P(B) are defined, the equalities P(A f l 5 ) = F(P(A), P(B)), and 
P(A U B) — G(P(A), P(B)) would hold. Just as an example of an extensional 
calculus let us recall the classical propositional calculus, where the truthvalues of 
composed s tatements like "A and H" or aA or B" are defined by the well-known 
simple functions of truthvalues ascribed to A and B. 

At least for two reasons the intensionality of probability measures leads to dif
ficulties in practical applications of probability theory. First, the computations of 
probabilities of composed random events are of high computational complexity even 
if the set of marginal and conditional probabilities being at our disposal is rich 
enough to enable such a computation. Second, in the case when these probabili
ties are not known a priori and have to be estimated from a collection of statistical 
da ta or on the ground of subjective opinions of experts, it may be rather difficult 
to obtain good estimation of conditional probabilities with complicated and rarely 
occurring conditioning events. It is just because of these reasons tha t various ex
tensional calculi for uncertainty quantification and processing like, e.g., fuzzy sets, 
have at t racted the attention of specialists dealing with application of uncertainty 
processing methods. 

Consequently, it is perhaps not beyond any interest to ask, whether there exist 
probability measures which possess the property of extensionality, and, if the answer 
is affirmative, to characterize and investigate, in more detail, the class of such prob
ability measures. In [5] we arrived at such probability measures by an appropriate 
numerical encoding of extensional boolean-valued probability measures taking their 
values in the set of all subsets of the set jV = {1, 2 , . . . } of positive integers, and 
we stated and proved some simple results concerning the resulting extensional nu
merical probability measures. In what follows, we shall show that the class of such 
probability measures can be defined axiomatically, in a pat tern strictly following 
tha t one applied in Kolmogorov axiomatic probability theory, just with the axiom 
of countable additivity (cr-additivity) replaced by a stronger one. 

Having repeated, for the sake of reader's convenience, the classical definition of 
probability measure, we introduce, in Chapter 2, a nonstandard operation of addi
tion in the Cantor subset of the unit interval of real numbers. Strong probability 
measure is then defined by a verbal rewriting of the classical definition, just replac
ing (0,1) by its Cantor subset and usual addition by its nonstandard version. A 
specific feature of strong probability measures consisting in the fact that the used 
nonstandard numerical operations are very close to the usual Boolean operations is 
investigated in Chapter 3. Chapter 4 then shows tha t strong probability measures 
are atomic and takes profit from this fact in order to prove tha t strong probability 
measures are cr-extensional - values for finite or countable unions and intersections 
of random events are defined by the values ascribed by the strong probability mea
sure in question to the particular random events. Finally, Chapter 5 proves tha t 
each classical probability measure over a finite or countable space can be defined 
and processed using certain uniquely defined strong probability measures. 
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2. STRONG PROBABILITY MEASURES 

First of all, let us briefly recall and discuss the classical definition of probability 
measure. 

D e f i n i t i o n 1 . Let Q be a nonempty set. A nonempty system A of subsets of 
Q is called a-field, if it is closed with respect to the set-theoretic operations of 
complement and countable union, i.e., if for each sequence A, A1, A2, • • . of subsets 
of Q which are in A, also the sets Q — A and (Ji=i -̂ * a r e i n A> The P a i r (£->«4) JS 

called measurable space. 

Let V(Q) = {S : S C Q} denote the system of all subsets of Q, i.e., the power-set 
over Q (or: generated by Q). As can be easily seen, {0,f2} as well as V(Q) itself 
are cr-fields of subsets of Q, here 0 denotes the empty subset of Q. Moreover, the 
inclusions { 0 , 0 } C A C V(Q) obviously hold for each o--field A of subsets of Q. 

Let (0,1) denote the closed unit interval of real numbers, let (x\, X2,...) be 
an infinite sequence of non-negative real numbers (not necessarily from (0,1)) . 
Let ]Ci=i x* — limn_,oo J27-1 x*> ir" ^ n j s ^init value exists (i.e., if it is finite), let 
.Ci=i 35« = ° ° otherwise, i.e., if Yl7=i xi diverges. Obviously, ]Ci=i x i 1S defined for 
each sequence (x\, X2, • • ) of non-negative real numbers. 

(A\yA2, • • ) is an infinite sequence of mutually disjoint sets, if A{ DAj = 0 holds 
for each i, j € jV* = {1 , 2 , . . . } , i ^ j . 

D e f i n i t i o n 2 . Let (Q,A) be a measurable space. A real-valued function P defined 
on A is called probability measure, if it satisfies the following conditions: 

(a) P : A -> (0,1) , hence, 0 < P(A) < 1 for each A G A, 

(b) P(Q) = 1, 

(c) for each infinite sequence (Alt A2, • • ) of mutually disjoint sets from A the 
equality V ^ P(Ai) = P f l J ^ ! At) holds. 

Obviously, if the infinite sum Y^=i xi ls taken as undefined in the case when 

limn_>oo Y^i=\ xi — 00> (c) should be replaced by 

(cl) for each . . . f r om A, X)»=i P(-^») JS defined (hence, finite) and the equality 
. . .holds. 

Due to the condition tha t ]T)i=i P(-4i) = - P ( U i = i ^ 0 > a n d due to the fact tha t 
Ui=i -̂ » G -4) s o tha t H(Ui=i^i) — J fo l l o w s from (a), both the definitions are 
equivalent. Let us present still another equivalent variant, perhaps less intuitive, 
but more close to the strong modification of (c), which will lead us to the notion of 
strong probability measure. 

Let (0,1)°° denote the Cartesian product X°Z1Hi, where Hi = (0,1) for each 
i EjV, hence, (0 ,1) 0 0 is the space of all infinite sequences of real numbers from the 
unit interval. Let VJ be the partial mapping taking (0,1)0 0 into (0,1) and defined 
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by Yl1 ((a?»")<_i) = l imn^oo YA=I X* = l im n ^oo(^i + x2 + h xn) supposing tha t 

this limit value is in (0,1) , £ ) ( ( z i ) i - i ) being undefined otherwise, here ( x l ) ^ : 1 is 
a sequence from (0,1)°°. To make the notation more close to the classical one in
troduced above, we shall write Yli-i x* instead of ^ ({x%)iZi)> leaving nevertheless 
the upper index 1 in Y, to express explicitly the partial character in which this 
definition of countable addition on (0,1) differs from the two ones mentioned above. 
The items (c) or (cl) should then be replaced by 

(c2) for each. . . f rom A, Xw_i P(-^») i S defined (hence, finite) and the equality 

£L°iP(^) = P(U._ii-) holds. 

What makes this modification worth being formulated explicitly is tha t due to 
it, in order to define the classical probability measure, it is sufficient to define the 
countable addition just as a partial operation on (0,1)°° with the values in (0,1), 
completely neglecting as irrelevant the circumstance, that this operation can be (and 
is, in fact, in the mathematical analysis) defined more generally, either as a partial 
operation on (0, oo)°° with values in (0, oo), or even as a total operation on (0, oo)°° 
with values in (0, oo) U {oo}. 

Let C be the well-known Cantor subset of (0,1). Its informal definition reads 
as follows. Divide (0,1) into three parts, (0, 1/3), (1 /3 , 2/3) , (2 /3 , 1), and erase 
the middle open interval (1 /3 , 2/3) from (0,1). Apply an analogous operation to 
the intervals (0, 1/3) and (2 /3 , 1), erasing from them the open intervals (1 /9 , 2/9) 
and (7 /9 , 8/9) . And so on for the intervals (0, 1/9), (2/9, 1/3), (2 /3 , 7/9) , (8/9 , 1) 
ad infinitum. W h a t rests is just the Cantor set C. Formally defined, C is just the set of 
all real numbers from (0,1), for which there exist triadic decompositions (decompo
sitions to the base 3) containing just the numerals 0 and 2. Moreover, for each x ~C 
there exists just one triadic decomposition containing only 0's and 2's (obviously, the 
alternative decomposition for xx,..., xn, 0, 2, 2, 2 , . . . , i.e., x\,..., xn, 1, 0, 0, 0 , . . . 
contains the numeral 1). Let (yi(x), y2(

x), • • •) G {0, 2}°° denote the triadic decom
position of a number x ~ C not containing 1, let d(i, x) = y.,/2 for each i 6 .A!"), so 
that D(x) = (d(l,x), d(2,x), .. .) is a binary sequence from {0,1}°°. Set, for each 
x ~ C, s(x) = {i£j\f : d(i, x) = 1} (= {i ~ jV : yi(x) = 2}), so that D(x) can be taken 
as the characteristic function (identifier) of the subset s(x) of jV. Obviously, D is 
a one-to-one mapping of C onto {0,1}°°, so that , for each (x\, x2,...) ~ {0,1}°°, 
D~l((x\, x2,...)) is defined, namely, D~l((x\, x2 ...)) = YALI 2x{ 3~l E C, where 
]Ci_i i s the classical operation of countable addition. 

Let C°° be the space of all infinite sequences of real numbers from the Cantor 
set, let Y2 be a part ial operation defined on C°° in this way: if (xi, x2 . ..) ~ C°°, 
set Zi = card {j £ jV : d(i,Xj) = 1}, then V^ ( ( . d ) ? ^ ) (or Yli=i xi) l s defined iff 
(z\, z2,.. ) ~ {0,1}°° (i. e., iff for each i ~ M there exists at most one j such that 
d(i,Xj) — 1) and, if this is the case, Y^i-i xi ~ D~l ((z\, z2,...)) = Y^i^lZi^~t ^ 
this value obviously is in C. 

L e m m a 1 . Let (# i , x2,...) ~ C°°. If Xw_i xi 1S defined, then the sets s(xi), i = 
1 ,2 , . . . , are mutually disjoint, hence, s(xi) D S(XJ) = 0 for each i, j ~ Af, i ^ j -
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P r o o f . By contradiction, let i £ s(xj)Os(xk) for j ^ k. As S(XJ) = {£ £ jV : 

d(£,Xj) = 1}, we obtain tha t d(i,Xj) = d(i,Xk) = 1, so that Zj = card {£ £ jV : 

d(i, xt) = 1} > 2, hence, "^.-J^ £. is not defined. • 

So, we have arrived at the key definition of this paper. 

Def in i t ion 3 . Let (Q,A) be a measurable space. A real-valued function IT defined 
on A is called strong probability measure, if it satisfies the following conditions: 

(aO) -K : A —> C, hence, 0 < TT(A) < 1 for each A £ A, 

(bO) TT(Q) = 1 (1 = 0, 2 2 2 2 . . . is obviously in C), 

(cO) for each infinite sequence (A\, A2,...) of mutually disjoint sets from A, 

]C»-~i ""(-4*) i s defined and the equality ~~!«_i ""(-^t) = " ( U t ^ i -^») holds. 

T h e o r e m 1. Each strong probability measure defined on a measurable space 
(Cl,A) is also a classical probability measure on (Q,A) in the sense of Definition 2. 

P r o o f . The validity of (a) and (b) from Definition 2 for strong probability me

asures is obvious, the only we have to prove is that £~»_i ""(-^t) = Z ~ ^ i 7 r (^ i ) 

holds for each sequence (A\, A2,...,) of mutually disjoint sets from A and for 

each strong probability measure ir on (Q,A). Let (A\, A^,...) be such a sequence 

of sets. By (cO), z~)t=i 7 r(^») l s defined so that , by Lemma 1, the sets s(-n(Ai)) 

are mutually disjoint. By definition of ~^t=i 7r(-^Li)> ^ (i>~.~»'=i 7r(-^-»)J = 1 iff 

there exists (unique, if this is the case) % £ jV such tha t dfj, 7r(ylz)) = 1, in 

other words, j £ s ( ]~~ l = ^ 7r(A,)j iff j £ S(7T(J4.,)) for (just one) i £ jV, hence, 

s ( E L " T(AO)=«(T(ur=i^)) = uSi «w-4.))-
By definition of d(j, »(;*,)) . w{Ai) = J2?=i 2<-W, *(-4.)) 3~ ; ' = 5~ie.(»r(-4.)> 2 " 3 _ i -
as d(j, 7f(Ai)) = 0 for j £ s(n(Ai)). As the sets n(Ai) are mutually disjoint, 

0 0 00 

X > w = E E 2-3~;' = E 2-3_i-: c1) 
i = 1 »=i ie»(T(.4j)) i e L C j i r ^ o 

£ 2.3-̂  = f;2d(i,(u^))3-' = 

*L UA . 
.»=! / 

by definition of rf(j, 7r ( U ~ ^ I -4»)). The theorem is proved. • 
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L e m m a 2 . Let 7r be a strong probability measure defined on a measurable space 
(Q, A), let 0 be the empty subset of Q, let A £ A. Then the equalities 7r(0) = 0 and 
w(Q - A) = 1 - TT(A) hold. 

P r o o f . The assertion follows immediately from the fact that 7r is a classical 

probability measure, but let us introduce here detailed proofs copying these for 

classical probability measure. Let (A\, A2l...) = (Q, 0, 0 , . . . ) be the sequence of 

mutually disjoint sets. Then Y2i^i 7 r (^ t ) i s defined, so that , by Lemma 1, s(7r(Q)) 

and s(7r(0)) are mutually disjoint subsets of M. However, ir(Q) = 1 = 0, 222 . . . , 

so that S(TT(Q)) = jV, consequently, S(TT(0)) = 0 and TT(0) = X^e*(--(0)) 2 ' 3 ~ J = °-

Given AeA, take (Ai, A2,...,) = (A, Q- A, 0, 0 , . . . ) . £1 - A G A, the sets A{ are 

mutually disjoint, hence, Yli^i ^(Ai) is defined, so that s(w(A)) and s(ir(Cl — A)) 

are mutually disjoint and such that s(w(A)) U s(n(^l — A)) = s(7r(.A U (Q — A))) = 

s(iv(tt)) = jV. Consequently, s(7r(ft - A)) = jV- s(ir(-4)). But 

00 

1 = ^ 2 - 3 - J ' = X ] 2 ' 3 _ i = E 2 - 3 ~ J + (2) 
i = i jetf jes(n(A)) 

+ ^ 2 • 3~j = ]T 2 • 3~j + ]£ 2 • rj = 
i€N-»(T(A)) i6*(jr(A)) j€*(ff(n-A)) 

00 00 

= J ] 2d(j, n(A)) 3"- + 2 2d(j, 7r(fl - A)) = 
i=i i=i 

= 7r(^) + 7 r ( ^ - A ) , 

so tha t TT(Q — A) = 1 — 7r(A). Lemma 2 is proved. • 

In the next chapter we shall prove that the homom'orphism between set-theoretical 
operations and operations over strong probability measures, proved in Lemma 1 
and Lemma 2 for disjoint sets, is valid in general, i.e., for each systems of sets. 
However, before closing this chapter, let us introduce a particular example of a 
strong probability measure to prove that this notion is not logically empty. 

The example is very simple and it served, in fact, as a motivation for the theoreti
cal approach explained above. Let fi = M = { 1 , 2 , . . . } , let .̂ 4 = V(Q) = V(N), let 
7r({z'}) = 2 • 3"~l for each i £ jV, let n(A), A C jV, be defined by er-additivity, 
i.e., w(A) = E . € A "•({*}) = E i e A 2 ' 3 ~ J ' - Obviously, s(w(A)) = A for each 
A C .V, so tha t for each sequence (A\, A2,.. .) of disjoint subsets of jV, the sets 
s(7r(A\)), S(TT(A2)), . .. are also mutually disjoint, hence, 

/ 00 \ 00 

M l M = E 2 . 3 - ^ ^ E 2 3 " ^ (3) 
«€-(TT(U~ A,)) j = lieAj чi = l 

= E E 2 '3- i = E7r(^)' 
j = l ies(ir(Aj)) j - \ 

so that cr-additivity of 7r is proved. The facts t h a t K(A) £ C for all A C M and tha t 

iv(Af) = 1 are obvious. 
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3. BOOLEAN-VALUED UNCERTAINTY QUANTIFICATIONS INDUCED 
BY STRONG PROBABILITY MEASURES 

In the last chapter we proved, tha t for a sequence (A\} A2,...) of mutually disjoint 
sets from A the corresponding support sets s(ir(Ai)), s(7r(A2)),... are also mutually 
disjoint, in other words said, tha t for all pairs i, j G jV, i =£ j , the equality s(7r(jL;))n 
s(n(Aj)) = 0 = s(ir(Ai dAj)) = s(7r(0)) = s(0). The following assertion proves, tha t 
this possibility to translate set-theoretic operations over sets from A into the same 
operations over the support sets of their strong probability values is more general 
and tha t it is not limited only to disjoint sets. 

T h e o r e m 2 . Let 7r be a strict probability measure defined on a measurable space 
(CI, A). Let (A, Ai, A2,...) be a sequence of sets from A. Then the following set 
equalities hold in V(M): 

(i) s(ir(Sl - A)) = N - S(T(A))} 

(ii) s(ir(\JZ1Ai)) = UZi«Ai))} 

(iii) s(7r(nZ1Ai)) = nZis(<Ai)). 

P r o o f , (i) Take (A\, A2,. ..) = (A, Q — A, 0, 0, 0 , . . .) as a sequence of mutually 

disjoint subsets from A- Then Yli^i 7r(-4») — 7r(f2) = 1 is defined, hence, for each 

j € jV, d (j, Y?i=i T ( - 4 < ) ) = dU> 7 r (^) ) = 1- As d(j, 0) = 0 for all j G jV, we obtain 

tha t for all j G jV either d(j, K(A)) = 1, or d(j, 7r(Q, - A)) = 1, but not both 

together. Consequently, d(j, n(A)) = 1 iff d(j, 7r(Q — A)) = 0 holds for each j G jV, 

so tha t s(7r(Q - A)) = jV - s(n(A)) and (i) is proved. 

(ii) Let A, B G A, let A C B. Then B - A G A and ir(B) = £ ? ~ 7r(A{), where 
(Ai, A2,...) = (A, B - A, 0, 0, 0 , . . .). Hence, for all j G jV, d(j, TT(B)) = 1 iff 

d(j, 7r(.A)) = 1 or d(j, -x(B — A)) = 1, and just one of these two possibilities holds. 
So, s(7r(/3)) = s(ir(A))U s(ir(B - A)), consequently, S(TT(A)) C s(7r(H)) and s(7r(H -
A)) C S(TT(B)). For no mat te r which A, B E A, A C A U B <md B C A U B 

immediately yield tha t s(ir(A)) C S(TT(A U B)) and s(7r(H)) C S(T(A U B)), hence, 
S(TT(A)) U S(7T(B)) C S(TT(A U B)). Suppose, in order to arrive at a contradiction, 

tha t s(7r(A)) U s(7r(H)) / s(7r(yl U B)), hence, tha t there exists i0 G jV such tha t 
i0 G S(TT(A U B)), but i0 £ s(7r(yl)), i0 <£ s(is(B)), in other words, d(i0, ir(A U 
B)) = 1 but d(i0, TT(A)) = d(i0, n(B)) = 0. As s(7r(H - A)) C s(ir(B)) holds, 
d(i0, ir(B - A)) = 0 holds as well. But, AUB = AU(B-A) also holds, so tha t 
d(i0, TT(A)) = d(i0, n(B — A)) = 0 implies tha t also d(i0, ir(A U B)) = 0. So, we 
have arrived at a contradiction and the equality s(7r(AUB)) = s(7r(jl)) Us(7r(H)) is 
proved. 

Let (A\, A2 .. .) be a sequence of sets from A, let us prove, first, tha t 

sL([jA)j)={Js(n(Ai)) (4) 
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holds for each n G N'. For n = 1, the assertion is trivial. By induction, suppose that 
it holds for n. Setting Ui=i Ai = &> w e obtain that 

T r í l j A - ) ) = s U U \JAA U 4 + I = S(TT(B U An+l)) = (5) 

= s(ҡ(B)) U s(ҡ(An+1)) = Ҷ тr í Џ AІ ) ) U s(ҡ(An+1)) = 

n n + 1 

= Џ S(Ҡ(AІ)) U s(ҡ(An+1)) = Џ S(Ҡ(AІ)). 

i = l 

ForallnG jV, U L i - 4 - C l X j A{, hence, S(TT (lj?=i 4 . ) ) C S ( T T flj£i At)), so that 
Ui=i s(7 r(^ i)) C s ( 7 r (Ui=i -̂ «')) holds for each n G -!V, consequently, the inclusion 
Ui^i s(^(Ai)) C s (% (Ui^i A')) also holds. Suppose, to arrive at a contradiction, 
that there exists io G jV such that i$ G (7r(Ui=i - ^ O ) - Ui=i s(~n(Ai)). Then i0 ^ 
s(7r(ylj)) holds for each i£j\f, SO that d(io, ir(Ai)) = 0 for all i G-V. Consequently, 

d(z'0) T T ^ - U j ; 1 ! ^ ) ) 
= 0 for all z'GjV, so that 

Hence, io ^ ^ (^(Ui^ i -̂ »))> an(^ w e have arrived at a contradiction. Consequently, 
Ui=i s(7 r(^ i)) = s (^ (Ui=i -"-t")) holds and (ii) is proved, 
(iii) Let Ai, A2)... G A. Then 

S ( M P A U ) = «U(n-g(n-i4,)jj= (?) 

= M - s L ({J(Q - Ai)\) = j V - Q s ( 7 r ( 0 - A . ) ) = 

oo oo 

= jv-U(^-^(^)))=ns('r(^)). 
i = l i = l 

and (iii), as well as Theorem 2 as a whole, are proved. • 

For a number of reasons explained in more detail, e.g., in [1] or [4], also non-
numerical measures of degrees of uncertainty are worth being considered. Among 
these measures, attention is often concentrated to the set-valued or, more generally, 
boolean-valued measures of uncertainty because of the possibility to understand 
these degrees as sets of possible worlds satisfying some conditions or verifying some 
assertion, and because of the possibility to take profit from a relatively rich apparatus 
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of notions and results concerning Boolean algebras. Namely, we shall define Boolean-
valued probability measures as presented below. 

Boolean algebra B is a structure (B, V, A,->, 0 ,1 ) , where B is a nonempty set, 
V (supremum) and A (infimum) are two binary operations defined on B x B and 
taking their values in B , -i (complement) is a unary operation taking B into itself, 
0 £ B is the zero element of B and 1 £ B is the unit element of B, in the case 
of necessity we can write Og and I 5 . The operations V, A, and —1, as well as the 
elements 0 and 1 are supposed to satisfy the axioms of Boolean algebras which are 
known in various settings, e.g., tha t one presented in [7]. 

It is a well-known fact, cf., e.g., again [7], tha t the binary relation < , defined on 
B in such a way that , for each x, y £ B, x < y holds iff x A y = x or, what turns to 
be the same, iff x V y = y, is a partial ordering relation on B and xV y (x Ay, resp.) 
is just the supremum (the infimum, resp.) of x and y with respect to this partial 
ordering relation. Using the associativity and commutativity properties of both the 
operations V and A, we can immediately deduce by induction, that supremum and 
infimum of each finite set of elements of a Boolean algebra is defined. For an infinite 
set of elements, in general, this need not be the case. A Boolean algebra is called 
complete, if for eacii set of elements their supremum and infimum are defined, a 
Boolean algebra is called a-complete, if for each countable set of elements their 
supremum and infimum are defined. 

D e f i n i t i o n 4 . Let (Q,A) be a measurable space, let B = (B, V, A,->, 0 ,1) be a 
<r-complete Boolean algebra. A mapping p, defined on A and taking its values in 
B, is called B-valued Boolean probability measure (or: Boolean-valued probability 
measure taking its values in the Boolean algebra B), if 

(i) P(«) = 1 

(ii) for each infinite sequence (A\, A2,...) of mutually disjoint sets from A, the 
subset {p(A{) : i £ jV} of B is a decomposition of the element p ( U i = i ^*) °^ 
B. (In other words, for each i, j £ jV", i ^ j implies that p(Ai) A p(Aj) = 0 

andVSi.P(^) = p(USi^)) 

The following assertion can be seen rather as a re-interpretation of the results of 
Theorem 2. 

T h e o r e m 3 . Let n be a strict probability measure defined on a measurable space 
(Q,, A), let B_sf = (V(M), U, fl, c , 0,jV) be the complete Boolean algebra of all subsets 
of the set of all positive integers, where D, U and c are the usual set-theoretic 
operations of union, intersection and complement. Then the mapping p : A —* V(N), 
defined by p(A) = S(TT(A)) for each A £ A, is a / ^ - v a l u e d Boolean probability. 

P r o o f . Follows immediately from (bO) of Definition 2 and from Theorem 2. D 
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4. ATOMIC AND EXTENSIONAL PROPERTIES OF STRONG PROBA
BILITY MEASURES 

When investigating and processing a classical probability measure the situation turns 
out to be much simplified, if the measure in question is atomic with a finite or 
countable space of atoms. Or, in such a case, the probability of each random event 
can be computed as a sum of positive probabilities of a finite or countable set of 
atomic random events corresponding to the random event in question. We shall 
prove that strong probability measures are atomic in this sense and we shall use this 
property in order to prove that strong probability measures are extensional. For the 
sake of reader's convenience let us begin with the classical definition. 

Definition 5. Let (Q,A) be a measurable space, let P be a (classical) probability 
measure defined on (Q,,A). A set A e A is called an atom of A with respect to P, if 
P(A) > 0 and for each B G A, B C A, either P(B) = 0 or P(B) = P(A). Measure 
P is called a.tomic with respect to a set At C A of atoms of A with respect to P, if 
for each B e A such that P(B) > 0 there exists an atom A G At such that A C B. 

Given a strong probability measure 7r defined on a measurable space (Q,.4), we 
shall construct, in the sequel, the set of all atoms of A with respect to 7r. The 
following lemma will be useful for these sakes. 

Lemma 3. Let 7r be a strong probability measure defined on a measurable space 
(Q,A), let 0 T̂  S C A be a system of sets from A. Then there exists a sequence 
Af, As,... of sets from S U {0} such that 

U s(*(A)) = [ J s{x(Af)) = s (ir ( [ J Af ] I (8) 
A£S j = l \ \ ; = 1 / / 

H s(*(A)) = f | s(n(Af)) = s (rr ( f ) Af ] ] . (9) 
AGS i = l \ \ i = l / / 

P r o o f . Take i G jV, if there exists A G S such that i G s(n(A)), choose one 
such set and denote it by Af, hence, axiom of choice is applied to the nonempty 
system {A : A G S, i G s(ir(A))} of sets. If there is no such A in S, take Af = 0 
(the empty subset of Q,). We shall prove that Ui=i s(w(Af)) = LUes S(T(A))- As 
Af e S U {0} holds for each i G jV, the inclusion U ^ i s(ir(Af)) C \JAes S(W(A)) i s 

obvious. Let i G UAGS
 s(7r(A))- Then there exists AQ G S such that i G S(TT(AQ)) 

holds. Hence, {A € S : i € S(TT(A))} / 0, so that i G s(ir(Af)) by the definition of 
Af. So, i e U j~ i*K-4f ) ) , consequently, {JA£S s(ir(A)) C Uf- i s(*(Af)) and the 
first equality in (8) is proved. The dual equality in (9) follows by de Morgan rules, 
as 

C\*(*(A)) = M-\J(X-S(K(A)))= (10) 
A£S AES 
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= jV- t j s(ir(Q - A)) = M - \Js(ir(Q-Af)) = 
A£S j=l 

oo oo 

= tf-\J(Af-8(*(Af)))=f)8(*(Af)). 
3=1 3=1 

The right-hand side inequalities in (8) and (9) follow directly from Theorem 2. • 

Set, for each i £ jV, 

Si= n s(7r(^))- ( i n 

AeA,ies(n(A)) 
Obviously, i £ Si for each i € N. Let j £ Si for some j £ jV, j / i, let i ^ 5,-. Then 
there exists A £ A such that j £ s(7r(A)), i £ s(iv(A)), hence, j £ s(ir(Q — A)) = 
Af — s(7r(A)), but i £ s(7r(Q — A)), so that j ^ Si. We have arrived at a contradiction 
proving that j £ Si implies i £ Sj. But, j £ Si means by definition of Si, that 
(VA £ .4) (i £ S(TT(A))) => j £ s(7r(A)), in other terms, {A e A : i e S(ir(A))} C 
{A £ A : j £ 5(7r(A))}, consequently, Sj C S,*. As j £ Sj implies that i £ 5/, we 
obtain by the same way of reasoning that Si £ Sj, hence, j £ Si implies that Sj = Si. 
So, if SiC\Sj ^ 0 for i, j £ jV, i. e., if there exists k £ SiHSj, then Sj = Sk = Sj . We 
can conclude that for each i, j £ jV either Sj DSj = 0 or Si = Sj, hence, the system 
5* = {Si ,S2, . . .} of sets is a decomposition of the set ./V of all positive integers 
(let us recall that S* is taken as a set of sets, so that repeated occurrences of some 
S C ./V in the sequence (Si, S2) are not taken into consideration). 

Let S C A be a nonempty system of subsets of Q. A sequence Af, Af, . . . of sets 
from S is called a representation of S (with respect to 7r), if i £ s(ir(Af)) for each 
i £ UAips s(7 r(^)) (consequently, ( J?^ s(7r(Af)) = LUes s(7r(J^)))- A representation 
(Af, Af, • • •) of 5 is called minimal, if j g s(ir(Af)) holds for all z, j £ jV such that 
s(7r(Af)) -£ s(7r(A^)). We proved in the proof of Lemma 3 above, that for each 
0 ^ S C A a representation of 5 exists. Let a(S) denote the set of all representations 
of 5 corresponding to different choices from the sets {A £ S : i £ s(7r(A))} supposing 
that these sets are not singletons. In particular, let a1 = a(Si), where Si = {A £ 
A:ies(w(A))}. 

Define, for each i £ jV, 

Ati(ic,A) = {A £ A : S(TT(A)) = S.h (12) 
00 

At(7r,A)=[JAti(7r,A). (13) 
»=i 

Theorem 4 . Let 7r be a strong probability measure defined on a measurable space 
{Q,A). Then 

(i) At(7r,^4) is the set of all atoms of A with respect to TT. 

(ii) Each representation of At(TT,A) is minimal. 

(iii) Measure it is atomic with respect to At. 
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(iv) Let (BAt, BAt,...) be a representation of At. Then, for each A £ A, 

*(A)= j2 <B?y (14) 
J6JV, ,(*(BA*))Cs(*(A)), 

3 
,(n(Bf*))J:,(*(BAt)) for all k<j 

P r o o f , ad (i) Let A g A, let S(TT(A)) = Si for some i G jV. As Si # 0, TT(A) = 

£ € S . 2 • Z~J > 0. Let B G A be such that B C A, 0 < 7r(H) < 7r(A). Then 
0 zfi S(TT(B)) C Si holds, so that there are ji, j 2 G Si such that j \ G s(7r(H)) and 
j2 G St — s(7r(H)). Hence, B £ A separates j \ from j 2 , so that j i , j 2 cannot be in 
the same S, and we have arrived at a contradiction. Consequently, such a B C A 
cannot exist, so tha t each A such tha t s(ir(A)) = S,- must be an atom. If A G A 
is such tha t 0 / s(ir(A)) -£ Si for all i G jV, then the inclusion Si C s(n(A)) 
must hold for at least one i G jV. Let (A\, A2,. . .) be a representation of Si = 

{A € A : i € S(TT(A))}, so tha t s (TT (p£L i 4 ) ) = s (* ^ A e s . A)) = Si- D e n o t e 

f l j ^ i Aj by A* (G A, obviously), and set A0 = AcnA. Then S(TT(A 0 ) ) = Si, so tha t 

0 < 7T(AQ) = Y^jes, 2 ' 3 _ , ? < ^(A) a n ( l ^o C A obviously hold. Hence, A is not an 

a tom of A with respect to 7r and (i) is proved. 

ad (ii) As for each i, j G jV either Si = Sj, or SjflSj = 0, and S; = s(7r(A^ t ) ) for 

each representation (Aj , A2 , . . . ) of At, the relation j ^ s(7r(A^ )) for each f, j 

such tha t s(7r(A/^)) ^ s ( 7 r ( A ^ ) ) is obvious. Hence, representation (AAt, AAt,...) 

is minimal and (ii) is proved. 

ad (iii) Let (AA , A2 , . . . ) be a representation of At, let B G A. If B is an a tom 

of A with respect to 7r, let s(7r(H)) = Si. As s(w(AA )) = Si as well, we obtain 

that s(7r(5 n AAt)) = Si, hence, 0 < 7r(H D AAt) = TT(B), SO tha t AAt satisfies the 

demands. If B is not an a tom of A, and ft(B) > 0, then s(ir(B)) D Sj for some 

i G jV, so tha t AAt is such tha t s(BnAAt) = Si and 0 < ir(BnAAt) < 7r(H), hence, 

B n AA is an a tom of A with respect to 7r such tha t B PI AA C B. Consequently, 

7r is atomic and (iii) holds. 

ad (iv) Let A £ A. Then for each i G jV either S,- C s(7r(A)) or Si n s(7r(A)) = 0 

(if S, D s(7r(A)) C Si is nonempty, then A separates at least two elements of S,-

from each other) . Hence, s(7r(A)) = {JsiCs(n(A)) 8»- Let (-^I > -^2 >•••>) be a 

representation of At. Then s(7r(A)) = UsfTi-fB^^oWA)) s(7r(Bj ))> hence, 

7T(A) = ^ 2 . 3 - ' = . (15) 
j G * « A ) ) 

£ £ 2 . 3 - = 
s(*(Bf*))Cs(n(A)), ies(n(Bf*)) 

,(*(BAt))it,(*(BA*)) for all fe<i 
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.(»(B^«))C«(*M)), 
• («r(BJ"))#»(<r(B£*)) for all k<j 

and (iv) as well as Theorem 4 as a whole are proved. D 

Let us define the two following operations taking nonempty sets of reál numbers 
from the Cantor set C into this set. Let | ^ 5 c C . Set 

/\x= £ 2 - 3 - \ (17) 

We can write, abbreviately, \JC (f\C, resp.) instead of \/x£cx if\x£Cx> resP-)-
Obviously, 

s{\IC)= \Js(x), s(/\C)=f)s(x), (18) 
xEC x£C 

and both the numbers \JC and f\C are uniquely defined by these set equalities. 

Theo rem 5. Let 7r be a strong probability measure defined on a measurable space 
(Q,A), let (A\, A2, • • •) be a sequence of sets from A. Then 

TT Q A - = V ^ i ) , (19) 
\ i = l / i = l 
/ 00 \ 00 

MÍVO = A71^)- (20) 
<i=l / 1=1 

P r o o f . By (ii) and (iii), Theorem 2, and by (18), 

( / 00 \ \ 00 / oo \ 

M I M O ) = Us(7r(^)) = 4 V 7 r ( ^ ) j , (21) 
/ / oo \ \ oo / o o \ 

a r ( n ^ J ) = nsw^))=M A ^ o j , (22) 
and both the assertions immediately follow. • 

Theorem 5 can be re-formulated (or rather interpreted) in such a way that strong 
probability measures are extensional and a-extensional in the sense that probability 
values ascribed to finite (in the čase of extensionality) or countable (in the čase of 
er-extensionality) unions and intersections of measurable sets are determined by the 
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probability values ascribed to the particular sets, in other words said, probabilities of 
at most countable unions and intersections are functions of probabilities of particular 
sets. Interesting enough, perhaps, in this paper we have arrived at a sub-class of 
probabilistic measures possessing the property of extensionality, and we have arrived 
at this sub-class of probability measures in a purely axiomatic way, just replacing 
the set (0,1) of probability values by its Cantor subset C and the usual addition 
operation ^ by its strengthened version *jT • 

And it is just the extensionality property which motivates our choose of the 
Cantor set C as the space of possible probability values. Or, to each real number 
x from C just one binary sequence can be uniquely ascribed, taking simply the 
unique 0 — 2 sequence of ternary digits corresponding to this number x and dividing 
each digit by two, we obtain the sequence denoted above by (d(l,x), d(2,x),...). 
This does not hold true in the case of binary decomposition, when, e.g., 0 1 1 1 . . . 
and 1 0 0 0 . . . correspond to the same real number 1/2. A priori, two solutions are 
possible, but both of them can be easily proved to be unsatisfactory. 

(I) We shall accept both the decompositions and we shall modify the cr-additivity 
axiom for strong probability measures in this way: 

For each sequence (A\, A2,...) of mutually disjoint sets from A and for each 
i E jV there exists a binary decomposition of the value TT(A{) ascribed to A{ by 
the strong probability measure IT such that Yli^i 7r(-^») i s defined and equals to 

*(U£i-4i). 
Now, we may ascribe the value ir(A) = 1/2 to a set A G A and the same value 

n(Q-A) = 1/2 to its complement, taking ir(A) = 1 0 0 0 , . . . , T T ( Q - A ) = 0 1 1 1 . . . , and 
obtaining TT(AU(£1-~ A)) = J2°Be{A,n-A} ^W = 111 • •• = 1- However, for n(AuA) 
we obtain 1000 .. . = 1/2 so that , for A\ = A, B\ = Q, - A, A2 = A, B2 = A we 
obtain tha t K(AX) = TT(A2), 7r(H!) = TT(B2), but ir(Ai U Hi) ^ TT(A2 U B2), SO that 
the extensionality property is violated. 

(II) We shall accept only one binary decomposition of each real number from 
(0,1), namely this one containing infinitely many zeros. Evidently, just one binary 
decomposition satisfying this property corresponds to each x £ (0,1). However, 
ascribing 7r(A) = 1/2 = 1000 . . . to a set A £ A, 7r(Q — A) cannot be defined in 
such a way tha t Y2BG1A SI-A\ 7r(-^) = 111 ••• = 1 would hold, as 0 1 1 1 . . . is not 
the acceptable decomposition of the value 1/2. Preferring the other decomposition 
obviously does not solve the problem, hence, the equality ir(A) = 1 — 7r(Q, — A) is 
violated and this fact is also inacceptable. 

An open question remains, which is the role of the Cantor set of real numbers in 
our constructions and considerations, and whether this role can be played by another 
subset of the unit interval of reals. Perhaps a more simple case is to find whether, 
using decomposition of real numbers to the base n > 3, e.g., to the common decadic 
base, there exists a subset of (0,1) possessing the same advantageous properties 
(at least from the point of view of our constructions), as the Cantor set based 
on the decomposition to the base 3. A more general problem reads as follows: it 
is possible to obtain some explicit conditions imposed to subsets of (0,1) such that 
every subset of (0,1) satisfying these conditions can be used instead of the Cantor set 
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when defining axiomatically extensional probability measures? Both these questions 
remain still unanswered and will be perhaps investigated at some appropriate future 
occasion. 

5. DEFINITION OF CLASSICAL PROBABILITY MEASURES OVER 
COUNTABLE SPACES BY STRONG PROBABILITY MEASURES 

Consider the following partial mapping w which takes the Cantor set C into the unit 
interval of real numbers as follows. If x G C, set 

n 

w(x) = lim n~l > d(i,x) (23) 
n—Kx> -—-' 

i = l 

supposing tha t this limit values is defined, w(x) being undefined otherwise. Hence, 
w(x) is the limit value (if exists) of the relative frequences of the occurrences of 
the digit 2 in the initial segments of the unique 0 — 2 ternary decomposition of the 
number x. 

T h e o r e m 6. Let ~ be a strong probability measure defined on a measurable space 
(Q,A). Then the system Ao C A of subsets of A for which the value w(ir(A)) 
is defined is closed with respect to complements and to finite unions of mutually 
disjoint sets and w(7r(-)) is a non-negative, normalized and finitely additive real-
valued measure defined on Ao-

P r o o f . The relation w(ir(A)) G (0,1) obviously holds for each A £ Ao. It is also 
obvious tha t 0 G A0, fi G Ao, and w(ir($)) = 0, w(ir(Q)) = 1. Let A G Ao, so tha t 
W(TT(A)) is defined. Then 

n 

w(ir(A)) = lim n " 1 V d ( i , T T ( A ) ) = (24) 
n—t-oo . 

= lim n card (S(TT(A)) n {1, 2 , . . . , n}) = 
n-+oo 

= lim n~l [n - card (s(ir(n - A)) n {1, 2 , . . . , n})] = 
n—>-oo 

= l ~ l^L n _ 1 C a r d ( s ( 7 r ( f i - A))D{l,2,...,n}) = 

n 

i = l 

a s s ( 7 r ( ^ - A ) ) = y V - s ( 7 r ( A ) ) . Hence, i«(7r(Q-A)) = l i m ^ ^ n~l ~Ti=i d{h ~(^~ 
A)) is defined, so tha t Q - A G Ao and W(TV(Q - A)) = 1 - ^ ( ^ ( A ) ) . ' 

Let A, B G Ao, let A n H = 0- Then S(TT(A)) n S ( T T ( 5 ) ) = 0 and s(ir(A U 5 ) ) = 

S(TT(A)) U s(7r(H)). Consequently, 

n 

io(7r(AUH)) = lim n _ 1 ^ r i ( z - , i ( A U f l ) ) = (25) 
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= lim n _ 1 c a r d ( s ( 7 r ( A U H ) ) n { l ) 2 , . . . , n } ) = 
n—>oo 

= lim n " 1 card ((s(*(A)) U s(ir(B))) n { 1 , 2 , . . . , n} j = 
f l-+0O 

= lim [ n _ 1 card ( s (7 r (^ ) )n { 1 , 2 , . . . , n } ) + 
n—too 

+ n _ 1 card (s(7r(H)) n {1, 2 , . . . , n})] = 

= lim n " 1 card (s(7r(^)) n { 1 , 2 , . . . n } ) + 
n—»-oo 

+ lim n - 1 card (s(ir(B)) n { 1 , 2 , . . . , n}) = 
n—>oo 

= w(7r(A)) + w(-jr(B)), 

so tha t A U H G Ao and the finite additivity of the measure u>(7r(-)) is proved. • 

As can be easily demonstrated, the measure W(TT(-)) is not, in general, cr-additive. 
Or, take (Q,A) = (jV, V(M)), and take 7r(jl) = £ i G 4 2 • i~\ For each i G jV and 
for Ai = {i} we obtain that s(Ai) = {i}, hence, 

n 

w(ir(Ai)) = \imn-1Y^d(j(Ai))= (26) 
; = 1 

= lim n - 1 card (s(-r(i4,)) n {1, 2 , . . . , n}) = 

= lim n : card ({z} n {1, 2 , . . . , n}) = lim n x = 0, 
n—i-oo n—>oo 

so tha t YlTLi w(^(Ai)) = 0, however, 

wUl {JAA J = tx;(7r(/V)) = w( l ) = 1, (27) 

hence, cr-additivity is violated. 

The following question can perhaps arise: how large is the class of measures defin
able on (Q,A), which can be defined by an appropriate strong probability measure 
7r on (Q,A) and by the mapping w in such a way that P(A) = u>(7r(jl)) for each 
A G A? The following assertion proves that if the space Q is at most countable, this 
class contains all the classical probability measures defined on (Q,A). 

T h e o r e m 7. Let (Q, A) be a measurable space such that £1 is at most countable, let 
P be a classical probability measure 7r defined on (Q, A). Then there exists a strong 
probability measure defined on (£l,A) such that , for all A G A, P(A) = w(7r(A)). 

P r o o f . Obviously, we may limit ourselves to the case when (£l,A) = (N, V(N)). 
If Q, is countable, an enumeration of elements of Q suffices, if $7 is finite, we ascribe 
zero probabilities to all i's from M such that i > card (Q). If A 5- V(Cl), we can 
consider, instead of fi, the set J70 of all atoms of A with respect to 7r and we shall 
transform the assertion to the same assertion for (f20j V(QQ)). 
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Let P be a probability measure on (jV, V(M)), hence, P is uniquely defined by 
the values p.- = P({i}) for all i G .A/". Ascribe, to each i G jV, a binary sequence 
x{ = (x))]°=1 G {0,1}°° in this way: 

If pi = 0, them x) = 0 for all j G jV. if pi = 1, then x) = 1 for all j G jV. 
Otherwise, set x\ = 0, x\ = 1. If x\, x\,. .., xl

n are already defined, set x n + 1 = 1, 

if n - 1 *C"=i "} < r*' holds, set xl
n+1 = 0 otherwise, here r; = p.- ( l — "T)}=i Pi) = : 

Pi [Y^rLiPj) • A s c a n he easily proved (here and below in this proof we omit the 

routine details), limn_oo " - 1 .Cj=i x) = ri-
Having defined xl for all i G jV, we set y1 = (y})f=x = x1. Having already 

defined yl = (y))]0^ for all i < n, we shall define (yj+1)]°=1 in this way: first of all, 
we define an auxiliary sequence (z" )'j_1 such that z"+ = 0, if *Cjfc=i Vj — -> ie-> 
if there exists k < n such that y$ = 1, and z"+ 1 = 1 otherwise, i.e., if yf = 0 for all 
j < n. Now, we set yn+1 = z]+l, if zn+1 = 0 and yn+1 = xn+1, if ^ n + 1 is the £ th 
occurrence of 1 in (zn+1)fLt from the left, i.e., if £ J . = 1

 z?+1 = L A f t e r a calculation 
the technical details of which can be found in [5] we prove that limn_oo z^j-i Vj — 

Ti (1 - ]C}=i P; J = Pi for all i G jV. 

Set, now, 7r({i}) = *>3jLi 2yj S--7 for each i G jV, obviously, u>(7r(i)) = p t . More
over, due to the way in which the sequences yl have been built, for each i G -V there 
exists just one i £ Af such that y) = 1, so that, for each A C «V, 7r(J4) = ]j~)t6j4 7r({^}) 

is defined, consequently, P(A) = w(ir(A)) = w [Y^eA 7 r(0) = Z^JGA ""MO) = 

X^iea Pi holds for each A C M. n 

The following remarks concerning the relation between classical probability me
asures and strong probability measures are perhaps worth being stated explicitly. If 
a strong probability measure IT on (Vl, A) is given, then w(ir(A)) is defined unique
ly for each A £ A for which the corresponding limit value exists. On the other 
side, given a classical probability measure P on (jV, V(M)), the induced strong 
probability measure TT on (N', V(N)) is defined uniquely only supposing that the 
sequences xl = (x))J_i are constructed according to the way described in the proof 

of Theorem 7. However, if 0 < r,- = pt- [J2T=iPjj < 1) then there exists an 
infinite (uncountable, in fact) number of sequences vl = (f])J?_1 G {0,1}°° such 
that limn_oo n _ 1 Yll-i v) — ri> anc^ e a c n °f them can be used instead of xx when 
constructing the sequence yl. Obviously, replacing xl by v% will result in different 
value of 7r({z'}), even if the equality w(n({i})) = pi remains valid. When extending 
the proof of Theorem 7 to another countable set Vl (instead of jV ) we must keep 
in mind, of course, that different enumeration of elements of Vl by positive integers 
will also lead to different strong probability measure 7r, as in this case already the 
measure P induced on (M, V(M)) will depend on this enumeration. 

As far as the items [2] and [6] in the list below are concerned, [2] can serve as 
a source dealing with discrete elementary combinatoric probabilities over finite or 
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countable spaces, on the other side, [6] is a classical monograph written on very high 
and abstract level and dealing with the axiomatic Kolmogorov probability theory in 
its most general setting. 

(Received June 27, 1995.) 
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