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KYBERNETIKA —VOLUME 12 (1976), NUMBER 5 

Hierarchical Solution Concept for Static 
and Multistage Decision Problems 
with Two Objectives 

JAROSLAV DOLEZAL 

A new concept of the so called hierarchical solution is introduced for decision problems with 
two objectives. This concept is then applied to static and multistage decision problems, and 
sufficient existence and necessary optimality conditions are always derived. For a special class 
of linear multistage decision problems with both objectives being quadratic it is possible to 
obtain the explicite analytic form of hierarchical solutions. As an illustration, also a simple 
example is included which is solved in detail. 

J. INTRODUCTION 

In this contribution an alternative approach to the solution of decision problems 
with two objectives (cost functionals) is suggested. The main idea of this approach 
is based on the definition of a certain hierarchical structure of the original bicrite-
rion optimization problem. This hierarchical structure enables us to define the so 
called concept of hierarchical solutions in a straightforward way. 

In the last few years we can find a number of papers and studies dealing with 
multiobjective optimization problems either static or dynamic, e.g. see the references 
[1] - [9]. The mentioned papers consider mostly the so called noninferior (nondomi-
nated, efficient) solution type, which fact seems not to be too much practical, espe
cially because such solution concept is in principal nonunique and leads to the whole 
family of noninferior solutions. This feature then causes considerable troubles in 
connection with the derivation of practically important methods for its determina
tion. We are thus forced to impose additional requirements on the studied multi-
objective decision problem so as to transform it into the another problem with 
a scalar (single) objective, which can be solved, at least principally, by standart 
methods. Some details concerning such approach and also other possibilities can be 
found again in [1] — [9]. 



In our approach we avoid these difficulties, because the used solution concept 
leads generally to the finite number (hopefully one) of possible hierarchical solutions. 
The situation is in this sense similar to that of classical optimization problems with 
a scalar objective. It is also clear that for this advantage we must pay a something. 
Namely, the hierarchical solution obtained by our method need not be generally also 
noninferior, i.e. there can exist such admissible decision which will further improve 
both given objectives. Anyhow, it is clearly better to arrive to the concrete result obtained 
by a certain clear-cut procedure, than to waste a lot of effort and time by applying 
a general theory with only a little hope to come to some practical conclusions. 

The concept of a hierarchical solution is introduced and studied in the next section. 
The all ideas are illustrated on the problem of simultaneous minimization of two 
given real functions in finite dimensional space —. the so called static case. This 
case is further explored in Section 3. We derive there sufficient existence conditions 
for the hierarchical solution of general constrained static optimization problems, 
and for the unconstrained case we include also necessary optimality conditions. 

Through Section 4 we formulate a multistage (discrete) decision problem with two 
objectives and we study sufficient excistence conditions for this problem. It was 
possible to guarantee the existence of hierarchical solutions under general and mild 
assumptions. The most important results concerning the necessary optimality condi
tions for the hierarchical solution of multistage decision problems with two objectives 
are given in Section 5. These conditions were obtained applying the results of the 
author [10] for discrete systems with a state-dependent admissible control region 
and they can be also denoted as a two-level discrete maximum principle. 

The obtained results are applied in Section 6 to the case of linear multistage deci
sion problems with both objectives assumed to be quadratic. Thus a set of discrete 
equations was derived, some of which are Riccati-like, i.e. we encounter a discrete 
boundary value problem. As an illustration and also for the possibility of a com
parison with other solution types we included a simple example of this type which is 
solved in detail. The computed hierarchical solution is compared with the set of 
noninferior solutions and also with the so called equilibrium solution if we apply 
game-theoretic approach. 

2. CONCEPT OF HIERARCHICAL SOLUTION 

In this section we shall introduce a concept of the hierarchical solution which will 
give us an important possibility to solve optimization problems with two objectives 
with the aid of a two-level optimization. First, let us consider a general decision 
problem with two objectives. 

For this purpose denote as Q the set of admissible decisions and assume that two 
objectives Jt and J2, J ; : Q -» E1, i = 1,2 are given. Here and henceforth E" denotes 
Euclidean space of the dimension indicated by the superscript. Our aim is to find 



such decision w e Q for which both objectives will be "as small as possible". This 
requirement is sufficient to obtain a meaningful solution only in the scalar case, i.e. 
when only one objective exists, but in the studied problem the solution concept 
must be further specified. 

It is clear that in our problem each decision results in certain values of both ob
jectives J . and J2, and that they can be interpreted as a point in E2. As we know, it is 
not generally possible to compare various points (vectors) in E2 as we can in E1. 
This is because of the fact that only a partial order can be introduced among various 
outcomes of our problem. For completeness and for later comparison let us consider 
the following simple case. 

Definition 1. Let J;: Q -> E1, i = 1, 2. The decision w e Q is said to be noninferior 
if for every other decision w e Q, 

Jt(w) ^ Jt(w), i = 1, 2 => Ji(w) = Ji(w), i = 1,2. 

In other words the just stated definition says that for a noninferior decision w 
we cannot find any admissible decision w which would decrease at least one of the 
objectives and in the same time which would not increase the other objective. It is 
also not very hard to see that, in principal, we obtain the whole one-parameter family 
of noninferior solutions which is denoted as a noninferior set. Further details and 
extensions concerning this solution concept can be found in the references [1] —[9]. 

In practical applications the mentioned "nonuniqueness" property resulting 
from Definition 1 causes serious troubles, as it is practically impossible to compute 
the whole noninferior set. Also if this set is known, we have no general rules how to 
choose a suitable noninferior decision unless some additional conditions are postu
lated, which determine a certain point (decision) from the noninferior set, e.g. see [7]. 

Through this paper we follow another approach. We assume that in the 
studied problem the given objectives have various importance. In such situations 
it is formally possible to asign properly chosen weights to the given objectives 
and to solve the resulting problem with a scalar objective, obtained as a weighted 
combination of the original objectives, applying the standart methods. However, 
we suggest still another way to achieve to the meaningful solution provided that the 
original problem can be structured in the sense described in the sequel. Especially 
in the case of two objectives is our approach easy to apply and from the computa
tional point of view only well-known methods of the calculus of extrema are needed. 

In our further considerations let us assume that the admissible decision.set lies in 
certain finite dimensional space. Such assumption will be satisfied in many decision 
problems. All vectors, if not otherwise specified, are supposed to be column vectors. 

Problem 1. Let J ; : Q -* E1, i = 1, 2 with Q a E". The problem is to find such 
w e Q for which both objectives J t and J2 are minimized in a vector sense, e.g. 
in the sense indicated in Definition 1. 



From the previous discussion we know that in this setting the vector minimiza
tion problem is very difficult to solve. So we shall assume that one of the objectives, 
say Ju is more important, i.e. the objectives are hierarchically ordered. Further we 
assume that some, at least one, of the components of a decision vector w, i.e. n 2: 2, 
play a crutial role when minimizing this preferred objective Ju while the remaining 
components, again at least one, have smaller significience for this minimization 
and which are then supposed to be used while minimizing the slacking objective 
J2. In practical problems this assumption can be either directly verified if it holds, 
or can be given by the practical background of the decision problem, or can be 
applied dividing the components of the decision vector artificially into two groups 
mentioned above. 

Therefore we can without any loss of generality assume that the first m, m ^ 1, 
components of w, i.e. vector u eEm, are significient for the minimization of Ju and 
that the remaining p, p ^ 1, m + p = n, components, i.e. vector veEp, are used 
for the minimization of J2. To simplify further considerations let us also assume 
that Q = Qu x Qv, where Qu <= Em and Qv c E". Hence, 

w = ( )eQoueQu, v e Qv. 

For example, such assumption will be satisfied in problems with ay ^ Wj ^ bp 

7 = 1, . . . , n. Now we have to solve the following problem. 

Problem 2. Let J ; : Qu x Qv -+ E1, i = 1,2 with Qu c Em and Qv <= E". The 
problem is to find ue Qu and v e Qv such that the objective Ju resp. J2, is minimized 
with respect to u, resp. with respect to v. 

In this statement of the decision problem we have for a moment neglected the given 
hierarchical structure, i.e. that Jx is the preferred objective. Then Problem 2 can be 
interpreted also as a problem with conflicting decisions — two decision-markers 
with different objectives, which is usually denoted as a two-player, nonzero-sum 
game, see e.g. [2]. The mostly used solution concept for such situations is the so 
called equilibrium solution. 

Definition 2. Let J ; : Qu x Qv -• E1, i = 1» 2. The decision pair (u*, v*) satisfying 

Jt(u*, v*) ^ min J\(u, v*), 
ueQu 

J2(u*, v*) £ min J2(u*, v) , 
veOv 

is denoted as an equilibrium solution. 

The meaning of this definition is clear. Namely, if deviating from his equlibrium 
decision each decision-maker (player) can only loose provided that the opponent 



uses also corresponding equilibrium decision. Let us also remark that the existence of 
the equilibrium decisions («*, u*) does not exclude the possibility of the existence 
of noninferior decisions w = (u, v) which give the lower value of both objectives 
in comparison with the equilibrium decisions — the so called "prisoner's dilemma" 
situation in the language of the game theory. To these questions we shall return later 
in connection with the hierarchical solution concept. 

Now let us study Problem 2 from the different point of view. In fact, we have 
to solve two parametric optimization (decision) problems. This means that for the 
given u 6 Qu we are generally able to determine the set V0(u), (minimizing decision 
not necessarily unique) such that 

(2.1) V0(u) = {v e Qv\ J2(u, v) = min J2(u, v)} , u e Qu. 
SeQv 

The set-valued mapping V0(u) given by (2.1) can be evidently denoted as a reflective 
mapping for the decision set Qu. In a quite analogous way for the preferred objective 
being J2 we can for any v e Qv determine also the corresponding set of minimizing 
decisions U0(v), i.e. 

(2.2) U0(v) = {u e Qu\ Jt(u, v) = min J^u, v)} , v e Qv. 
uenu 

It is clear that we cannot proceed our reasoning further unless some additional 
requirements in Problem 2 are specified, which would relate the above mentioned 
parametric optimization problems. One way of doing it is to take advantage of the 
additionally assumed hierarchical order for the both objective in Problem 2 as dis
cussed earlier in this section. Therefore we assume that Jl is the preferred objective, 
while J2 is the slacking one. It is required that J2 is minimized with respect to v e Qv. 
Then we choose such decision ue Qu which together with the corresponding decision 
v e V0(ii) minimize the preferred objective, i.e. >/\ is minimized over the so called 
reflective set 

(2.3) Qu = {(u, v)\ u e Qu, ve V0(u)} 

where V0(u) is defined by (2.1), i.e. Qu is the graph of V0(u). Similarly also Qv can be 
defined if J2 is the preferred objective: 

(2.4) Qv = {(u, v)\veQv, ue U0(v)} 

with U0(v) determined according to (2.2). 

This means that the preferred objective Jt is minimized not only with respect 
to u e Qu, but also with respect to the corresponding set of minimizing decisions V0(u) 
for the slacking objective J2. In this way we used the assumed hierarchical structure 
of Problem 2, and it resulted in certain discrimination of the less important objective 
J2. Let us also remark that the mappings U0(v), V0(u) are generally denoted as multi
valued mappings. This concept will be further specified in the next section when 
dealing with sufficient existence conditions for the hierarchical solution. 



Definition 3. Let Jt : Qu x Qv -» E1, i = 1, 2 with £2„ c Em and £2„ <= Ep. Further 
let Jx be the preferred objective. The pair of decisions (u, v) minimizing the preferred 
objective over the set Qu given by (2.3) is denoted as a hierarchical solution of the 
decision problem with two objectives. 

In this definition we implicitely assume that the minimization in (2.1) exists. Other
wise it would not be possible to define set Qu as given in (2.3). 

To some extent the introduced concept of a hierarchical solution resembles the 
so called Stackelberg solution for the competitive situations as detailly discussed 
in [11] — [14]. However, it is necessary to note that in our case, besides of the evident 
conceptual reasons, we admit also a possibility of the nonunique "reflection", i.e. 
V0(u) can consist of more points. If such case arise in a game situation, the preferred 
player, denoted as a leader through [11] — [13], is not able to determine his Stackel
berg strategy, because he do not know which v e V0(u) will be used by the other 
player-follower. Thus in this situations the Stackelberg solution concept cannot 
solve the problem completely. 

Let us now assume E = Q„ n Qv to be nonempty. We immediately see that the set 
E <= Qu x Qv contains all possible equilibrium solutions. Namely, if (u*, v*) e E, 
then from (2.3) and (2.4) one obtains that 

(2.5) (u*,v*)eQu=>J2(u*,v*) = J2(u*,v), v e Qv, 

(«*, v*) eQv=> Jt(u*, v*) = Ji(u, v*), ueQu. 

This is clearly nothing else than Definition 3. 

In the light of the previous discussion we see that the hierarchical solution concept 
with Jt as the preferred objective gives for this objective generally better outcome 
in comparison with equilibrium solutions. On the other hand, no such conclusion 
is possible for the slacking objective J2, the value of which can be generally higher 
or lower than the equilibrium one depending on the particular decision problem. 

For convenience, the hierarchical solution concept is illustrated in Fig. 1, where 
Qu = Qv = E1. In the depicted case it is assumed that J± and J2 are strictly convex 
and twice continuously differentiable, e.g. positive definite quadratic forms in u and v. 
In this case the reflective mapping V0(u), resp. U0(v), is a common single-valued 
function on Qu, resp. Qv. Set Qu, resp. Qv, is easily obtained as the collection of the all 
tangency points between the constant J2, resp. Ju contour lines and the lines of 
constant u, resp. v. If J t is the preferred objective we see that its minimum over Qu 

is achieved at the point Ht = (u, v) which is therefore the hierarchical solution 
of this problem. Analogously, point H2 will be the hierarchical solution provided 
that the objective J2 will be preferred. 

For comparison we have included in Fig. 1 also the corresponding equilibrium 
solution E, and the curve MtM2 denoting the set of all noninferior solutions. Point E 
is given as the intersection of Qu and Qv, as indicated by (2.5). Curve MtM2 is the 
collection of the all "touching" points between constant Jt contour lines with the 



constant J2 contour lines. We further see that in the depicted case both possible 

hierarchical solutions strictly dominate the equilibrium solution. On the other hand, 

there exist noninferior solutions, which are given by the curve DtD2, and which give 

lower values of both objectives than any of the hierarchical solutions Ht or H2. 

Such situation can be viewed as a typical one in the studied decision problems. 

Let us also remark that if this simple case is interpreted as a game, the hierarchical 

and Stackelberg solutions will coincide, e.g. see [12]. 

CONSTANT d 
'П. 

CONTOURS 

X 

CONSTANT J2 

CONTOURS 

Fig. 1. Schematic plot for the hierarchical solution concept. 

3. EXISTENCE AND OPTIMALITY CONDITIONS FOR STATIC CASE 

Through this section we shall study static decision problems with two objectives 

from the point of view of a hierarchical solution as given in Definition 3. First we shall 

show that under certain general assumptions we are able to guarantee the existence 



370 of such hierarchical decision pair (u, v). For this purpose some fundamental concepts 
concerning the theory of multivalued mappings and mathematical programming 
will be necessary, which are briefly summerized. 

We shall work with a finite dimensional decision problem denoted as Problem 3 
through the previous section. However, this restriction can be considerably released, 
especially in the connection with sufficient existence conditions. The further presented 
concepts and results can be found in the monograph of Berge [15] and partially also 
in the paper of the author [16]. The all topological spaces used further are assumed 
to be Hausdorff and denoted as X, Y, Z etc., which is evidently fulfilled in our finite 
dimensional case. As stf(X) we denote the collection of all nonempty subsets of X and as 
%>(X) the collection of all nonempty and compact subsets of X. Now let us define 
the most important concepts. 

Definition 4. The mapping E which associates with every point x e X a nonempty 
subset of Y i.e. E : X -» ^ ( Y ) , is called a multivalued mapping. If A a X, then we 
define E(A) = U F(x). 

Definition 5. We say that the multivalued mapping E : X ~* J^(Y) is upper, resp. 
lower, semicontinuous at the point x0eX if for all open sets E <=. Ywith E(x0) <= E, 
resp. E(x0) n E 4= 0, there exists a neighbourhood 0Xo of x0 such that for all X e 0Xo 

we have E(x) a F, resp. E(x) n E 4= 0- We say that E is continuous at x0 if E is both, 
upper and lower semicontinuous at x0. 

We say that E is upper semicontinuous, resp. lower semicontinuous, resp. continuous, 
if this is true at every point x e X. 

Further let us consider the following parametrized mathematical programming 
problem. Let f:Xx 7 - + E 1 be a continuous real function and G : X -» C€(Y) 
a multivalued mapping. Denote 

(3.1) m(x) = min/(x, j;) 
J-sC(x) 

and 

(3.2) E(x) = { > > e Y | y e G ( x ) , f(x,y) = m(x)}. 

It is clear that due to the continuity off and compactness of G(x) the both expressions 
(3.1) and (3.2) are meaningful. From [15] we know that the following results hold. 

Proposition 1. Let F : X -* ^(Y) be upper semicontinuous and E a X 'compact. 
Then the set E(E) is also compact. 

Proposition 2. Let E : X —> ^(Y) be upper semicontinuous. Then its graph, i.e. the 
set 

F{(x,y)eX x Y\yeF(x)}, 
is closed. 



Proposition 3. Let / : X x Y -* E1 be continuous real function and G : X -> 'g'(Y) 
continuous multivalued mapping. Then the minimum value function m(x) in (3.1) 
is continuous on X and its solution set function F(x) in (3.2) is upper semicontinuous 
multivalued mapping from X to ^(Y). 

It is easy to see that if in Definition 5 the mapping F is a usual single-valued 
function, then all three continuity concepts introduced for multivalued mappings 
are equivalent and coincide with a classical continuity concept. Hence, if in Proposi
tion 3 we additionally assume that for each x eX there exists just one y e G(x) which 
minimizes/, i.e. F is a single-valued mapping, we can conclude that F will be a con
tinuous function in this case. 

Now let us return to our decision problem. Here G is a constant multivalued mapp
ing, i.e. G(x) = A c Y for all xeX, which is clearly continuous. Hence, from 
Propositions 2 and 3 we can conclude that the next result is valid for Problem 2. 

Corollary 1. Let J2, resp. Ju be a continuous function on Qu x Qv and let Qv, 
resp. Qu, be nonempty and compact set, and Qu, resp. Qv, nonempty and closed set. 
Then the multivalued mapping V0 : Qu -» <$(QV), resp. U0 : Qv -• ^(Qu), is upper 
semicontinuous and the set Qu, resp. Qv, is therefore nonempty and closed. 

For the definition of all necessary items in Corollary 1 see (2.1) —(2.4). With these 
preliminary results we can prove sufficient existence conditions for the hierarchical 
solution of Problem 2. 

Theorem 1. Suppose that the objectives J ; : Em x Ep -» E1, i = 1,2 are continuous 
and that the sets Qu a Em and Qv c Ep are nonempty and compact. Finally let J\ 
be the preferred objective. Then the corresponding hierarchical solution exists. 

Proof. From Corollary 1 we known that the multivalued mapping V0(w) is upper 
semicontinuous. Hence the set Qu x V0(£2„) is nonempty and compact by Proposi
tion 1. Then Qu is clearly a nonempty and closed subset of the compact set Qu x 
x V0(QU), and Qu is nonempty and compact. Therefore there exists a point (u, v) eQu 

for which the minimum of Jx is attained. • 

Remark 1. It is not very hard to see that Theorem 1 holds also in more general 
cases in which the admissible decision sets are elements of Hausdorff topological 
spaces. In this way the existence of hierarchical solutions can be guaranteed also 
for infinite dimensional decision problems with two objectives. 

If the hierarchical decisions happen to lie in the interior of Qu x Qv, or when 
Qu x Qv is the whole Euclidean E" space, the necessary conditions for the existence 
of a hierarchical solution are obtained in a simple way. Recall that various gradients 
are treated as row-vectors. 



Theorem 2. Let J ; : Em x Ep -> E1, i = 1,2 be twice continuously differentiable 
and let £2„ c Era and £2„ c Ep be open. Further let J1 be the preferred objective. 
If (u, v) is a hieararchical solution, then there exist a number \i ^ 0 and a row-
vector multiplier X c E" not both zero and such that the following conditions are 
satisfied: 

(3.3) - J2(u, v) = 0 , 

(3.4) n ~ / . (u , jj) + A - J L J2(M~, g) -= 0 , 
ou ov ou 

(3.5) n ~ Jt(u, v) + X ~-L_ J2(a, V) = 0 , 

where d2J2jdv ou, resp. d2J2\cv dv, denotes the p x m, resp. p x p, matrix with 
ij-tb element given by d2J2\dvi dup resp. d2J2jdvt dvj. 

Proof . The condition (3.3) is the necessary one for the decision pairs (u, v) to be 
in O,,. Thus from the point of view of the necessary optimality conditions for a hierar
chical solution we have to minimize J 2 subject to (3.3). But this is nothing else than 
a mathematical programming problem with equality constraints, for which the stated 
conditions (3.4) and (3.5) must hold — see [17]. - • 

The theorem just stated is interesting only provided that n 4= 0. This can be achieved 
if the so called constraint qualification is satisfied, e.g. see [17]. In our case we obtain 
the following result. 

Corollary 2. Suppose that the (m + p)-dimensional vectors 

i = U...,P Ш/Ч' Ш/ЧÌ 
are linearly independent for u e Em, v e Ep. Then the constraint qualification is satis
fied in Theorem 2, i.e. we can put \i = — 1 in (3.4) and (3.5). 

4. MULTISTAGE HIERARCHICAL DECISION PROBLEMS 

Further we shall study the so called multistage decision problems with two ob
jectives. Such problems can be also denoted as discrete optimal control problems. 
In previous author's papers [10] and [16] the multistage optimal control (decision) 
problems with only one objective were studied in detail. Here an attempt is made 
to apply the hierarchical solution concept also to multistage systems with two 
objectives (cost functional). 



To begin, let us assume that the behaviour of the system in question is described 373 
by difference equation 

(4.1) xk+1=fk(xk,uk,vk), k = 0,l,...,K-~l, x0 given, 

where a positive integer K denotes the prescribed number of stages, xk e E" denotes 
state of the system at the stage k, uk e Em, vk e Ep are controls (decisions) at the 
stage k and fk : E" x Em x Ep -* E1. As usual, xk, uk and vk are assumed to be 
column-vectors. 

The cost functionals (objectives) Jt and J2 are given by the relations 

(4.2) J ; = g\xk) + £ hk(xk, uk, vk), i = \,2, 
k = 0 

where gl : E" -* E1 and h'k : E" x Em x E" —> E1. Here and henceforth it is assumed 
that J1 is the preferred functional. 

Admissible controls must satisfy the constraints: 

(4.3) ukeUk, k = 0,l,...,K - 1, 

(4.4) vkeVk, k = 0, 1, ...,K - 1 , 

where Uk <= Em and Vk c Ep, In this case as admissible decisions we denote the 
control sequences u = {u0, uu . . . . « K - I } a n d v — {v0, vu ..., % - x } satisfying 
(4.3) and (4.4), respectively. As an admissible process let us denote a triplet (x, u, v), 
where x = {x0, xu ..., xK) is the state trajectory of the system, satisfying (4.1), 
(4.3) and (4.4). 

First let us study the existence of hierarchical solutions for the given multistage 
system (4.1) —(4.4). Assume that all functions appearing in (4.1) and (4.2) are conti
nuous and the admissible control regions (4.3) and (4.4) nonempty and compact. 

To be able to apply Theorem 1 directly let us transcribe the original problem 
(4.1)-(4.4) in the following way. It is evident that if (4.1) is successively used we 
obtain that 

(4.5) xk+1 =-fk(x0, us,u2, ..., uk, v0, vu ..., vk), k = 0 , 1 , ...,K - 1 . 

As the initial state x0 is given, it follows from (4.5) that for the cost functionals (4.2) 
one can write: 

(4.6) J,- = Ji(u, v), 

where u and v are admissible decisions (control sequences), i.e. 

(4.7) ueU = [7 Uk, veV-=J[Vk. 



It is clear that U and Vare nonempty and compact subsets of EmK and EpK, respecti
vely, and that both cost functional Jh i = 1, 2 are continuous. From Theorem 1 
we immediately obtain that the hierarchical solution for the studied multistage 
problem exists. We summarize this result in the following theorem. 

Theorem 3. Suppose that a multistage decision problem with two objectives is 
described by (4.1) —(4.4). Let us further assume that Jl is the preferred objective 
and that 

(a) the functions fk, h'k, g', k — 0, 1 , . . . .K — 1, i = 1, 2, are continuous in the 
corresponding domains of definition, 

(b) the sets Uk, Vk, k = 0 , 1 , . . . , K — 1 are nonempty and compact. 
Then the hierarchical solution exists. 

Remark 2. It is easy to see that Theorem 3 remains valid also if the initial state x0 

is not given, but it is only required x0 e A c E", where A is nonempty and compact 
initial set. On the other hand, it is not possible to prove such existence theorem 
for more general cases, e.g. with state constraints or with state-dependent admissible 
control regions, applying this simple reasoning or the scheme described in [16]. 
The main difficulty lies in the fact that the finite intersection of lower semicontinuous 
mappings is not necessarily lower semicontinuous and we cannot apply Theorem 1 
directly. 

5. NECESSARY OPTIMALITY CONDITIONS FOR MULTISTAGE CASE 

In this section we shall derive necessary optimality conditions for the hierarchical 
solution of multistage decision problems. For the sake of simplicity we assume the 
unconstrained case, i.e. Uk = Em and Vk = Ep, k = 0, 1, ...,K — 1 in (4.3) and 
(4.4), respectively. In principle, it is then possible to use Theorem 2 in connection 
with the transcription (4.5) —(4.7), but the very high dimensionality and complexity 
of the resulting problem will prevent us to solve such problem in a general case. 

Our position is the same as when studying problems with one cost functional 
in [10] and [17], where the resulting mathematical programming problem is de
composed and a discrete maximum principle obtained. Therefore we shall try to use 
the results of [10] as much as possible, in order to derive the necessary optimality 
conditions for hierarchical solutions in a more straightforward way. For this purpose 
certain technical assumptions will be needed. 

Assumption 1. All function appearing in (4.1) and (4.2) are twice continuously 
diiferentiable in their domains of definition. 



Further we shall proceed quite analogously as in the static case - see Theorem 2. 375 
Analogical to (3.3) are now necessary optimality conditions for minimization of J2 

with respect to control sequence v, while control sequence u is being fixed. To apply 
results from [10] or [17], certain convexity properties must hold. 

Definition 6. Let e be any vector in E". A set Q <= E" is said to be e-directionally 
convex if for every vector w* in the convex hull of Q there exists a vector w eQ such 
that w = w* + cce, a ^ 0. 

As long as usually only the cost functionals without the terminal part are treated, 
we perform the following substitution for both cost functionals. Namely, we introduce 
for i = 1,2 the functions 

h[(x, u, v) = hk(x, u,v), k = 0, 1, . . . , K - 2 . 

(5.1) fik-i(x> M> v) = hK-i(x, u, v) + gi(fK-i(x, u, v)). 

Now we can define functions &k : E" x Em x Ep -» E" + 1 by the relation 

(5.2) ^k(x,u,v) = (ff(X>U>VAk = 0,l,...,K-l. 
\fk(x,u,v)J 

Finally, let us consider in E"+1 sets 

(5.3) Wk(x, «) = { w e P + 1 | w = &k(x, u, v), v e Ep} , k = 0 , 1 , . . . , K - 1, 

and a vector e = (— 1, 0, . . . , 0). 

Assumption 2. For every x e E" and u e Em the sets Wk(x, u), k = 0, 1, . . . , K — 1 
given by (5.3) are e-directionally convex. 

The necessary conditions for (u, v) to belong to the corresponding reflective set 
(recall that J\ is the preferred objective) are then given as necessary optimality condi
tions for the discrete optimal control problem with J2 as a cost functional, o as a con
trol and M as a parameter. From [10] it follows that there exist row-vectors Xk e E", 
k = 0 , 1 , . . . , K satisfying 

(5.4) 4 = | - H2
+1(xk, uk, vk), k = 0, 1, ..., K - 1 , 

dx 

h=-~g2(xK), 

dx 

where the Hamiltonian is written as 

(5.5) H2
+1(x, u, v) = -h2(x, u, v) + Xk+1fk(x, u, v) , k = 0, 1, ..., K - 1 , 



and 

(5.6) f BUl(xk,uk,vk) = 0, k = 0,l,...,K-l. 
dv 

Here x0, x t , . . . , xK denote the state trajectory corresponding to (u, v). In this way 
the relations (4.1), (5.4) and (5.6) are the multistage analogy of condition (3.3) and 
are, in fact, a discrete maximum principle for the above stated discrete optimal 
control problem. Therefore the hierarchical solution (it, v) must necessarily satisfy 
these relations and in the same time the cost functional Jt should be minimized. 
This is a nonstandart form of the discrete optimal control problem and hence some 
preliminary steps will be necessary before we can apply the results from [10]. 

Assumption 3. The n x n matrices 

% — fk(x,u,v), k = 0, 1, ...,K - 1 
8x 

are regular for every x e E", u e Em and v e Ep. 

From (5.4) and (5.6) we then obtain (arguments are dropped out for simplicity) 

(5-7) Ak+1 « L + 8j±\ g * Y l = Fl(xk, Xk, uk, vk) , 

dx 

(5.8) M i l _ _ __: + (,k + M ) m . 1 ^ - Gl{xk, Xk, Uk, Vk) _ o , 
dv dv \ dxj\dxj dv 

where k = 0,1,..., K — 1. Here Fk and Gk denote n-dimensional and /^-dimensional 
functions, respectively, and T denotes transposition. Constraints (4.1) and (5.7) 
can be written in a more compact form 

(5-9) ^ ^ r W ^ ' ^ V fc-o.-,....j--i. 
Vk+J \Fk(yk,uk,vk)J 

Necessary optimality conditions for the hierarchical solution are then obtained 
as necessary optimality conditions for the discrete optimal control problem with the 
cost functional Jt subject to (5.8) and (5.9), where u and v are the controls, and with 
boundary conditions 

(5.10) x0 given, kK = - — g2(xK) . 
ox 



The resulting problem is a discrete optimal control problem with a state-dependent 377 
admissible control region (5.8). Such problems were studied in the paper [10] from 
which we know that certain regularity assumption for the constraints (5.8) is necessary. 

Assumption 4. For every k = 0 , 1 , . . . , K — 1 the (m + p)-dimensional row-
vectors (gradients of the components of Gk) 

dGJ
k 8<H\ . 1 

— > — } > J = 1 , • • • > P 
du dv J 

are linearly independent for every.x e E",u e Em and v e Ep. 

Using (5.1) we define functions <$k : E" x E" x Em x E" -v E2"+1 

(K(x,u,v) \ 
%(x,X,u,v) = ifk(x,u,v) , k = 0, \,...,K - 1 , 

\E t(x, A, u, »)/ 

where Dfc is defined by (5.1). Consider in E2n+1 sets 

(5.11) Zk(x, X)={ze E2" + 1 | z = $k(x, X, u, v), u e Em, ve E"} , 

fc = 0 , l , . . . , K - 1 

and a vector e = (-1, 0, ..., 0). 

Assumption 5. For every x e E" and A e E" the sets Zk(x, X), k — 0,1 K - 1 
given by (5.H) are e-directionally convex. 

Under Assumptions 1 - 5 the results of [10] can be applied, but from the practical 
reasons let us make one additional assumption. The terminal condition for XK in 
(5.10) must be clearly treated as a state constraint. However, in this case we are not 
allowed to put the multiplier - 1 in the definition of the corresponding Hamiltonian 
as it was done in (5.5). On the other hand, the case with this multiplier equal to zero 
is pathological, and of no interest from both, practical and computational point 
of view. Hence we impose the following "normality" assumption, which is not 
restrictive from the practical view-point. 

Assumption 6. For the discrete optimal control problem with the cost functional 
J j and subject to constraints (5.8) —(5.10) the corresponding Hamiltonian can be 
written as 

(5.12) *k+i(x, X, v) = -hl+ rtt+iAfo w, v) + 

vk+1Fk(x,X,u,v), fc = 0, 1, ...,K - 1 , 

where /x and v are n-dimensional row-vector multipliers. 



Now the basic result of [10, Theorem 5] can be rigorously applied to our problem. 
After some straightforward manipulations, omitted here for the sake of brevity, 
we obtain the desired necessary optimality conditions for the hierarchical solution 
of multistage decision problems with two objectives. These conditions are summar
ized in the following theorem, where we use the notation 

Hl

k+i(x, u, v) = -h\(x , u, v) + (ik+, fk(x, u,v), k - 0, 1,..., K - 1 . 

Theorem 4. Consider a multistage decision problem with two objectives (4.1) and 
(4.2), where Jt is the preferred one. Further suppose that the Assumptions 1-6 are 
fulfilled and that the pair (u, v) is a hierarchical solution of this problem. The corres
ponding state trajectory let us denote as x0, x 1 ; . . . , xK. 

Then there exist row-vector multipliers Xk, j.ik, vk belonging to E", k = 0 , 1 , . . . , K 
and Ck e Ep, k = 0, 1,..., K - 1 such that the following conditions are satisfied. 

-) я = _ _ _ _ , i = _ _?! 
õx дx 

дv 
= 0 ; 

8HІ+l 

дu 
+ sғk 

õu 
+ ík Õu 

= 0 ; 

h^ dHl+1 8Fk oGk dgl d2g2 

b) h = — + vk + 1 — - + Ck~ , VK = - —" + v jc— -
ox ox ox ox ox 

d) 

e) 

f) _ ^ + n + 1 £ + c*_.0 , 
cv cv ov 

where always fe — 0 , 1 , . . . , K — 1 and all expressions are evaluated at the corres
ponding values of xk, uk, vk and Xk. 

Remark 3. Looking through the Theorem 4 it is not very difficult to see that Assump
tion 1 can be somewhat released, e.g. functions gl, h\, fe — 0 ,1 , ...,K — i can be 
only continuously differentiable, or functions dfk/du, dhkjdu, k = 0, 1, ...,K — 1 
can be only continuous with respect to u. However, we cannot neglect any of the 
Assumptions 2 - 5 , because then the described approach would not be valid. 



6. LINEAR MULTISTAGE SYSTEM WITH QUADRATIC COST 
F UNCTION ALS 

Fairly deep results can be obtained if we assume that the system (4.1) is linear 
and that the cost functional (4.2) are quadratic. In this case we are able to derive 
an analytical scheme for the computation of hierarchical solutions in general. Rela
tions (4.1) and (4.2) are then replaced by 

(6.1) xk + 1 = Axk + BlUk + B2vk, k = 0, 1, .. . , K - 1 , 

K - l 

(6.2) Jt = ixJ
KMiXK + i £ xT

kQtxk + uT
kRiXuk + vTRl2vk, i = 1,2. 

Again we assume that the initial state x0 is given. The dimensions of x, u and v are 
the same as in preceding sections. In this way also all dimensions of various matrices 
in (6.1) and (6.2) are determined. 

The multistage decision problem described by (6.1) and (6.2) is assumed to be 
autonomous, i.e. its parameters does not vary with k. The only reason for this 
assumption is to avoid notational complexity without any substantial gain. Not 
loosing any generality we may also assume that the matrices M;, Qt, Ru, i,j = 1, 2 
are symmetric. Further we assume that the matrix A is regular, the matrices Mh Qt, 
Rij, i,j = 1,2, i +j positive semidefinite and the matrices Ri;, i = 1, 2 positive 
definite. Under these hypotheses the Assumptions 1 -5 will be satisfied as can be 
readily verified. The "normality" requirement in Assumption 6 would need a longer 
discussion of the corresponding quadratic programming problem. However, this is 
not the purpose of the presented paper and we, therefore, suppose that Assumption 6 
is fulfilled, i.e. the studied problem is meaningful. 

The necessary optimality conditions of Theorem 4 have now a simple form and 
result in the solution of the following discrete linear boundary value problem: 

(6.3) 

xk+i — 

h = 
Hk = 

v*+i = 

where 

(6.4) 

Axk + B^uk + B2vk, 

-xІQг + Åk+1A, 

•xІQy + џk+1A + vk+1{A~J + íkB
т

2{A~J Q2, 

vkA
т - íkB

т

2 , 

k = 0, 1, ...,K - 1 

uk = Rň B1^k+i , 

Vk = R22 B2lk+1 , 

Ь^+гBt-XwBгЪÎRчЏn* J 

U = 0, l,...,K - 1 



380 and with boundary conditions 

(6.5) x0 given 

XK = -xT
KM2 

fiK = -xT
KMl + vKM2 

v0 = 0 . 

For the solution of the stated boundary value problem let us assume that the 
varying unknown multipliers X, /.i and v depend linearly on the state variable x, i.e. 

(6.6) h = xlPk, h = 4Nk, vk = xT
kSk, k = 0,l,...,K1 

where the n x n matrices Pk, Nk, Sk are to be determined. Such assumption is quite 
often used when solving this type of discrete optimization problems. If we use (6.6) 
through (6.3) —(6.5) we obtain that the hierarchical solution («, v) of our decision 
problem with the preferred cost functional J\ satisfies the following relations: 

(6.7) 

where 

ük = R^BтNт

k+1WkГkx0, 

h = Ä Г Ж + I ^ Г Л , 
k = 0,1, ...,K - 1, 

(6.8) k = 0,1, ...,K - 1 

Pk = -Qz + WTPk+1A, 

Nk = -Q, + WT

kNk+1A + SkQ2, 

Sk+i = {WlY1 SkA
T - Pk+1B2R22

lR12R22"BT

2 + 

+ Nk+1B2R22

1BT

2, 

with boundary conditions 

PK = -M2 

(6.9) NK= -M1 + SKM2 , 

S0 = 0 . 

For convenience we have denoted 

(6.10) Wk - [1 - B ^ n ' B X n - B2R-2lB
T

2P
T

k+1-\-" A, k = 0,1, .:.,K = 1 , 

where 1 denotes (n x n)-dimensional unit matrix. Finally, the (n x n)-dimensional 
matrices Tk, k = 0, 1, ..., K are obtained as a fundamental solution of matrix differen
ce equation 

(6.11) Гk+1 = [A + ( B t R Г Ѓ - W + i + PiRггBІPL,) Wk] Гk , 

k = 0,l,...,K-\ 



with T0 = 1, i.e. 

(6.12) xk = Tkx0, k = 0,l,...,K. 

For the presented construction it is necessary that the inversion indicated in (6.10) 
exists, which fact is assumed. Otherwise it is not possible to apply the relations (6.7) to 
(6.9). The first two equations in (6.8) —(6.9) coincide with the discrete Riccati equa
tions for the equilibrium solution except of the terms which contain Sk, see [18]. 
These terms resulted from the constrained minimization of J. over the corresponding 
reflective set. Both these equations are solved backwards as usual for the adjoint 
variables (multipliers). However, the equation for Sk is not Riccati-like and is solved 
forward in the discrete time k. This last conclusion is in accordance with the original 
boundary value problem (6.3) —(6.5), because for the multiplier v the initial condi
tion v0 = 0 is specified. 

Remark 4. Inserting formally from (6.12) into (6.7) we obtain the optimal hierar
chical solution in a "closed-loop" form. However, having in mind certain conclusions 
stated in [13], our result can be interpreted only as a synthesis of "open-loop" 
hierarchical solutions. In fact, let us point out that through this paper only the 
open-loop hierarchical solution of multistage decision problems was considered 
and studied. 

Remark 5. It would be clearly interesting to study also such cases of (6.2) which 
would contain the mixed terms of the type ulTfik, i = 1, 2. Principially the same 
approach is possible for such problems, but the resulting conditions are of rather 
great complexity, and thus not too much practical. Let us also note that as long as 
J j is the preferred cost functional, the term ulR2luk does not influence the hierarchical 
solution, i.e. R21 does not appear through (6.7) —(6.11). 

Remark 6. Finally let us explore a possibility of the application of Theorem 3 
to study the existence conditions for a hierarchical solution in this class of multi
stage decision problems. As now the admissible control regions are unbounded, 
the hypothesis of Theorem 3 is not satisfied. Hence this question must be investigated 
separately for each particular problem. We only note that the reflective mapping is 
linear in this case and, further, both cost functionals (6.2) are quadratic if we use the 
static interpretation (4.5) —(4.7). The existence problem for hierarchical solutions 
then results in problem of finding the necessary conditions for Ji to be either positive 
definite quadratic form on E(m+P)K or at least on the reflective set (constraining 
subspace). 



7. EXAMPLE 

As an illustration we solve in this section a simple example of the multistage deci
sion problem from the point of view of the hierarchical solution. For comparison also 
the equilibrium and noninferior solution concepts are applied to the same problem. 
All variables will be scalars and J t is again the preferred cost functional. 

(7.1) xk+i = xk + uk + vk, k = 0, 1, ..., K - 1 , x0 given , 

(7.2) J, = \x2
K + _ £ u2 , J2 = _x | + \ £ vl • 

k=0 k=0 

In this really academic example it is advisable to prefer general conditions of Theo
rem 4 to the scheme given in the previous section. We omit the obvious manipulations 
and state only the final results. Let us only note the fact, that in this case Assump
tion 6 is a priori satisfied. Really, if we assume that the problem in question is not 
normal, we obtain that the multipliers ft, v and £ are identically zero, which contra
dicts with the general conclusions of [10]. In this way we obtain 

1 

fc = 0, _ , . . . , _ _ - 1 
K2 + 3K + 1 

(7.3) 

' - _ K + 1 

Vk~ K2 + 3K + 1 

The corresponding values of the cost functional are: 

(7.4) J,=i l x2 , J 2 = i - ( K + 1 ) 3 xl. 
K J 2K2 + 3K+1 ° 2(K2 + 3K + I)2 

As far as the question of existence of the hierarchical solution is concerned it can 
be easily checked that the last conclusion in Remark 6 applies to this simple case. 
The cost functional is a quadratic function of the control sequence u0, ult ..., «K_i 
over the reflective set with the corresponding matrix being positive definite. Hence, 
there exists a unique hierarchical solution in this case which is described by the 
above relations (7.3). 

If now (7.1) —(7.2) are considered as a two-player, nonzero-sum multistage game, 
we can compute the equilibrium solution according to Definition 2. The necessary 
theory can the reader find in [18]. For the equilibrium pair («*, .*) we thus obtain 

(7.5) u$ = v* = 1 x0 , k = 0, 1, ..., K - 1 , 
2/_ + 1 

and for equilibrium costs 

I* J* 1 K + l 2 

(7.6) Ii = J-> = " 2 (2J_ + I)2 



It is a simple exercise to show that 

(7.7) • Jt <J't, J2> Jt 

for general number of stages K. This result confirms the general conclusions of Sec
tion 2. It is also worth to note that the hierarchical controls corresponding to the 
preferred, resp. slacking, cost functional are strictly lower, resp. higher, than the 
equilibrium ones. 

For the sake of completeness let us also consider the noninferior solutions of the 
studied problem as given in Definition 1. Again, the necessary optimality conditions 
for this solution type can be found in [18]. The set of noninferior controls has the 
following form: 

(7.Í 

fl»(«) = ~ 

Ď*(«) = -

1 - a 

<1 - a)+ K 

a(l - a) + K 

0 й a й 1 , k = 0, 1, ...,K - 1 

Fig. 2. Comparison of various outcomes for the illustrative example. 



384 The corresponding values of the cost functionals: 

/ , ( , ) - i Wi-.) + k ] ' X 6 

(7.9) !» 0 < a < 1 
J /a^ _ 1 «2[(1 - a)2 + -K] , 

/ 2 ( a ) - 2 [ a ( l - a ) + ^ X ° 

All discussed solution types are schematically depicted in Fig. 2. The shaded 
region 0> represents the set of all possible outcomes in E2. The hierarchical outcome 
(7.4) is denoted as the point H^ and, by the symmetry of the problem in question, 
H2 corresponds to the case when J2 is preferred. As point E we denoted the equi
librium outcome (7.6) and curve M1M2 stands for the set noninferior outcomes. 
This curve is parametrized by parameter a, points Mx and M2 correspond to a = 1 
and a = 0, respectively. For example, choosing a = 0-5 we obtain the point JVf 
on the curve MlM2. From (7.6) and (7.9) we finally obtain that, for example, jt(0)jj* 
and Ji/j^O-5) decrease monotonously with K, and 

lim--S>_4, h m ^ - 1 . 
K->a. J* K-00 J , (0 -5) 

8. CONCLUSIONS 

In this paper a hierarchical solution concept for decision problems with two 
objectives was introduced. This concept made it possible to solve bicriterion decision 
problems applying the classical results concerning decision problems with only one 
objective. Also a comparison was made with the so called noninferior and equilibrium 
solution types. 

For static decision problems we obtained sufficient existence and necessary opti
mally conditions. Further also the so called multistage decision problems were 
studied in detail. For certain classes of these problems we were able to derive suffi
cient existence and necessary optimality conditions. The latter ones can be also 
denoted as a two-level discrete maximum principle by an analogy with optimal 
control theory. 

This result was then applied to linear multistage decision problems .with both 
objectives being quadratic. It was possible to derive an analytic form of the hierarchical 
solution in this case in terms- of matrix difference equations, some of which are of 
Riccati-type. To illustrate the presented theory also a simple example was solved 
and certain comparisons performed. 

It is felt that the hierarchical solution concept can be successfully applied to various 
decision problems with two objectives arising for example in technology, or when 
studying economical or sociological problems. The main importance of this new 



concept lies in the fact that only standart optimization methods are used in compa
rison with the noninferior and equilibrium solution types. This feature will be es
pecially useful when we are interested in the construction of various numerical 
approaches and algorithms for the numerical determination of hierarchical solutions. 

(Received January 23, 1976.) 
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