Kybernetika

Michael Šebek; Vladimír Kučera

Matrix equations arising in regulator problems

Kybernetika, Vol. 17 (1981), No. 2, 128--139

Persistent URL: http://dml.cz/dmlcz/124762

Terms of use:

© Institute of Information Theory and Automation AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

MATRIX EQUATIONS ARISING IN REGULATOR PROBLEMS

MICHAEL S̆EBEK, VLADIMÍR KUČERA

The two coupled linear equations

$$
\begin{aligned}
& C_{*} X-Z_{*} B=A_{1 *} \\
& C_{*} Y+Z_{*} A=B_{1 *}
\end{aligned}
$$

in polynomial matrices are studied in detail. These equations are crucial in the theory and design of linear optimal dynamic regulators via frequency-domain methods.

The solvability of these equations is established under natural conditions. All solutions are characterized and then a specific solution is studied. Relation to other matrix equations is discussed.

1. INTRODUCTION

In order to motivate and justify the study of the above equations, we recall the formulation of a standard linear regulator problem.

Given a discrete-time, linear, l-output, m-input, n-dimensional system

$$
\begin{aligned}
& x_{t+1}=F x_{t}+G u_{t} \\
& y_{t}=H x_{t}
\end{aligned}
$$

which is stabilizable as well as detectable. Find a regulator which generates u_{t} from y_{t}, y_{t-1}, \ldots in such a way that the cost

$$
J=\sum_{t=0}^{\infty} u_{t}^{T} u_{t}+y_{t}^{T} y_{t}
$$

is minimized for every initial state x_{0}.
The time-domain solution consists of two steps. First the system's state is reconstructed from measurable data and then a state-variable feedback is applied. The
central problem is to solve an algebaic Riccati equation. Such equations have been given much attention in the literature and are now well understood.
In contrast, the frequency-domain approach developed recently by Kučera and Šebek [7] makes use of spectral factorization and the solution of linear equations in polynomial matrices. Specifically, write the transfer matrix of the system in terms of matrix fractions

$$
\begin{aligned}
H\left(I_{n}-d F\right)^{-1} d G & =A^{-1}(d) B(d) \\
& =B_{1}(d) A_{1}^{-1}(d)
\end{aligned}
$$

where A, B and A_{1}, B_{1} are polynomial matrices in the delay operator d. If D is a greatest common left divisor of A and B and D_{1} is a greatest common right divisor of A_{1} and B_{1}, then we assume that both det D and det D_{1} are stable polynomials. Define a polynomial matrix C with $\operatorname{det} C$ stable by the relations

$$
A_{1}^{T}\left(d^{-1}\right) A_{1}(d)+B_{1}^{T}\left(d^{-1}\right) B_{1}(d)=C^{T}\left(d^{-1}\right) C(d)
$$

This is called spectral factorization. Finally we solve the pair of equations

$$
\begin{aligned}
& C^{T}\left(d^{-1}\right) X(d)-Z^{T}\left(d^{-1}\right) B(d)=A_{1}^{T}\left(d^{-1}\right) \\
& C^{T}\left(d^{-1}\right) Y(d)+Z^{T}\left(d^{-1}\right) A(d)=B_{1}^{T}\left(d^{-1}\right)
\end{aligned}
$$

for polynomial matrices X, Y, and Z such that $Z(0)=0$. Then $X^{-1}(d) Y(d)$ is the transfer matrix of an optimal regulator.

The spectral factorization is a well developed classical gadget and it is discussed elsewhere in the literature. The purpose of this paper is to investigate deeply the properties of the coupled matrix polynomial equations. Similar equations were obtained by Kučera [5], [6] when solving steady-state minimum variance control problems. The reference [5] also contains first results on solvability of these equations as well as some other observations. Here we give a complete theory in the hope to provide further insight and contribute to the progress of frequency-domain design techniques.

2. PRELIMINARIES

Let us first recall some mathematical concept from the theory of polynomial matrices in a single indeterminate d over the real field. More details can be found, for example, in the books by Gantmakher [2], MacDuffee [8], Barnett [1] and specifically Kučera [5].

A square polynomial matrix U is called unimodular if and only if $\operatorname{det} U$ is a nonzero real number. Polynomial matrices A and B are equivalent (we write $A \sim B$) if and only if there are unimodular matrices U_{1}, U_{2} such that $A=U_{1} B U_{2}$.

Let A, B and C be polynomial matrices and $A=B C$. Then B is a left divisor of A while C is a right divisor of A. Now consider two polynomial matrices A and B. A square polynomial matrix D is termed a common left divisor of A and B if and
only if D is a left divisor of both A and B; if, furthermore, every other common left divisor of A and B is a left divisor of D, then D is a greatest common left divisor of A and B. It is known that D is a greatest common left divisor of A and B if and only if there is a unimodular matrix U such that

$$
\left[\begin{array}{ll}
A & B
\end{array}\right] U=\left[\begin{array}{ll}
D & 0 \tag{1}
\end{array}\right]
$$

A greatest common right divisor of two polynomial matrices is defined in an entirely analogous fashion.

The polynomial matrices A and B are said to be relatively left prime if and only if their only common left divisors are unimodular matrices. The polynomial matrices A_{1} and B_{1} are said to be relatively right prime if and only if their only common right divisors are unimodular matrices.

A square polynomial matrix C is said to be stable if and only if det C has no root whose magnitude is less than or equal to 1 , and the C is said to be Hurwitz if and only if $\operatorname{det} C$ has no root with magnitude less than 1 .

As well-known theorem states that any polynomial matrix A can be reduced to Smith form

$$
\mathscr{S}(A)=U_{1} A U_{2}
$$

by means of unimodular matrices U_{1} and U_{2}. If rank $A=r$, the Smith form is a matrix having nonzero polynomials a_{1}, \ldots, a_{r}, possibly followed by zeros, on its leading diagonal and having zeros elsewhere. The polynomials a_{1}, \ldots, a_{r}, called the invariant polynomials of A, have the property that a_{k} divides a_{k+1} for $k=1, \ldots$ $\ldots, r-1$ and are determined uniquely up to nonzero real multiples. Two matrices have the same Smith form if and only if they are equivalent.

The following result, the proof of which can be found in Newman [9], gives the multiplicativity condition for Smith forms:

$$
\begin{equation*}
\mathscr{P}(A B)=\mathscr{S}(A) \mathscr{P}(B) \tag{2}
\end{equation*}
$$

whenever A and B are square polynomial matrices with relatively prime determinants.
Further, given an arbitrary polynomial matrix

$$
E=E_{0}+E_{1} d+\ldots+E_{n} d^{n}
$$

we denote the zero-position coefficient E_{0} by $\langle E\rangle$ and and define the conjugate matrix E_{*} by

$$
E_{*}=E_{0}^{T}+E_{1}^{T} d^{-1}+\ldots+E_{n}^{T} d^{-n}
$$

The E is said to be proper whenever E_{n} is invertible.
Finally for any $l \times m$ polynomial matrix A of rank m we define a Hurwitz polynomial matrix C by the relation

$$
A_{*} A=C_{*} C
$$

Such a C is called a (right) spectral factor of A and it is uniquely determined up to left orthogonal matrix multiples, see Kučzra [5].

3. SPECIFICATIONS

This paper is devoted to the study of the following two coupled equations

$$
\begin{align*}
& C_{*} X-Z_{*} B=A_{1 *} \tag{3a}\\
& C_{*} Y+Z_{*} A=B_{1 *} \tag{3b}
\end{align*}
$$

for polynomial matrices X, Y, and Z. The A, B and A_{1}, B_{1} are respectively $l \times l$, $l \times m$ and $m \times m, l \times m$ given polynomial matrices related by

$$
\begin{equation*}
A B_{1}=B A_{t} \tag{4}
\end{equation*}
$$

and such that both A and A_{1} are invertible and D_{1}, the greatest common right divisor of A_{1} and B_{1}, is a stable polynomial matrix. The C is a given $m \times m$ Hurwitz polynomial matrix satisfying

$$
\begin{equation*}
A_{1 *} A_{1}+B_{1 *} B_{1}=C_{*} C \tag{5}
\end{equation*}
$$

which is to say the C is a spectral factor.

4. SOLVABILITY CONDITION

The equations (3) are special cases of the bilateral equation

$$
\begin{equation*}
E P+Q F=G \tag{6}
\end{equation*}
$$

for polynomial matrices P and Q, where E, F and G are respectively $l \times p, q \times m$ and $l \times m$ given polynomial matrices. This equation was studied in detail by Roth [10], Barnett [1], and Kučera [3,5]. The following lemma states the general solvability condition.

Lemma 1. Equation (6) has a solution if and only if

$$
\left[\begin{array}{ll}
E & 0 \\
0 & F
\end{array}\right] \sim\left[\begin{array}{ll}
E & G \\
0 & F
\end{array}\right]
$$

By specializing this result one could obtain the necessary and sufficient condition for the existence of X, Y and Z in (3). Due to the particular structure of these equations, however, we can hope for deeper results. In fact, a simple sufficient condition is available which is motivated by the underlaying control-theoretic considerations and corresponds to system stabilizability.

To prove this condition we need the following lemma.

Lemma 2. Let E and F be respectively $m \times m$ and $l \times l$ polynomial matrices with relatively prime determinants. Then

$$
\left[\begin{array}{ll}
E & 0 \\
0 & F
\end{array}\right] \sim\left[\begin{array}{ll}
E & G \\
0 & F
\end{array}\right]
$$

for an arbitrary polynomial $m \times I$ matrix G.
Proof. Because of the relative primeness of det E and det F, relation (2) gives

$$
\left.\mathscr{S}\left(\left[\begin{array}{cc}
E & 0 \tag{7}\\
0 & F
\end{array}\right]\right)=\mathscr{S}\left(\left[\begin{array}{cc}
I_{m} & 0 \\
0 & F
\end{array}\right]\right)\right)^{\mathscr{S}}\left(\left[\begin{array}{cc}
E & 0 \\
0 & I_{l}
\end{array}\right]\right)
$$

and
(8)

$$
\mathscr{S}\left(\left[\begin{array}{ll}
E & G \\
0 & F
\end{array}\right]\right)=\mathscr{S}\left(\left[\begin{array}{ll}
I_{m} & 0 \\
0 & F
\end{array}\right]\right) \mathscr{S}\left(\left[\begin{array}{ll}
E & G \\
0 & I_{l}
\end{array}\right]\right)
$$

Further
(9)

$$
\left[\begin{array}{lr}
I_{m} & -G \\
0 & I_{l}
\end{array}\right]\left[\begin{array}{ll}
E & G \\
0 & I_{l}
\end{array}\right]=\left[\begin{array}{ll}
E & 0 \\
0 & I_{l}
\end{array}\right]
$$

and so
(10)

$$
\mathscr{S}\left(\left[\begin{array}{ll}
E & 0 \\
0 & I_{l}
\end{array}\right]\right)=\mathscr{S}\left(\left[\begin{array}{ll}
E & G \\
0 & I_{l}
\end{array}\right]\right)
$$

So combining the relations $(7),(8)$ and (10) we have got

$$
\mathscr{S}\left(\left[\begin{array}{ll}
E & 0 \tag{11}\\
0 & F
\end{array}\right]\right)=\mathscr{S}\left(\left[\begin{array}{ll}
E & G \\
0 & F
\end{array}\right]\right)
$$

for an arbitrary G and this is equivalent to the assertion of the lemma.
Now we are ready to state the principal result.
Theorem 1. Let the greatest common left divisor of A and B be stable. Then equations (3) have a solution.

Proof. Let us write equations (3) in the compact form

$$
C_{*}\left[\begin{array}{ll}
X & Y
\end{array}\right]-Z_{*}\left[\begin{array}{ll}
B & -A
\end{array}\right]=\left[\begin{array}{ll}
A_{1 *} & B_{1 *} \tag{12}
\end{array}\right]
$$

In this equation, polynomial matrices in both positive and negative powers of d occur. To remedy this situation, premultiply (12) by the matrix

$$
R=\left[\begin{array}{lll}
d^{k_{1}} & & \tag{13}\\
& \cdot & \\
& \cdot & \\
& & d^{k_{m}}
\end{array}\right]
$$

where k_{i} is the degree of the i-th row of the composite matrix

$$
\left[\begin{array}{ccc}
C_{*} & A_{1 *} & B_{1 *}
\end{array}\right]
$$

Thus equation (12) is equivalent to

$$
\bar{C}\left[\begin{array}{ll}
X & Y
\end{array}\right]-\bar{Z}\left[\begin{array}{ll}
B & -A
\end{array}\right]=\left[\begin{array}{ll}
\bar{A}_{1} & \bar{B}_{1} \tag{14}
\end{array}\right]
$$

with

$$
\begin{align*}
\bar{C} & =R C_{*} \\
\overline{\mathrm{Z}} & =R Z_{*} \tag{15}\\
{\left[\begin{array}{ll}
\bar{A}_{i} & \vec{B}_{1}
\end{array}\right] } & =R\left[\begin{array}{ll}
A_{1 *} & B_{1 *}
\end{array}\right]
\end{align*}
$$

Now, taking Lemma 1 into account, we need only to prove that a stable greatest common left divisor of matrices A and B implies the equivalence

$$
\left[\begin{array}{rrr}
\bar{C} & 0 & 0 \tag{16}\\
0 & B & -A
\end{array}\right] \sim\left[\begin{array}{rrr}
\bar{C} & \bar{A}_{1} & \bar{B}_{1} \\
0 & B & -A
\end{array}\right]
$$

Due to (1) there is an $(m+l) \times(l+m)$ unimodular matrix J,

$$
J=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]
$$

such that

$$
\begin{align*}
& B J_{11}+A J_{21}=D \tag{17}\\
& B J_{12}+A J_{22}=0 \tag{18}
\end{align*}
$$

where the $l \times l$ polynomial matrix D is a greatest common left divisor of B and A.
The J_{12} and J_{22} are relatively right prime matrices.
Hence

$$
\left[\begin{array}{ccc}
\begin{array}{c}
C \\
0
\end{array} & 0 & 0 \\
0 & B & -A
\end{array}\right]\left[\begin{array}{ccc}
I_{m} & 0 & 0 \\
0 & J_{11} & J_{12} \\
0 & -J_{21} & -J_{22}
\end{array}\right]=\left[\begin{array}{ccc}
\bar{C} & 0 & 0 \\
0 & D & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{ccc}
\bar{C} & 0 & 0 \tag{19}\\
0 & B & -A
\end{array}\right] \sim\left[\begin{array}{ccc}
\bar{C} & 0 & 0 \\
0 & D & 0
\end{array}\right]
$$

and, similarly,

$$
\left[\begin{array}{ccc}
\bar{C} & \bar{A}_{1} & \bar{B}_{1} \tag{20}\\
0 & B & -A
\end{array}\right] \sim\left[\begin{array}{ccc}
\bar{C} & \bar{A}_{1} J_{11}-\bar{B}_{1} J_{21} & \bar{A}_{1} J_{12}-\bar{B}_{1} J_{22} \\
0 & D & 0
\end{array}\right] .
$$

Now all matrices P, Q satisfying

$$
A P+B Q=0
$$

are by (18) of the form

$$
\begin{aligned}
& P=J_{22} T \\
& Q=J_{12} T
\end{aligned}
$$

for some polynomial matrix T. It follows from (4) that A_{1} and $-B_{1}$ must also have this form and hence

$$
\begin{aligned}
A_{1} & =J_{12} D_{1} \\
-B_{1} & =J_{22} D_{1}
\end{aligned}
$$

where D_{1} is a greatest common right divisor of theirs. When substituting this result into (5) we obtain $C=C_{1} D_{1}$ for some polynomial matrix C_{1}. Using (5) and (15) we get

$$
\bar{A}_{1} J_{12}-\bar{B}_{1} J_{22}=\bar{C} C_{1}
$$

so that

$$
\left[\begin{array}{ccc}
\bar{C} & \bar{A}_{1} J_{11}-\bar{B}_{1} J_{21} & \bar{C} C_{1} \\
0 & D & 0
\end{array}\right]\left[\begin{array}{ccc}
I_{m} & 0 & C_{1} \\
0 & I_{l} & 0 \\
0 & 0 & -I_{m}
\end{array}\right]=\left[\begin{array}{cccc}
\bar{C} & \bar{A}_{1} J_{11}-\bar{B}_{1} J_{21} & 0 \\
0 & D & 0
\end{array}\right]
$$

or, taking (20) into account,

$$
\left[\begin{array}{ccc}
\bar{C} & \bar{A}_{1} & \bar{B}_{1} \tag{21}\\
0 & B & -A
\end{array}\right] \sim\left[\begin{array}{cccc}
\bar{C} & \bar{A}_{1} J_{11}-\bar{B}_{1} J_{21} & 0 \\
0 & D & 0
\end{array}\right]
$$

Now C is Hurwitz by definition. Hence a stable D implies that $\operatorname{det} \bar{C}$ and $\operatorname{det} D$ are relatively prime polynomials and the hypothesis of Lemma 2 is satisfied. Using this lemma for matrices from (19) and (21), the proof is completed.

5. GENERAL SOLUTION

Let us begin our discussion with the bilateral equation (6). It was shown by Kučera $[3,4]$ that any two solutions P, Q and P_{0}, Q_{0} of (6) are related by

$$
\begin{align*}
& P=P_{0}+U_{2} T U_{4}^{-1} \tag{22}\\
& Q=Q_{0}-U_{1}^{-1} V U_{3}
\end{align*}
$$

Moreover, if P_{0}, Q_{0} is a solution of (6), then any P, Q from (22) is also a solution. Here U_{1}, U_{2}, U_{3} and U_{4} are unimodular matrices defined by

$$
\begin{aligned}
& \mathscr{S}(E)=U_{1} E U_{2}=\left[\begin{array}{lllll}
e_{1} & & & & \\
& \ddots & & & \\
& & e_{r 0} & & \\
& & & \cdot & \\
& & & &
\end{array}\right] \\
& \mathscr{S}(F)=U_{3} F U_{4}=\left[\begin{array}{lllll}
f_{1} & & & & \\
& \ddots & & & \\
& & f_{s 0} & & \\
& & & & \ddots
\end{array}\right]
\end{aligned}
$$

with $r=\operatorname{rank} E, s=\operatorname{rank} F$, and T, V are polynomial matrices, respectively $p \times m$ and $l \times q$, of the form

$$
T=r\left\{\left[\begin{array}{c:c}
s & \overbrace{T_{11}} \\
\hdashline 0 \\
\hdashline T_{21} & T_{22}
\end{array}\right] \quad V=r\left\{\begin{array}{c:c}
s \\
\tilde{V}_{11} & V_{12} \\
\hdashline 0 & V_{22}
\end{array}\right]\right.
$$

The T_{11} has entries $t_{i j} f_{j} / d_{i j}$, the V_{11} has entries $e_{i} t_{i j} / d_{i j}$ where $d_{i j}$ is a greatest common divisor of e_{i} and f_{j} whereas $t_{i j}$ is an arbitrary polynomial. The T_{21}, T_{22} and V_{12}, V_{22} are arbitrary polynomial matrices of appropriate dimensions.

When specializing this general result for the coupled equations (3) we get the following theorem.

Theorem 2. Let the greatest common left divisor of A and B be stable. Then any two solutions X, Y, Z and X_{0}, Y_{0}, Z_{0} of equations (3) are related by

$$
\begin{aligned}
X & =X_{0}+W B \\
Y & =Y_{0}-W A \\
Z_{*} & =Z_{0 *}+C_{*} W
\end{aligned}
$$

where W is an $m \times l$ real matrix.
Moreover, if X_{0}, Y_{0}, Z_{0} is a solution of equations (3), then any X, Y, Z given above is also a solution.

Proof. As in the proof of Theorem 1, any solution X, Y, Z of equations (3) can be recovered from some solution $\bar{X}, \bar{Y}, \bar{Z}$ of the equation

$$
\bar{C}\left[\begin{array}{ll}
\bar{X} & \bar{Y}
\end{array}\right]-\bar{Z}\left[\begin{array}{ll}
B & -A
\end{array}\right]=\left[\begin{array}{ll}
\bar{A}_{1} & \bar{B}_{1} \tag{23}
\end{array}\right]
$$

using the relations

$$
\begin{align*}
X & =\bar{X} \tag{24}\\
Y & =\bar{Y} \\
Z_{*} & =R^{-1} \bar{Z}
\end{align*}
$$

Now (22) can be used to express a solution of (23). Here

$$
\begin{aligned}
& E=\bar{C} \\
& F=-[B-A]
\end{aligned}
$$

Repeating the arguments used in the proof of Theorem 1, $\mathscr{S}(\bar{C})$ and $\mathscr{S}([B-A])$ have no common factor and that is why $d_{i j}=1$ for every $i=1, \ldots, m, j=1, \ldots, l$. Moreover, both E and F have full rank in this case so that

$$
\begin{aligned}
T & =\left[\begin{array}{ll}
T_{11} & 0
\end{array}\right]=N \mathscr{S}(F) \\
V & =V_{11}=\mathscr{S}(E) N
\end{aligned}
$$

for an arbitrary $m \times l$ polynomial matrix N. Hence putting $W=U_{2} N U_{3}$, the solution $\bar{X}, \bar{Y}, \bar{Z}$ of (23) is related to any other solution $\bar{X}_{0}, \bar{Y}_{0}, \bar{Z}_{0}$ by

$$
\left.\begin{array}{c}
{\left[\begin{array}{ll}
\bar{X} & \bar{Y}
\end{array}\right]=\left[\begin{array}{ll}
\bar{X}_{0} & \bar{Y}_{0}
\end{array}\right]+W[B-A}
\end{array}\right]
$$

The claim then follows on using (24). For Z to be a polynomial matrix in d, the W must be restricted to real matrices only.

6. OPTIMAL SOLUTION

In applications we usually face the problem of calculating a specific solution to equations (3). This solution is dictated by the problem at hand. For example, to construct the optimal regulator discussed in the Introduction we have to find a solution X_{0}, Y_{0}, and Z_{0} of equations (2) such that

$$
\begin{equation*}
\left\langle Z_{0}\right\rangle=0 \tag{25}
\end{equation*}
$$

This particular solution is termed here "optimal" and it enjoys the following properties.

Theorem 3. There exists a unique optimal solution to equations (3).
Proof. To prove the existence, let X, Y, and Z be any solution of (3). Then the optimal solution X_{0}, Y_{0}, and Z_{0} is seen to be

$$
\begin{align*}
& X_{0}=X-W B \tag{26}\\
& Y_{0}=Y+W A \\
& Z_{0 *}=Z_{*}-C_{*} W
\end{align*}
$$

where

$$
\begin{equation*}
W=\left\langle C_{*}\right\rangle^{-1}\left\langle Z_{*}\right\rangle \tag{27}
\end{equation*}
$$

Note that the indicated inverse exists because C is a spectral factor. The uniqueness then follows from (27).

Comparing the highest-degree coefficients of each row in (3b) we can immediately see that the optimal solution X_{0}, Y_{0}, Z_{0} has the following alternative characterization: the degree of any column of Y_{0} is less than the degree of the corresponding column of A.

Since any solution X, Y and Z of equations (3) can also be obtained as a solution X, Y and \bar{Z} of the premultiplied equation (14), it is of interest to know how the optimal solution is characterized among the solutions of (14). A glance at the transformation relationship (15) reveals that the condition (25) is equivalent to the requirement that the degree of the i-th row of \bar{Z} be less than the degree of the i-th row of \bar{C} for all $i=1,2, \ldots, m$.

7. RELATION TO UNILATERAL EQUATIONS

The spacial structure of the bilateral matrix equations (3) renders it possible to relate their solutions with the solutions of a unilateral equation.

Theorem 4. Let X, Y and Z be an arbitrary solution of equations (3). Then

$$
\begin{equation*}
X A_{1}+Y B_{1}=C \tag{28}
\end{equation*}
$$

Proof. Adding (3a) postmultiplied by A_{1} to (3b) postmultiplied by B_{1} gives

$$
C_{*}\left(X A_{1}+Y B_{1}\right)+Z_{*}\left(A B_{1}-B A_{2}\right)=A_{1 *} A_{1}+B_{1 *} B_{1}
$$

Now using (4) and (5) we arrive to (28).
Thus any X and Y satisfying (3) also satisfies (28). Unfortunately the converse is not true in general. To see this consider two solutions X, Y and X_{0}, Y_{0} of (28) related by

$$
\begin{aligned}
& X=X_{0}-T B \\
& Y=Y_{0}+T A
\end{aligned}
$$

where T is an $m \times l$ polynomial matrix. Comparing this with Theorem 2 where W is a real, not polynomial matrix, the claim becomes evident.

A case of special interest occurs when the matrix A is proper (this is always true for scalar polynomial A). Then equation (28) possesses a unique "minimal" solution X_{0}, Y_{0} such that the degree of each column of Y_{0} is less than the degree of the corresponding column of A. This property, however, is also shared by the optimal solution X_{0}, Y_{0}, and Z_{0} of equation (3) and hence the two must coincide. Thus a proper A entails that the optimal solution of (3) can be found as the minimal solution of (28). The computational advantages resulting from this identification are discussed below.

8. COMPUTATIONAL ALGORITHMS

To complete the picture, let us summarize some techniques of calculating the solutions to equations (3) and (28). For a detailed discussion including the computational algorithms the reader is referred to Kučera [5].

The unilateral equation (28) can be solved as follows. Form the matrix $\left(\begin{array}{ccc}A_{1} & I_{m} & 0 \\ B_{1} & 0 & I_{l}\end{array}\right)$ and, using elementary (unimodular) row operations, carry out the transformation

$$
\left[\begin{array}{lll}
A_{1} & I_{m} & 0 \\
B_{1} & 0 & I_{i}
\end{array}\right] \rightarrow\left[\begin{array}{lll}
D_{11} & D_{12} & D_{13} \\
0 & D_{22} & D_{23}
\end{array}\right]
$$

where D_{11} is $m \times m$ and upper triangular and D_{22} is $l \times l$. Further solve a triangular system of linear equations to express C as

$$
C=C_{1} D_{11}
$$

Then $C_{1} D_{12}, C_{1} D_{13}$ is a solution of (28) and any solution X, Y is generated by

$$
\begin{aligned}
& X=C_{1} D_{12}+T D_{22} \\
& Y=C_{1} D_{13}+T D_{23}
\end{aligned}
$$

where T is an $m \times l$ polynomial matrix.
If D_{23} is a proper polynomial matrix, the minimal solution X_{0}, Y_{0} of (28) can be obtained by applying the division algorithm for polynomial matrices. If M is the quotient and N is the remainder after dividing D_{23} into $C_{1} D_{13}$, then simply

$$
\begin{aligned}
& X_{0}=C_{1} D_{12}-M D_{22} \\
& Y_{0}=N
\end{aligned}
$$

The solution of the bilateral equations (3) is more complicated. The method recommended here is as follows. Transform (3) into (14) using (13) and calculate Smith forms for \bar{C} and $\left[\begin{array}{ll}-B & A\end{array}\right]$:

$$
\begin{gathered}
\mathscr{P}(\bar{C})=U_{1} \bar{C} U_{2}=\left[\begin{array}{llll}
e_{1} & & & \\
& \cdot & & \\
& & \cdot & \\
& & & e_{m}
\end{array}\right] \\
\mathscr{S}\left[\begin{array}{ll}
-B & A
\end{array}\right]=U_{3}\left[\begin{array}{ll}
-B & A
\end{array}\right] U_{4}=\left[\begin{array}{llll}
f_{1} & & \\
& \cdot & \\
& & \cdot & \\
& & & f_{l} 0 \ldots
\end{array}\right]
\end{gathered}
$$

Write $g_{i j}$ for the elements of the matrix $U_{1}\left[\bar{A}_{1} \bar{B}_{1}\right] U_{4}$ and calculate any polynomials $p_{i j}$ and $q_{i j}$ satisfying the (decoupled) equations

$$
e_{i} p_{i j}+q_{i j} f_{j}=g_{i j}
$$

for $i=1,2, \ldots, m$ and $j=1,2, \ldots, l$ and

$$
e_{i} p_{i j}=g_{i j}
$$

for $i=1,2, \ldots, m$ and $j=l+1, \ldots, l+m$.
Form the matrices

$$
\begin{array}{ll}
\tilde{X}=\left[p_{i j}\right], & i=1,2, \ldots, m \quad \text { and } j=1,2, \ldots, m \\
\tilde{Y}=\left[p_{i j}\right], & i=1,2, \ldots, m \text { and } j=m+1, \ldots, m+l \\
\tilde{Z}=\left[q_{i j}\right], & i=1,2, \ldots, m \text { and } j=1,2, \ldots, l
\end{array}
$$

and write

$$
U_{4}^{-1}=\left[\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right]
$$

where U_{11} is $m \times m$. Then $U_{2}\left(\tilde{X} U_{11}+\widetilde{Y} U_{21}\right), U_{2}\left(\tilde{X} U_{12}+\tilde{Y} U_{22}\right)$, and $U_{1}^{-1} \tilde{Z} U_{3}$ is a solution of equation (14). To obtain the optimal solution divide \bar{C} into $U_{1}^{-1} \tilde{Z} U_{3}$ from the left. If M is the quotient and N is the remainder, then

$$
\begin{aligned}
X_{0} & =U_{2}\left(\tilde{X} U_{11}+\tilde{Y} U_{21}\right)-M B \\
Y_{0} & =U_{2}\left(\tilde{X} U_{12}+\tilde{Y} U_{22}\right)+M A \\
Z_{0} & =N_{*} R
\end{aligned}
$$

is the optimal solution of equations (3).
All solutions to equations (3), if they are of interest, can be generated from the particular solution X_{0}, Y_{0}, and Z_{0} according to Theorem 2.

ACKNOWLEDGMENT

The authors wish to thank the reviewer for his suggestion leading to a shorter proof of Lemma 2.
(Received May 30. 1980.)

REFERENCES

[1] S. Barnett: Matrices in Control Theory. Van Nostrand Reinhold, London 1971.
[2] F. R. Gantmakher: The Theory of Matrices. Chelsea, New York 1959.
[3] V. Kučera: Algebraic theory of discrete optimal control for multivariable systems. Kybernetika 10-12 (1974-76), 1-240. Published in installments.
[4] V. Kučera: Algebraická teorie diskrétního lineárního řízení. Academia, Praha 1978.
[5] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979.
[6] V. Kučera: Steady-state minimum-variance discrete control. Problems of Control and Information Theory 8 (1979), 2, 123-135.
[7] V. Kučera, M. Sebek: Linear optimal dynamic regulators. Problems of Control and Information Theory 10 (1981), 3.
[8] C. C. MacDuffee: The Theory of Matrices. Chelsea, New York 1946.
[9] M. Newman: Integral Matrices. Academic, New York 1972.
[10] W. E. Roth: The equation $\mathrm{AX}-\mathrm{YB}=\mathrm{C}$ and $\mathrm{AX}-\mathrm{XB}=\mathrm{C}$ in matrices. Proc. Amer. Math. Soc. 3 (1952), 392-396.

Ing. Michael Šebek, Ing. Vladimir Kučera, DrSc., Ưstav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou věži 4, 18208 Praha 8. Czechoslovakia.

