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K Y B E R N E T I K A — V O L U M E 17 (1981), N U M B E R 2 

BOUNDS FOR ON-LINE SELECTION 

PETER RŮŽIČKA 

In this paper we show that 

1. given a constant k the minimum number of binary comparisons necessary for the on-line 
selection of the k-th largest element of a totally ordered set X of size n is bounded below by 
[ l o g 2 ( A : + l ) ] . « - 0 ( l ) ; 

2. given a rational number r e (0, -j) there is a positive integer constant c r such that the minimum 
number of binary comparisons necessary for the on-line selection of the [r . «]-th largest ele
ment of X is bounded below by c, . n . log2 n — 0(w). 

1. INTRODUCTION 

The theory of complexity of computations addresses itself to the quantitative 
aspects of the solutions of computational problems. There are usually several possible 
algorithms for solving a given problem. With each of the algorithms there are as
sociated certain significant cost functions such as the time or the space as a function 
of the problem size. A lot of questions concerning complexity can be raised with 
respect to a given problem. The fundamental question is to establish and prove 
a lower bound for one of the cost functions associated with the algorithm. 

In this paper we investigate the time complexity of the selection problem under 
on-line restriction. Given a set X of n distinct elements and an integer k, 0 < k ^ n, 
the selection problem is to determine the minimum number of pairwise comparisons 
needed to select the k-th largest element of X. In order to state with precision the 
amount of time consumed by an algorithm we need a well defined formal model 
of a computer. Our model of computation is a finite comparison tree with a finite 
number of memory cells and a one-way read-only input tape. Input elements are read 
from the input tape into specified memory cells. Comparisons may be made only 
between the contents of any pair of memory cells. We say an algorithm is on-line if 
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it outputs the result on i input elements just before reading the (i + l)-th input 
element for i: jg 1. Otherwise it is called off-line. 

An efficient off-line algorithm solving the selection problem was discovered by 
Paterson, Pippenger and Schonhage [1]. They have set up a method which needs only 
3 . n + o(n) binary comparisons. In order to make it possible to determine how close 
is the given algorithm to the optimality, lower bounds on the complexity have been 
examined. The best lower bound result for off-line median selection problem is ~ . n 
binary comparisons due to Yap [2]. 

In this paper we prove asymptotically optimal time bounds for on-line selection 
problem. We show that each on-line algorithm selecting the fc-th largest element of X 
(for a constant k) must perform at least [log (k + 1)] . n - 0(1) binary com
parisons.*) If k = [ r . n] for some rational number r from the interval (0, \y, then 
there is an integer cr such that each on-line selection algorithm computing the fc-th 
element of X must perform at least cr. n . log n — 0(n) binary comparisons. 

2. PROBLEM AND MODEL OF COMPUTATION 

One of the most widely studied problems in concrete complexity is the general 
selection problem. In this problem, we are given a set X = {ax, a2, ..., an} of n 
different elements which has an implicit total ordering, and we are to find the fc-th 
largest element of them using only binary comparisons on the input elements. 

To precise the description of the general selection problem we present it as a special 
case of a more general so called decision problem. Consider the set S of all«! orderings 
on X and let P be a partition over S. The decision problem ^(S, P) is the problem for 
arbitrary ordering w e S to determine a partition set A from P such that w e A. Now 
the general (fc-th) selection problem can be defined as a decision problem 
2&(S, {Qt,..., Q„}), where Qt = {akl...ak \ak. is the fc-th largest element of 

{«!.....*.}}. 
To illustrate the connection between the decision problem and the general selection 

problem we take the case fc = 1. A problem of selecting the maximal element from 
X = {ax, ..., an} can be described as a decision problem 3>(S, {Px, ..., P„}), where 
Pi — {ak, ••• ak„ | aki = maximum {ax, ..., an}}. Here P ; is a set of all those orderings 
from S which have the maximal element on their i-th position. Hence, the problem 
of selecting the maximum element is identical with the problem of determining such 
a partition set to which the given ordering belongs. 

In order to state with precision the amount of time consumed by an algorithm we 
need a well defined model of a computer. Our model can be viewed as a random access 
machine [3] with limited memory, restricted set of instructions and an input tape. 
The model of computation consists of a finite sequence r0, rx, ..., rp of registers 

*) Remember that [a] always denotes least integer equal to or greater than a. 
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(so called internal memory) together with a program. Each register is capable of 
holding any one integer. The program is in fact a finite comparison tree (for a finite 
number of input elements). Each such a program can be described by the following 
instructions: 

read (r;) 

ri *~ rj 

if a COMP b then St else S2 

ACCEPT 

r ; 4- c (c is a constant) 

where a and b may be any operands of the form rh indicating the contents of register 
r ;; the relation COMP may be any of the binary symbols < , :g, > , > , where these 
symbols have their usual interpretation. The effect of each of these instructions 
should be evident. For example, read (r5) causes register rs to assume the value of the 
next input element and as a side effect the movement of the input head one step to 
the right. Si and S2 are either statements of the type if - then — else prefixed by 
some read (r ;) instructions or instruction ACCEPT. The program is of the form 

begin 

read (r ;); ...; read (r}); 

if a COMP b then Sx else S2 

end 

Using this assembly language the programs are often difficult to write and even 
more difficult to read. So it is desirable to have a high level language to state programs 
in. One can safely use a small, but still rich, subset of some high level language which 
is easier to read than assembly, which unable us to write programs in a finite form, 
and which allows for easy estimation of the time needed to implement programs on 
our model. We can add to the program instructions some high level constructs as 
for — until — do, while — do, repeat — until, recursion or goto and so on. But we 
have in our mind the fact that each program specified in the high-level language and 
working over a finite input has to be directly transformed into an equivalent version 
of an assembly program. 

Our model of computation receives a finite set of elements as input. A computation 
proceeds as follows. Initially, the input tape contains all elements of reservoir and all 
registers (i.e. memory cells) are set to be zero. The input tape is one-way read-only 
tape. The program is started at the first instruction. The instructions are executed 
in order until a conditional branch is encountered. If the comparison a COMP b 
is true, then the instruction is equivalent to St; if the comparison is false, then the 
instruction is equivalent to S2. The program terminates as soon as some of the fol
lowing types of instructions are encountered: ACCEPT or an instruction involving 

149 



relations between operands which do not correspond to reservoir singletons. The 
result of the computation is obtained in the registers. 

As an example consider the following simple problem of selecting the maximal 
element of the set X. 

procedure SELECTMAX (X); 

begin 

read (r^; 

while the input is nonempty 

do 

begin 

read (r2); 

if rj < r2 then r. <- r2 

end 

end 

In following algorithms we denote registers ru r2, ••• as a, b, c,... . We note that 
SELECTMAX algorithm is an on-line algorithm because before reading the fc-th 
input element, it computes the maximal element over the set of k — 1 already read 

3. RESULTS 

We first consider two special cases of the selection problem. 

Fact 1. Each on-line algorithm selecting the second element of a totally ordered 
set of size n must perform at least 2n — 3 binary comparisons. 

Proof. The proof is based on the adversary argument. The adversary strategy is 
constructed in such a way that each element eliminated by the selection algorithm 
has to be involved in at least two different binary comparisons. Assume that the mem
ory of the selection algorithm is represented in the form of the directed acyclic graph 
(further dag), whose nodes correspond to elements in memory cells and whose edges 
correspond to the ordering between elements in memory cells as specified by the 
partial order underlying the previous computation. As the computation proceeds, 
the dag is modified in the following way. Initially, it consists of three nodes and no 
edges and at each step of computation an edge between two compared elements is 
added and it is oriented in order to minimize the number of paths of the length 
greater than one. Whenever the node occurs from which two other nodes in the dag 
are reachable, it is eliminated and replaced by a singleton from the input reservoir. 
We next show that if a dag with 3 nodes is considered and there are additional n — 3 
singletons in the input reservoir, then 2 comparisons are necessary for each of 
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n — 2 eliminations and 1 comparison is necessary to determine the second element, 
thus giving together 2n - 3 binary comparisons. Consider the following adversary 
strategy, which give the prescription for answering an arbitrary binary comparison 
of the form a : b of the selection algorithm. 

procedure ADVERSARY (comparison a : b); 

begin 

comment elements from the internal memory will be denoted as {a, b, c}; 
select 

no relation between a, b, c is known: return (a > b); 
a > c or b < c is known: return (a > b); 
a < c or b > c is known: return (a < b); 
a < c, b < c is known: return (a > b) 

end; 

if x is the minimal element of {a, b, c} 

then x is deleted from the internal memory 

end 

The bound follows directly from the straightforward case by case analysis over all 
possible relations between elements of internal memory. Q 

We note that the trivial on-line selection algorithm for determining the second 
element is doing 2n — 3 binary comparisons and needs 3 memory cells and thus it 
is time optimal. 

Fact 2. Each on-line algorithm selecting the third element of a totally ordered set 
of the size n must perform at least 2« — 4 binary comparisons. 

Proof. Again the adversary argument is used. The adversary strategy will follow 
the principal idea to answer comparisons of the selection algorithm such that each 
eliminated element will be involved in at least two various binary comparisons with 
elements in the internal memory. Such a strategy could be the following: 

procedure ADVERSARY (comparison a : b); 

begin 

comment internal memory elements are denoted as {a, b, c, d}; 

select 

no relation is known among elements {a, b, c, d}: return (a > b); 
c > b or a > c is known: return (a > b); 
c > a is known: return (b > a); 
a > c, a > d or c > a, c > b or c > d, a > d or 
a > c, b > d or c > a, d > b or c > a, c > d or 
a > c, d > b or a > c, c > d or c > a, a > d or 
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d > c, c > b is known: return (a > b); 
c > d, c > a or c > a, d > a is known: return (b > a); 
c > a, c > b, b > d or a > c, a > d, b > d or 
c > a, c > b, d > b or c > a, c > b, c > d or 
d > c, c > a, c > b is known: return (a > b) 

end; 

if the minimal element x from [a, b, c, d} is known 

then eliminate x from the internal memory 

end 

We note that all relationships between elements mentioned in the algorithm 
ADVERSARY are taken up to the isomorphic ones. The estimation follows directly 
from the straightforward examination of all ordering possibilities between elements 
in the internal memory. • 

Again, the trivial on-line selection algorithm for the third element is doing 2n — 4 
binary comparisons and needs 4 memory cells and thus it is time optimal. 

Now we turn our attention to the general case of the selection problem. First we 
consider the case of selecting the fc-th element when k is a constant. 

Theorem 1. Given a constant fc > 0 each on-line algorithm selecting the fc-th 
largest element of a totally ordered set of size n must perform at least [log2 (fc + 1)] . 
. n - 0(1) binary comparisons. 

Proof. We construct an adversary strategy which will give an answer to an arbitrary 
comparison "a : b" of the selection algorithm such that each eliminated element will 
be involved in at least [log2 (fc + l)] binary comparisons between elements simul
taneously contained in the internal memory. 

procedure ADVERSARY (comparison a : b); 

begin 

comment there are fc + 1 elements in the internal memory, a, b are among them; 

1. A binary tree Ta (respectively Tb) with a root a (respectively b) is constructed 
in the following way: 

i. Let H = (N,E) be a Hasse's diagram of a partial order over all elements 
in the internal memory with a set of nodes N corresponding to all elements 
in the internal memory and with a set of edges E such that there is an edge 
c -* d in E iff a comparison with the result c < d was done in the previous 
computation, c,deN. 

ii. Delete all nodes from N (together with incidental edges) such that there 
does not exist a path from a (respeticvely b) to n. Denote the resulting 
directed acyclic graph as H = <jv, E). 
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iii. Delete all crossing edges from N (i.e. edges leading to the nodes of indegree 1 

during the computation of H). The resulting tree is denoted as Ta (respec

tively Tb). 

2. if the number of nodes in the tree Ta k the number of nodes in the tree Th 

then return (a < b); 

3. if x is known to be the minimal element from the internal memory 

then delete x from the internal memory 

end 

Consider an example of the Hasse's diagram H of the form 

/2 

4 6 

9 ^ ^ , 1 0 

Then the d a g H for the r o o t a is of the form 

N>10 

T h e result ing tree Ta is either of the form 

or of the form 

Эo^ N>10 

9cJ г 
oЮ 
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depending on whether the comparison "4 : 9" has been done before the comparison 
"6 : 9" or vice versa. 

The estimation of the number of binary comparisons forced by this adversary 
strategy is clear by using the following argument: the eliminated element x must be 
the root of the binary tree Tx with k + 1 nodes and so the element x must be compared 
with at least [log2 (k + 1)] other elements simultaneously contained in the internal 
memory. • 

A simple on-line selection algorithm for the k-i\\ largest element (where k is a con
stant) constructs a binomial tree in the internal memory with a root corresponding 
to the minimal element. Binomial trees Tk are defined inductively as follows: a single 
node forms T0 and two Tk with an additional edge between roots form Tk+i. An 
alternative representation of a binomial tree Tk + i can be viewed as a root of k + 1 
sons being roots of Tk, Tk_t, ..., T0, respectively. The time complexity of this algo
rithm is [log (A: + 1)] . n — 0(1) and as follows from Theorem 1 this algorithm 
is time optimal. 

Theorem 2. For any rational number r : 0 < r ;$ \ there exists a constant cr > 0 
such that each on-line algorithm determining [ r . w]-th largest from n elements 
must perform at least cr. n . log n — 0(«) binary comparisons. 

Proof. We firstly consider the case 0 < r < \. We show how an adversary 
strategy can be constructed such that each of the first min (r, 1 - 2r) . n eliminated 
elements is forced to be compared in average with at least dr. log n — 0(log r) other 
elements from the internal memory for some constant dr > 0. If we take [r . n\ 
instead of k in the adversary strategy of the previous theorem, then the above proposi
tion can be proved using step by step simulation of that proof. Here we present 
another adversary strategy in order to prove the theorem. 

procedure ADVERSARY (comparison a : b); 
begin 

comment initially, all elements among the first [r . n] read ones are logically in Ul 
Consider a complete binary tree with 2[r'"] — 1 nodes. Order the nodes 
of this tree in an inorder way and attach a set U; to each node with the 
ordering number i. Initially, let U2c>-.n]-i to be equal to U; Uj = 0, 
j + 2 tr-"]~1; Elements a, b are among [r . n] + 1 elements of the internal 
memory; 

select 
a is among the first [r . n] read elements, b is not: 

return (a < b); 
Both a and b are not among the first [r . n] read elements: 

return (a < b); 
b is among the first [r . n\ read elements, a is not: 
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return (a > b); 

Both a and b are among the first [/•. /)] read elements: 

begin 

comment let a e Uh b e Up 

select 

/' < j : return (a < b); 

i = j : return (a > b); 

i > j : change a and b and follow as in the case /' < j 

end; 

comment let i = (1 + 2a) . 2", j = (1 + 2/i) . 2" 

for some u, v e <1, [/•. n] — 1>, 

a e <0,2 [ " ' ] - 1 - u >; 0 e <0, 2 [ r ' " ] - 1 -">; 

a is transfered from Ut to Ui+2u-i; 

b is transfered from Uj to U,-_2,,-f 

end 

end 

end 

During the performance of the on-line selection algorithm two cases can occur: 

either the selection algorithm eliminates the minimal element from the set of [r . n] + 

+ 1 elements in the internal memory, and then after [/•. n] eliminations it makes at 

least 

Г- . n . ([log2 (r . n)] + 1)1 -2 [ l 0 - ( ' - "> ] - 1 

binary comparisons or the selection algorithm eliminates the maximal element from 

[/•./?] + ! elements in the internal memory, and then during this execution at least 

[^-I-.„.([log2((l-2r).n)] + l)J-2 ->[log((l-2r).п)]-l 

binary comparisons are needed. Both estimations follows from the minimal sum of 

lengths of all paths over all binary trees with either r . n or (1 — 2r) . n nodes. By 

this way an adversary strategy ADVERSARY was constructed which forced each 

selection algorithm for [/•. n]-th largest element to make at least cr. n . log n - 0(n) 

binary comparisons for some constant c, > 0. 

Now it is sufficient to,prove the case r = \. An optimal on-line median selection 

algorithm for a set of n elements eliminates those elements from the internal memory 

which are known to be lower or greater than [n/2] + l other elements. Consider the 

computation state in which h elements greater than the median element and d 

elements lower than the median element has already been eliminated. There are just 

two candidates for the next eliminated element. Either the selection algorithm com-
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putes an element from the internal memory which is lower than the median or the 
selection algorithm computes an element which is greater than the median element. 
We present the strategy by means of which the following result will be obtained: if 
the eliminated element is lower than the median, then it is compared with at least 
[log(n/2 - h)] other elements from the internal memory; otherwise it is compared 
with at least [log(n/2 — d)~\ other elements from the working space. 

procedure ADVERSARY (comparison a : b); 

begin 

comment Consider that in the previous computation h elements greater than the 
median and d elements lower than the median has already been elimi
nated by the selection algorithm; Let a, b be among [n/2] +1 elements 
of the internal memory; 

1. A binary tree Tf with a root a is constructed in the following way: 

i. Let tf = (N, E> be a Hasse's diagram of a partial order (using <) over all 
elements in the internal memory with a set of nodes N corresponding to all 
elements in the internal memory and with a set of edges E such that there 
is an edge c -> d in E iff a comparison with the result c < d was done in the 
previous computation, c,deN; 

ii. Delete all nodes n from N (together with incidental edges) such that there 
does not exist a path from a to n. Denote the resulting directed acyclic 
graph as tf = <JV, E>; 

iii. Delete all crossing edges from N. The resulting tree is denoted as T<\ 

2. Analogically construct trees Tf, Tf, Tf; 

3. if [n/2] - h - {the number of nodes in the tree Tf + the number of nodes in 
the tree Tf} 
< [n/2] — d— {the number of nodes in the tree Tf + the number of nodes 

in the tree Tf} 

then 

if the number of nodes in the tree Tf 5; 

the number of nodes in the tree Tf 

then return (a > b) 

else return (a < b) 

else 
if the number of nodes in the tree Tf Si 

the number of nodes in the tree Tf 

then return (a > b) 

else return (a < b) 
end 
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The estimation of the number of comparisons forced by this adversary strategy 

directly follows from the following argument. The eliminated element x must be the 

root of the binary tree T:/ (or Tf) depending on the fact whether the maximal or mini

mal element is eliminated. The binary tree has totally n/2 — h (respectively n/2 — d) 

nodes and therefore at least [log (n/2 — h)] (respectively [log (n/2 - d)J) binary 

comparisons has to be done. 

(Received April 10, 1980.) 

R E F E R E N C E S  

[1] M. Paterson, N. Pippenger, A. Schonhage: Finding the median. Journal of Computer and 
System Sciences 13 (1976), 184—199. 

[2] Chee - Keng Yap: New Lower Bounds for Median and Related Problems. Yale University, 
Department of Computer Science, Research Report No. 79, 1976. 

[3] A. V. Aho, J. E. Hopcroft, J. D. Ullman: The Design and Analysis of Computer Algorithms. 
Addison-Wesley Publishing Company, 1974. 

RNDr. Peter Ruzicka, Vyskumne vypoctove stredisko [Computing Research Center), Dubravskd 
cesta 3, 885 31 Bratislava. Czechoslovakia. 

157 


		webmaster@dml.cz
	2012-06-05T08:47:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




