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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 2 

AN ALGORITHM FOR CALCULATING 
THE CHANNEL CAPACITY OF DEGREE 

INDER JEET TANEJA, FERNANDO GUERRA 

Arimoto [2] and Blahut [5] proposed a systematic iteration method to compute the channel 
capacity of a discrete memoryless channel. Arimoto [3, 4] also presented an iteration method 
for computing the random coding exponent function and channel capacity of order a by defining 
the mutual information in terms of Renyi [12] entropy of order a. In this paper, we present 
an algorithm for computing the channel capacity of degree /J by defining mutual information 
in terms of Havrda and Charvat [9] entropy of degree /?. Some upper bounds to the channel 
capacity of degree ft have also been derived. 

1. INTRODUCTION 

The calculation of the capacity of a discrete memoryless channel is well known 
problem in information theory since this quantity can not be represented in closed 
form. In order to calculate the channel capacity for a given channel matrix, we must 
select the necessary and sufficient number of rows needed for the calculation. This 
remains to be troublesome problem especially in nonregular (nonsquare) channel 
matrices. A general method for determining the capacity of a discrete memoryless 
channel has been suggested by Muroga [ l l ] , Cheng [6], and Takano [14]. While 
Meister and Oettli [10] proposed an iterative procedure based upon the method 
of concave programming and showed that it converges to capacity. Arimoto [2] and 
Blahut [5] also proposed another iteration method to compute the capacity which 
is very simple and systematic. Arimoto [3, 4] also presented an iterative algorithm 
for computing the random coding exponent function and channel capacity of order 
a by defining the mutual information in terms of the Renyi [12] entropy of order a. 

In this paper, we apply Arimoto's technique (cf. [3]) to obtain an algorithm 
for computing the channel capacity of degree fi in which the mutual information 
has been defined in terms of Havrda and Charvat [9] entropy of degree /?. Some 
upper bounds to the channel capacity of degree /? have also been derived. While, 
the algorithm for computing the channel capacity using generalized y-entropy of 
Arimoto [ l ] has been presented by Taneja and Wanderlinde [16] and using weighted 
entropy has been presented by Taneja and Flemming [15]. 
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2. CAPACITY OF DEGREE /} 

Denote a discrete memoryless channel with n input and m output symbols by the 
stochastic m x n matrix Q: 

Q = {Qk/J}, k = 1,2,..., m ; j = l , 2 , . . . , n 

where Qk/j >, 0 for all i,j and £ Qfc/j- = 1. 
*== I 

Let us denote „ 

K = {P = (Px, Pa , .» . P.) : P , -^ 0 , X - ; = 1} 
J = I 

and B 

A° = {^ = (Pi, Pa, - . P.) : P, > 0 , £ p , = 1} . 
; = i 

The mutual information of degree P of the channel matrix Q is defined by 

(2.1) I\Q; P) = Hp(P) - Hfi(Q; P) , 

where „ 
fl/>(P) = ( 2 i - < > - l ) - i { Y . p ? - l } 5 / , * ! , / , > 0 , 

J = I 

and 

(2.2) H/»(e;p) = ( 2 ^ - i)- '{f I ( P A / / - Z ( Z p J e w n , 
t = i j = i it = i j = i 

where H"(Q; P) is the conditional entropy of degree /? as defined in [7]. 
We define the capacity of degree /? of a discrete memoryless channel Q as 

(2.3) C ( P ) = max l"(Q; P). 
PsA„ 

Let us generalize the concept of conditional entropy of degree jS given in (2.2). 
Introduce a stochastic matrix $ such that 

(2.4) 0 = {#J/k}) k = 1,2,..., m ; j = 1,2,..., n , 

where <PJ/k >. 0 for all j , k and £ ^j/t = 1 an& generalize the conditional entropy 
of degree j8 as )"1 

(2.5) J"(Q; P; # ) = ( 2 1 " ' - 1)" - { £ £ j i jGj , / ! - tf}^} > 
t = i j = i 

Then, if <P is defined by the Bayes formula: 

PjQw 

t P,Qk 

(2-6) Фm=jЉï^ = QІk, 

then (2.5) becomes equal to (2.2). 
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Furthermore, we can easily prove the inequality 

(2.7) J\Q; P; # ) ^ J\Q; P; Q*), 

where Q* is the stochastic matrix whose (j, k)th entry is Qj/k as defined in (2.6). 
In view of this fact, one obtains another characterization of channel capacity of degree 
£as 

(2.8) C(Q) = max max {tf'(P) - J\Q; P; #)} , 

where O denotes the set of all stochastic matrices satisfying (2.4). 

The following proposition can be verified easily. 

Proposition 2.1. The function I"(Q; P) is a convex n function of the input pro­
babilities for all 0 < p = 1. 

Proposition 2.2. The probability vector P° = (p°, p°2,..., p°) e A„ maximizes 
I"(Q; P) for all 0 ^ 1 if and only if 

(2.9) ( 2 1 - " - 1 ) - 1 {Pri - 1 - 1 Q i , j p ° r + hip)QkIJr
x &,_,} 

i = l k=lJ=l 

= C"(e) if p°>o 
= c ( e ) if p? = o 

Proof. We want to maximize the following function: 

(2.10) 1H Q; P) = H\P) - H"(Q; P) = 

= ( 2 ^ - i r { i p ? - i - ! i j-jefw + f ( i *,&«/}, 
j = l k = l > = 1 k=lj=i 

/8 + 1 , j6> 0 . 

Let us maximize (2.10) with respect to the condition V, pj = 1. Using the Lan-
grange method of multipliers and let J = l 

f(P) = (2*-' - l)-1 {I P5 - l - I I « / ; + t (I I^// + 
j = 1 k = 1 J = 1 k = 1 j = 1 

+ ;.(i>J-i)} 
J = I 

then, we have 

M-3 = (*"' - l)-1 ^ " 1 - £ Oi/; fcj"- + 1 ( t P/&//T * 2k/;} + A = 0, 
Op,- k = 1 k = 1 y = 1 

(in) x = -fl*-'-1)-1 {pr - i V ^ - + zQwdpjQwY-1}• 
k = l k = l j=l 

By maximization lemma (ref. Gallager [8]), as ̂ (Q; P) is a convex n function 
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of P = (p1 ; p 2 , . . . , pn) e An for 0 < ft ^ 1 and the partial derivatives of l\Q; P) 
are continuous, then the necessary and sufficient conditions at P° — (p°, p\,..., p°) e 
e z1„ to maximize IP(Q; P) are 

(2 12) 3I"(Q;P) | = 1 if p° > 0 

dp? 1 S A if P° = 0 

Expression (2.11) and (2.12) together give 

(2-" - 1 ) - {pf- - 1 - f QkljP°r + i QwdtfQ^r1} 
k=l k=l J=1 

(2 13) i=C'^) if ^°> 0 

{A) U c « 2 ) if p?=0 
where C\Q) = (A/p1) - (21"<i - 1)"-. 

Let us prove now that C ( Q ) is the channel capacity. In order to prove this, multi­
ply (2.13) by p) and taking sum over all ;', j = 1, 2 , . . . , n at which p? > 0, we have 

P(Q; P°) = C"(Q), 
i.e., 

max I\Q; P) = C\Q). 
PeA„ 

3. COMPUTATION OF THE CAPACITY OF DEGREE fi 

Based upon the double-maximum form in (2.8), an iterative algorithm for comput­

ing C(Q) is composed of the following steps: 

i) Initially, choose an arbitrary probability vector Pl e A° (in practice the uniform 
distribution p) = \\n for a l l ; = 1, 2, ..., n generally suitable); 

ii) Then, iterate the following steps for t = 1, 2 , . . . . 
a) Maximize H\P') - J\Q; P'; # ) with respect t o $ e O with P' fixed. 

According to (2.7) the maximizing <P is 

(3-1) *},» - 4 ^ , 
I Quart 
i = l 

i.e. 

(3.2) C(r, f) = max {if'(P') - J\Q; P'; #)} = H\P') - j'(Q; P'; # ' ) ; 

b) Maximize H"(P) - J\Q; P; # ' ) with respect to Pezl„ while fixing * ' . This 
maximizing probability vector denoted by P'+1 is given by 

I 

(3.3) p'r = -!fi)l~\ > £ * i , n>o, 
i = l 
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where 

(3-4) -y-l- lGWl-W-'} . />*-, P>0. 
k= 1 

In fact, the following lemma is true: 

Lemma 3.1. For any fixed <P e O, 

(3.5) max {H\P) - J\Q; P; *)} = H\P*) - J\Q; P*; 0) = 
PeA„ 

= (2 1 -" - i rMCi-p ) 1 "' -1} = c/f(Q)^ o < ^ i . 
7 = 1 

where P* e A„ is given by 

c l - « 

(3-6) ti-^-T' 

i = 1 

and 

(3-8) - _ . - - - £ fit',/1'-*}**)• 
* = i 

Proof. The function which we want to maximize is of the following form: 

H\P) - J\Q; P; <£) with ( f e $ fixed . 

Using the Lagrange method of multipliers, we have 

f(P) = H»(P) - J\Q; P;<£) + ( \ - i p}) = 
7 = 1 

- ( - * - ' - - r i i w - f t ) - i iQiuPj + 
7 = 1 * = i , = l 

+ f ieU^)/} + ̂ - i f t ) -
k=\ 7 = 1 7 = 1 

Now 

^ ) = (2-" -1 ) - 1 {/ipr1 - 1 - p i Q%JPV + i Qiijpr^m") - *• = o. 
Cp , - * = 1 K • 1 

This gives 

A = (2'"" - l)"1 {^- ' - 1 -fitWlfr1 + i QtuP°j-'*mP}-
k=l k=\ 

After simplifying, we get 

J - . s _ ^ - - - 1) + 1 
Pj ' j - p 

where Sj is as given in (3.7). 
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Thus, 

Using the fact that £ p,- = 1, we get (3.6). 
J = I 

This completes the proof of the lemma. • 

At step iib), let 

(3.8) C\t + 1 , / ) = max {H\P) - J\Q; P; <&<)} = 
PsAn 

= H\P<+1)- J\Q;P,+1;0<), 

and from Lemma 3.1, we have 

(3.9) C\t + 1, 0 = (21-" - I ) " 1 { [ t ^ ) 1 ^ ] 1 " ' - 1} . 

where s) is as given in (3.4). Thus, from the definitions of C\t, t) and C\t + 1,0, 
we have following lemma and theorem. 

Lemma 3.2. 

(3.10) 
C\\, 1) ^ C\2, 1) < C"(2, 2) g ... g C\t, t) = C\t + I, t) g . . . g C"(o,). 

Theorem 3.2. Let P° e J„ be any probability vector that achieves the maximum 
of I\Q; P). Then for all 0 < j5 < 1, we have 

(3.11) C\Q) - C\t + 1, 0 < (2 1 - " - l ) t P°AW~l - (P'r1)"'1} • 
J = I 

Theorem 3.3. The sequences C\t, t) or C\t + 1, 0 defined in (3.2) and (3.9) 
respectively converges monotonically from below to C\Q) as t -» co for all 0 < 
< P = 1. 

Proof. From Theorem 3.1, we have 

(3.i2) C\Q) - c\t +1,o = (21-* - I)-1 ipKiPj-y-1 - o r r 1 } -
J = I 

Summing (3.12) from t = 1 to t -= N, we have 

(3.B) t{C(o)-O 'o + i ,o}< (2 i - ' i - i r i £ £ ^ J ° r i - o > r i r i } = 
r = 1 ( = 1 j = 1 

- (21-* - i)tpJ°{o>;ri - (pr1)"-1} ^ (21-' - - r IPAPT1. 
y = i y = i 

for all iV ^ 1. Note that the right hand side of (3.13) is finite and constant since 
P1eA°. Thus the value C\Q) - C\t + \,t) is nonnegative and nonincreasing 
with increasing t, this clearly gives 

lim C\t + 1 , 0 = lim C\t, t) = C\Q). • 
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Corollary 3.1. The approximation error efi(t) = C\Q) - Cp(t + 1, t) is inversely 
proportional to the number of iterations. In particular, if Pl is chosen as the 
uniform distribution, then 

(j}-t _ i ) - 1 „!-/* 
C\Q) - C\t + ! , « ) _ ' — • 

4. UPPER BOUNDS ON THE CAPACITY OF DEGREE p 

In this section, we shall derive some properties of CP(Q) that give upper bounds 
on the capacity of degree p. 

First, let 
(4+) C\Q; # ) = max {B\Q) - J%Q; P; <P)} 

PsAn 

and from (3.9), we have 

(4.2) C^e;**.)^1-"- l Y M C i ^ ] 1 " ' - 1}, P*\,P>0, 
j = i 

where Sj is as given in (3.7). 
From the Lemma 3.1, we have 

(4.3) max C\Q; <Z>) = C%Q). , 

Moreover, we can prove the following: 

Theorem 4.1. Let Qt and Q2 be m x n channel matrices respectively, a an arbitrary 
number such that 0 = a < 1, and <P and arbitrary n x m stochastic matrix. Then, 
we have 

(4.4) C(«fi i + ( ! - « ) Q2; * ) _ « C ( f i i ; <P) + (1 - «) C"(e2; «*>), 

for all 0 < P £ 1. 

Proof. From (4.2), we have 

(4-5) 

C(«fi. + (1 - a) o,2; _) = (21"' - l)"1 {[I(aSj + (1 - a t fp* ] 1 - ' - 1}, 
where Sj is as given in (3.7). 

Now from Minkowski inequality, we have 

(4.6) {iw + (i-«)s]r*y~'g 

i « { i (s))1 }̂1-" + a -«) { i (s,2)^r *. 
j=\ j - i 

according as P = 0. Also 

(4.7) (2 1 -" - I ) " 1 1 0 

according as p g 1. From (4.6) and (4.7), we have (4.4) for all 0 < p <| 1. Q 
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Using (4.3) and (4.4), we can easily prove the following inequality: 

Corollary 4.1. For 0 < j8 <. 1, we have 

(4.8) C ( a f i . + (1 - a) fi2) ^ a C ( f i . ) + (1 - a) C ( f i 2 ) . 

Theorem 4.2. 

(i) <?(Q)Z &(-,->.-.,-)- H'(-,l--) + 
\n n nj \n n) 

+ ( 2 1 - " - I ) " 1 
I-ЃП/ Î 

'"]'-'} 
where n — X Qk/jv a n d A denotes one of the integers arbitrarily chosen from 

k = l 

1 to n corresponding to each k. 

(ii) C ^ ß ) ^ 1 " " - ! ) - 1 I f i - E ß ^ + I - r ^ — \т 

' 'Ш 
; = i I t = i * = i 

- 1 

(iii) ( I ß(./Л 1 / i \ 
^—J - (Ҷ iя"( 

where HHQ(.m) = (21 ' - 1) M l G ' / j - l } . i s the conditional entropy 
J t = 1 

of degree j? of X = k when Y = j is given. 

Proof, (i) Let e be an arbitrary number such that 0 ^ s ^ 1 and define 

(4 -9) Pj = l/«, j = 1,2,..., n 

Фilk = S є 

1 - є . j = jfc 

n - 1 
, j * л 

Then from (4.1) and (4.3), we have 

C^(fi) ^ H\P) - J\Q; P; <P) = 

- < * - ' - , > - * K ' - I - І . ( ^ Һ Ш ^ ) ' + 

(-) + , | ( ^ < ^ ' - ^ Ä ( Í Í ( - Һ ) > 
= (2̂ -' - i)"1 {(»1_' -1) - І (^f)' [i - (i - - П -
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;> (21-* - i)-1{(„w - i) _ (£ e^Y [i _ (i - £y-0] _ 

-H^)'[-H)'l 
(ref. Gallager [8] forO < j3 ^ 1) 

= ( ,->_1 )-. | ( , ._1 )_ ( ,j [ 1_ ( 1_e r , ]_ ( l_,y [ ,_ f ey1 . 
Maximizing right hand side of (4.10) with respect to s, 0 g E g 1, we obtain 

1 - * 

(4.H) 

In fact, let 
'-írø-* 

then 

F(.) = (21"" - I)"1 {(»»-' - 1) - g j [1 - (1 - ,)--*] -

-('-;)'['-(^)'l' 

^ = ^ { - ( ; ) ' < ' - « > - ' + (>-=)'^P} = -
gives (4.11). 

Substituting this value of e from (4.11) in (4.10), we get the required result, 

(ii) We have 

(412) max {H"(P) - J\Q; P; <_>)} = 

where 

(4.13) 

= (21-* - l)-Ҷ(Xsp)1-< ì - 1} íg C^Є), 
J " = I 

-у - 1 - Z ee«(i - *ií*) • 

Substituting <_ J/k = g t / j / £ Qk/i in (4.13) and using (412), we get the required 
result. , = 1 
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(iii) From (41) and (4.13), we have 

(4.14) C»(Q) ^ H'(P) - Jp(Q; P; $ ) = 

= (21-** - I)-1 {i v) -1 - i i QUv) + i i QumrA. 
j = 1 k= 1 j= 1 k=l j= 1 

Substituting in (4.14), 

Pjm - / » . 7 = l , 2 , . . . , n , 
and 

• j v * - " ^ - . fe = l , 2 , . . . , m 

I &/, 
; = i 

we get 

C«2) >= (2-" - I)"1 {n1^ - 1 - £ iQlu (I)' + 

+ 
k=i І = 

k=ij=i - \n 

i !<*«(-)' 
: = l j = l \nj I Qm\ 

i=\ I 

- (21 -* - 1 ) - i j -1 - (I)' [ £ £ ox, - „] + (iy £ (£ &,,/} = 
( \ w / * = i j = i \nj k=ij=i J 

.Q 'J .g ,^ ' - 1 / tYf jl.ei"-'l 

f Z 6(./j) j / i \/» « 

which completes the proof of part (iii). rj 
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