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KYBERNETIKA — VOLUME 28 (1992), NUMBER 4, PAGES 271-1283

STABILITY ANALYSIS FOR LARGE SCALE TIME
DELAY SYSTEMS VIA THE MATRIX LYAPUNOV
FUNCTION

Soo R. LEE AND M. JAMSHIDI

1n this paper, we analyze the stability of large-scale systems with multiple time delays in both isolated
parts and interconnections via the scalar approach of the matrix Lyapunov function. This approach
of the matrix Lyapunov function estimates the stability of a large-scale interconnected system based
on a decomposition-aggregation method. The candidate Lyapunov function here takes advantage of a
weighted sum of individual Lyapunov function for each free subsystem and every interconnection related
to all in pairs isolated subsystems in case of nondelay.

1. INTRODUCTION

The scalar approach of a matrix Lyapunov function method for the stability estimation of
a large-scale interconnected system uses a decomposition-aggregation method {1]. Here
the candidate Lyapunov function of the approach takes advantage of a weighted sum of
individual Lyapunov functions for each free subsystem and every interconnection among
isolated subsystems without time delay. By doing this, we can estimate the influence of
interconnections between subsystems on the stability.

In this paper, after considering a nonlinear system stability which involves time delays
by some perturbations, the scalar approach of the matrix Lyapunov function method has
been taken into account for the stability of large-scale nonlinear systems without time
delay [2]. Then, this method is applied to a nonlinear system with time delays following
the application to the stability analysis of linear systems with time delays. It is noticed
that if a weakly coupled nonlinear system is perturbed with time delays, then those
delays do not destroy the stability of the system provided that the original system is
stable [3,4). However, the time delays can be involved in isolated terms as well as
interconnections in many cases as pointed out in [3,5] and these delays really have an
effect on the stability of the system.
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2. STABILITY OF A LARGE-SCALE NONLINEAR SYSTEM

Consider a large-scale nonlinear system

x(t) = f[x(t), 1] )
where x(t) € R”, x(t) = [x:(t)7, xa(t)7 .. .x,,,(t)T]T and f = R" x T — R", T : time
interval (—o0,00). The system is assumed to be decomposed into m subsystems,

*i(t) = £ [xi(t), t] + & [(x(2), 1] @
where x;(t) € R™, f;: R" xT = R"™,

m
g: R"xT—-R", i=12...,m, Zn;:n.
i=1

The requirements of f;(-), gi(-) guarantee the existence and uniqueness of the solution
of equation (2). The x(t) = 0 is an equilibrium satisfying

£(0,t)=0, f£(0,5)=0, g(0,8)=0. 3

Let us first survey stability conditions for the nonlinear interconnected system (1) which
is represented as:

x(t) = Ax(t) + g(x, ). , @

The equilibrium state of this system is asymptotically stable (A.S.) if the following
conditions are satisfied [2}:

(1 g,)=0
: . g(x.0l|
@) dim Choor =0
provided that the stability of linear part is A.S.
The system (4) can be perturbed to have time delay in interconnection as:
X(t) = Ax(t) + g[x(t = h), 1] (5)
where
A€ R™™", x(t) € R", 0 <k constant delay.

The stability of the system above can be estimated by the following theorem.

Theorem 1. Consider a nonlinear system (5). If the following conditions for vector
function g{x(t — k), t] hold,
H  e0)=0

. o).t
@) Seor =
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3) solutions of x(t) = Ax(t) are A.S.
then the equilibrium state is A.S.

Proof. For a candidate Lyapunov function for the system (5)

v(x,t) = x(t)T Px(t),
where P is a positive definite matrix
b(x,1) ()T Px(t) + x(t)T Px(t)

[Ax(2) + g(x(t - k), O Px(t) +x(t)T P [Ax(t) + g(x(t ~ k), 1)]
x(t)T [AT P + P A] x(t) + 287 (") Px(t)

where AT P + P A becomes a negative definite matrix by (3). Further using (2),
2g7(-) Px = 0 for small value of x(t) and i(x,t) < 0 with »(x,t) > 0. This shows the
proof of the theorem. fu]

Let the candidate Lyapunov function for the system (1) be represented as:
v(x,t) = [dT] [v;(x:(t), x;(2), )] [d], L,j=12,....m 6)

where d = [d;,d; ...dw]", d; > 0 are constant scalars and v;;(-) here represents the re-
lationship which the jth subsystem affects the ith subsystem and v;; [xi(t), t] = z; P;; =;,
vi; [%:(t), x;(t), t] = xT P;x; with appropriate dimensions of positive definite matrices
P; and matrices P;;. To estimate the lower bound of v(x{t), t)

(i, t) > v E(x:) " (7a)
i (Xi(t), %5(2), 1) = ¥i; &i(xi) € (%;)- (Th)
By letting
Yi = A (P) (8a)
% =i = —sign (dids) My (PyPT), i) (8b)
and
&i(x:) = JIxill (8¢)

where A (+) and Aum(:) represent the minimum and maximum eigenvalues of (-) respec-
tively and |jx;]| is a norm of x;. The lower bound v,(x(t), t) of v(x(t), t) is

p(x(2), t) 2 ve(x)
d 0. - 0 Mm M2 o Nim d 0 - 0
- 0 d; : Y2 Y2 Yam 0 d,

0 s Tml Ym2 * Ymm 0 coeody
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or as a compact form

ve(x) = €7 DTG D¢ (10)
where .
€= llxlllxall - Ixall", D= diag (dy -+~ dum)

and matrix G = [y;] for i, j = 1,2,...,m. If G = [v;] > 0, then v(x) is positive definite
(p.d.). From (6),

v(x(t), t) = Z 2 vi(xi,t) + i did;vi;(xilt), x;(t), 1)}, () = i), (11)

i

Then the total time derivative of »(x, ) for (2) becomes

v(x,t) = i [df V(% t) + z"‘: d; dj vii(xi, xj, t)] (12)
=1 Py
(% vl 1)\ 7
vi(t) = é‘lﬁ"—gﬁ + (Q__a(_’:)_::_t_)_) *i(t) (13)
(i X5 vii(%ir %5, 8) ]
i) = 228 | 5 {[QJ;‘—M"—’)] ) + gk(ln} )

Then the upper bound oy of &(x,t) with #;(xi,t) and 2;;(xi,X;,) can be obtained by
collecting terms of degree of [¢(-)] = 2 and terms of degree of [r(-)] > 2 as

in = q[r1(3), - Y ()] + 1 [ (x0), - P (X)) (15)
where ¥;(x;), i =1,...,m is a positive definite continuous function and
q(0,...,0) =0 and r(0,...,0) =0.

g(+) could be written as a quadratic form

q["l)l(xl)s-"vwm(xm)] = ¢TW¢ (16)
where W is a constant symmetric matrix
¥ =[axa)s s Y] ' a7

From (16), ¢(:) is negative definite near the origin if and only if W < 0 and this gives
v(-) < 0 with v(-) > 0.

Theorem 2. The equilibrium state x(t) = 0 of the system (1) is A.S. near the origin
if G > 0in (10) and ~W in (16) is an M-matrix [6].

Proof. The proof is clear from Theorem 3. a
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3. MATRIX LYAPUNOV FUNCTION FOR THE STABILITY OF A LINEAR
TIME DELAY SYSTEMS
Case 1 — Linear System with Time Delay in Two Interconnections

Based on the discussion of previous section for the stability of a nonlinear system through
the scalar approach of the matrix Lyapunov function method, the stability of a linear
time delay system is investigated as a special case of a nonlinear system. In this case the
degree of the system function is one and r(-) in (15) does not appear. The time delay
terms in the system however, can be analyzed by using linearity with respect to initial
state. Consider a simple interconnected system with constant delays in each subsystem,

x1(t) = Ay xa () + Gra xo(t — hy) (18a)

X2(t) = Gar X1 (8 — hy) + Az Xa(2) (18b)
where A; € R™*™  h; is a constant delay for i = 1,2 and Gj; € R%*™ for i, j = 1,2
(i #4).
The candidate Lyapunov function for system (18)

_ vi(x1,t)  via(x1, X2, t)
v(x,1) = [d1 dy] o (o) ]Zn(xmzt) ][ ]

= d vii(x1) + 2d1daviz (31, %2) + djva(x3), Vij = vji (19).

where
vi(xi) = x7 Pix;, vij(%i,%;) = x7 Py %;. (20)

Therefore, v(X;,t) is arranged by substituting x; given in (18) as follows:

Vn( ) "‘22

(x(t), t) = [dy dy] [ nal-) ) [ ] (21)

= [xTxT] [ & (AT Pu+ Pu Ar)  di dy (AT Pz + Pz Ay) [ x ]
dydy (AT Py + Pn A1)  d3(A] P+ Pn 4;) X2

+ [xlT 7] [dx dy PGy &2 Py Gy ] [x‘lhl ]

dg PGy didy Py Gy X2k
didy GT, P, GL P,
+IxT xT 120 2 2
[xu., thz] [ d'fdlrz Py, 4, deT P\z] [ } @)
ona(%,8) = = [IxT Y )] [ o :ZZ] “:;H

- T - =P 1%, l
(1T unxun[ ﬂn _ﬂn] [”xw" (28)
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where ;i = Amax {87 (AT Pi + Pu A))} fori=1,2
gz = "d1 dy (AT Py + Py Az)n.z y Bi1 = Amax {di s (P2 Gy + Gh Pa)},

Bra=||d (PG + G Pu)llys B = |8 (P2 G + G, Pa) |,

2

and
X1k, = X1 (t = P1), Xah, = X2 (t — ka), ayy = oo, P = Paz-

If we can find d; > 0 such that leading principal minors of

W = [ —an —o ] and W, = [ —Bu —Pu ]

—Qz —O2 —Bn P

are positive, that is, W and W, are M-matrices, then #)/(-) < 0. This leads the system
to be asymptotically stable according to Theorem 2.

Remark.
(1) Even if both W and W, are not M-matrices, the system can be stable if the one
which is an M-matrix is dominant over the other which is not an M-matrix.
(2) If we can find a scale factor for x;(t — h;) with respect to x;(t), then W and W), with
the scaling factor can be added up together as in Section 3.5 of Chapter 3 in [3].

Case 2 — Linear System with Time Delays in Three Interconnections

The stability of a system with time delays in two interconnections can be extended to the
system with time delays in three interconnections. Consider a system whose subsystems
are represented by

X1 = Ay X1(£) + Gz xa(t = ha) + Gz Xa(t — hs) (242)
Xz = G xi(t — k) + Az x2(t) + Gaz x3(t — h3) (24b)
X3 = Gu x1(t — k) + G xa(t — k) + Azxa(t) (24c)

where A;, Gij, X; and h; are defined similar to Case 1. Thus,

vi(xi) = x,-T Pyix;, vij(xi, X;) = x;r Pi;x; fori, j=1,2,3and i #j, (25)

() Uia(0) ns(+) &
p(x(t)) = [d dp ds] | im(") inal-) ina() d |, (26)
31 () 1532( -) ’7:33(‘) d;

vi(-) = vii(-) fori# jand d; > 0.
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& (ATputrnAr) dide (A;rl’l2+PﬂA2) dids (AlTPm'H’lSAB)
#(x,t) =xT |dady (ATpartpnA) i (Al postpyrAz) dady (Agp23+pz3A3) x
dady (ATpsi+paAr) dade (Alpsgtpnda) & (A;rpsa‘i’PasAa)
[dxdzpan'I-dldsPlsGm dip1Ghatdidspy, Gz d%l’nGm+d,d2puG23
+2x

oG +dadspasGay  dadypysGaatdadyp, Gn d§P22G23+d2d1p2,G13 x; (27)
Bp3sGn+dadapssGay  dipyyGartdadyps, Gie d3d1p0Ga+daydyps;Goa

where
x= [xI x7 x;r]T oox= [k« xg‘,\s]T_
Furthermore,
~a11 —Qy3 —013
m(x, 1) = —|x||” [ —ay —0gy —apm :| ]
—Qa31 —Q3; —033
~(Butmm) —(Bratéy) —(ba+ &13)
—fix { ~ (B +6n) —(Bua+v) —(B+6y) ] Il (28)
~(Ba1+6n) —(Baz+83) —(Bsa+a)
where

= TxTH i1~T T
lscll = (el M I I ]S aly = [l Wt Hacig )T

o = dmax {d} (AT Py + Py AN},

ldid; (AT P+ P A7),  fori,i=1,23andi#j
Bii = Amax {di diy1 (Piyq Gipri + G?;,,.— P}

Amax {d; diyz (Piiyz Gizai + GT Pia)}

2
Il

2
I

here Pit1, Pitzs Girtiy and Giyai will cycle from 1 to 3.

B = ||& (PiGi+GT P,

b2 = Hd; ds (P13Gyy + GL, P31)”2
13 = “d, dy (Pn Gy + Gg‘s Pﬂ)”z
by = ”d; ds (Pza Ga + G§1 P“)“z
b5 = ||drdy (Pu Gy + GTy P,
1 = ”da dy (P32 G + G; Pn) ”7
b3 = ”da d (Pa (;12+G’1r¢ P13)||2‘

If we can find aij, Bijy v for 7, § = 1,2,3 such that the leading principal minors of the
matrices
-0 Tap; —a3
W=| —an ~azp —axs (292)

—Q31 T3 —033
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d
. —(Bu+m) —(Piatén) —(Ba+bia)
Wih= | —(Bar+6n) ~(Baz+722) —(Pas+ b23) (29b)
= (B +831) —(Bsz+832) —(Baz+ 1)

are positive, then v(x(t)) < 0 from (28). This gives the system stability and we can find
a general rule for the matrix formation.

Case 3 — Linear System with Time Delays in Both Isolation and Intercon-
nection
Consider a linear system with multiple time delays in its ¢th isolation and interconnection

as:

2 2 2
xi(t) = Acxi(t) + Y Faxilt = ha) + 3 By xi(t) + ZG;J- xi{t —7;).  (30)
k=1 j=1 =1

Fori=k=2
x1(t) = A1 x1(t) + Fiuxa(t — hu) + Biz Xa(t) + G x,(t — 112) (31a)
%2(t) = Az Xa(t) + Faa X2t — hys) + B xu(t) + Gy x1(t — 721) (31b)
where

A' e Rngxn.’ F'" G Rﬂ.Xn."
B; e R™*™ and Gy € R"*™ fori,j=1,2 (i #7J)
are all real matrices.
Let the candidate Lyapunov function for the system whose subsystems are represented

by (31) be:
vi() val)
viat) = [ 4] ["21 ) ”n()] [d'z]
=d} vi(+) + 2d; dy o) + d3 vaa (), vig(+) = va()- (32)
Then " J
. vu(:) vn 1
v(x,t) = [di d3] { va() () ] [d2 ]
= d% 1'11\(-)+2d1 d; l‘/‘g(')‘f‘d; 022(+) (33)
with
vi(xi, t) = x] Paxi,  wij(XoXit) = x] Pyx

From v;;(x;,t) and v;;(xi, x;,t), we can obtain #(x,t) along the (3])

()=x T[ ~& Qi+d, dy (B], Pu+Pi2By)  dy dz (Pry Biat BT, Pt Ay PotPra Az)
dy dy (Bn P+ P 321+A Py+Py 1) —d2 Qy+d; dy (B;rz Pt Py Blz)
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+x7 [‘{anFn dldanFﬂ}xhd—xT[ & FuPn didy FL P,
dydy Pn Frv &3 Py Fys h d2d1F21;P21 dngszzz

+x7 [dldz P3Gy &Py Gra [d') d C'({] Py d GZTI Py, ]

&2 Pa Gy dydg Py Gz J,’GHTQ Py did,GT, Py, x (34)

]Xr+x,T

where
= [T T - T - T
x=[x] x1]", xn=[x], sz,l] , X = xQT,] ,
and X = Xi(t~ hie),  Xir EXi(t - 7y5)
Al Pit PiAi=-Q,  i=12

If By = Bn, then
—ay “0121] [ ”xl” ]

—~0g —0y [fxalf

=) [ ] [ e [t [ ] [l g

—Biz P [lanll -M2 —Y22 1%z ||

o000 <~ [T TN |

where
o = dnax [~ Q1 +didy (B] P + Pra Ba)]
ay = ag = "d1 dy (Pn Bn + BgT, P+ A P+ Py Ag)“z
Q23 = Amax [~d3Q2 +d1dy (B], Pz + P By))
Bi = Mmax [d (Pi Fi+ F P))
Pz = |ldidy (P2 Fra + F2 Py)))j,
B = ||dedi (Pu Fis + Ff Po),
M = Amax [dy dy (P12 G + GT, Poi)]
N2 = ”df (PG + e Pn)”2
™ = ”dg (Po2 Gt + Gh P22)”z
Yoo = Amax [d2dy (P Giz + GT, Pi)]
and Xin, Xir are x,(t — hij) and xi(t — ;) for ¢ # J, respectively. If further x;; =

Xir, X2h = Xar, and d; = 1, 7 = 1,2, then

om0 = = [0 [ o0 o | [l

-Au—m =27y } [ lIx14]]
i TH T 14
it i) [ T e g | [t ] (36)
If the leading principal minors of
_ | T o
W= [ T —ap ] (372)



280 S.R. LEE AND M. JAMSHIDI

—Bu — m ~bPhr2 ~ N2 ]
W, = 37
h [ ‘ﬂzl =721 ’ﬂm ~— 722 ( )

are positive definite, then the system (31) is stable.

Remark.
(1) If we can scale ||x;{t — h11)|| and ||x2(t ~ ka2)|| in (36) to ||x;1]] and ||x2]|, respectively,
then the stability can be examined by the similar way to the method of Section 3.5 in
Chapter 3 in [3].
(2) If F; =0 fori=1,2 and Bi; = By =0 in (31), then the result is the same as the
Case 1, the linear system with time delays in two interconnections. That is,

) = = Ul [ 2o T ] [l

a2 —az Il
_ g | =P b fixaall
CHTEON Bl N el

equals to equation (23).

4. MATRIX LYAPUNOV FUNCTION APPLICATIONS TO NONLINEAR TIME
DELAY SYSTEMS

Case 1 — Nonlinear System with Time Delays in Interconnections

Consider a large-scale system
%=1 [x(t), it —B),.oo, Xmlt — Bm), 2], (38)
where k; = [hir biz . .. h,-,,,]T. And its ith subsystem is represented by
xi(t) = flxi, ] + g [x(2), xa{t = Ba),- o Xt = Fim), 1] - (39)

The candidate Lyapunov function for the system (38) can be expressed as

u(x,t) = Z [d? V,'.'(X,',t) + Zd,- d_,' Vij (X.‘,Xj,t)] s d; > 0. ' (40)
7 i
From this
nx,t) =Y {d‘: a(xi )+ did; D‘-_,v(x,-,xj,t)} (a1)
i j

<5 [ (252 (5 )+ o {2 (5 (52
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=i[d?{6u§t() (a‘,;,i.)) ()+(8u,,( )) g;(-)}
S {0 (5 () o

+ (2 g (2) m)}].

Separating the terms of degree 2 from the terms of degree greater than 2,

m(x,t) = qu {6 (x1), &(xz), ..o, € (Xm)]

+ @2 [G1(x1(t = Baj)), La(Xalt — k25))s - s €t = bmj))]

+ru[€(x), &(x2), -5 €m(Xm)]

+riz (G (xa(t - k15))s Ea(xa(t ~ h33));s - -+ s Em(Xm(t = hms))] (42)

where ¢11, q12 are negative definite continuous functions of degree 2 and ryy, ry2 are
negative definite continuous functions whose degree is greater than 2. Then the stability
near the origin can be evaluated from ¢;;(-) and gi2(-) by constructing quadratic forms:

an [ea (1), Ea(%a), - .., En(Xm)] = ETWRE (43a)

@2 [ (0t — 1)), &a(alt = Ba))y - G (Xmlt = Bim))] = EF Wi (43b)

If W, < 0 and W;;, < 0, then £p(x,t) < 0 near the origin. This says that the system is
A.S. near the origin. Similarly we can analyze the stability of a large-scale system with
time delays in isolated states and interconnections.

Case 2 — Nonlinear System with Time Delay in Both Isolation and Inter-
connection

We are considering the following system:
= f [x(t), x:(t ~ By)yeey Xm(t = B, {, (44a)
where T; = [hij hiz ... ki) Its initial function is given as
x(r)=¢(r), to-h<T<to (44b)
with the maximum delay & and its initial condition
£(0,0,...,¢)=0 (44c)\
and with ith subsystem,

1) = f; [xi, Xilt ~ hi)y 8]+ g [%(8)s %o (8 = )y .oy Xont = P, 1] - (44d)
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The candidate Lyapunov function (40) for the system (44a) is used again:

m

f/(x,t) = Z d? fh‘i(X.‘,i)i—idg dj f/,‘j(x,‘, X;, f,) (41)

i =1

The term i(x,t) using 2ii(x;,t) and 0y;(x;, %5, 1) with %(2) and x;(¢) from (44d) is
arranged to lead to the followings. We are assuming that the upper bound pp(x,t) is
obtained from (41) as

i (%,1) = g [1(x1), - - Em ()] + g2 [E1(30 (8 = hy3))s - - o Xt = Bmj))] +

+ra [G(x), - b)) F 22 (G (3 (E = Raj))s o (Kt — Bans))] (45)

where ¢21(+), ¢22(-) are negative definite continuous functions of degree 2 and r3; and ry,
are negative definite continuous functions of degree over 2. Similarly to the Case 1,

an [51 (Xl), See 7€m(xm)] = ET Wy ¢ (463)

g (6t = k1)), (Rt — b)) = & Wan &y, (46b)

Based on Theorem 2 and the Case 2 in this section, the following theorem can be estab-
lished for the system (44).

Theorem 3. The equilibrium state x, = 0 of the time delay system (44) is asymp-
totically stable if —W, and —Wyy, in (46) are M-matrices, provided that G'> 0 in (10).

Proof. From the candidate Lyapunov function (40) for the system (44), it is not
difficult to get the upper bound Pp(x,t) in (45). Since —W; and —W,, in (46) are
M-matrices and the degree of ¢21() and ¢2,(-) are lower than those of 5;(-) and r42(-),
respectively, the system is guaranteed to be asymptotically stable near the origin. O

Remark. The difference of equation (45) from (42) is that the equation (45) should
have time delay terms coming from the isolated part in (44d).

5. CONCLUSIONS

The stability of a large-scale system with time delays is evaluated by the way of s-
calar approach of a matrix Lyapunov function method and an M-matrix. By using
a decomposition-aggregation method, the contribution of the interconnections between
subsystems to the stability is well visualized especially in linear systems with time delays.

Sufficient conditions for asymptotic stability of the equilibrium state of the system are
obtained by examination of M-matrices consisting of delay and nondelay terms together
and the M-matrices here has been considered for the quadratic terms rather than the
terms over degree two to watch the stability of the system near the origin.
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In nonlinear time delay systems, the method can be applied to the stability analysis of
large-scale nonlinear systems whose subsystems with time delays are possibly unstable.
If the system could not be well formed like (43) or (46), then we could deal with the
problem using a computer program {3].

(Received January 28, 1991.)
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