
Kybernetika

Ladislav Lukšan; Jan Vlček
Optimization of dynamical systems

Kybernetika, Vol. 32 (1996), No. 5, 465--482

Persistent URL: http://dml.cz/dmlcz/124820

Terms of use:
© Institute of Information Theory and Automation AS CR, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124820
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 32 (1 9 9 6) , N U M B E R 5, P A G E S 4 6 5 - 4 8 2

OPTIMIZATION OF DYNAMICAL SYSTEMS1

LADISLAV L U K Š A N AND J A N V L Č E K

Consider an optimization problem where the objective function is an integral contain­
ing the solution of a system of ordinary differential equations. Suppose we have efficient
optimization methods available as well as efficient methods for initial value problems for
ordinary differential equations. The main purpose of this paper is to show how these
methods can be efficiently applied to a considered problem. First, the general procedures
for the evaluation of gradients and Hessian matrices are described. Furthermore, the new
efficient Gauss-Newton-like approximation of the Hessian matrix is derived for the special
case when the objective function is an integral of squares. This approximation is used for
deriving the Gauss-Newton-like trust region method, with which global and superlinear
convergence properties are proved. Finally several optimization methods are proposed and
computational experiments illustrating their efficiency are shown.

1. I N T R O D U C T I O N

Consider the problem of minimizing the objective function

F(x)= l l fA(y(x,t),t)dt + fT(y(x,t1)) (la)

dy(x,t)
where

d / fs(x,y(x,t),t), y(x,t0) = fi(x) . (lb)

Here x £ IRn is a parameter vector, y : IRn x [Lo,^i] —* J R n s is the solution vector,
F : IRn —> IR is the objective function, / ^ : I R n s x [£o,*i] —• IR is an approximation
function, fT : JRns -> IR is a terminal function, fs : IRn x I R n s x [tQ,ti] -> I R n s

is a state function, // : IRn —• I R n s is an initial function. Suppose that all the
above functions have continuous second order derivatives on X x JR"S x [to, ti] where
X C IRn is a compact set t h a t contains all parameter vectors used in the optimization
process, and t h a t smooth solution of the system of ordinary differential equations
(lb) exists on [<o,^i] whenever x £ X. In this case we can compute derivatives of
both the solution vector y(x,t) and the integral in (la) with respect to the parameter
vector x £ IR n , by changing the order of differentiation, as will be shown in Section 2.

1 T h i s work was supported by the Grant Agency of the Czech Republic under grant 201/93/0429.

466 L. LUKSAN AND J. VLCEK

From a numerical point of view we can replace the problem (1) by

F(x) = FA(x,h) + fT(y(x,h)) (2a)

where

- ^ - - 1 = fs(x, y(x,t),t), y(x,t0) = fj(x) (2b)

and
dFA^,t] = fA(y(x,t),t), FA(x,to) = 0 (2c)

so that the integral in (la) is replaced by an additional differential equation (2c).
The main advantage of this replacement consist in the elimination of all interior
points of the interval [to,^i]- The objective function depends only on the terminal
values y(x,t\) and FA(x,t\). Therefore both (2b) and (2c) can be solved simulta­
neously using efficient numerical methods utilizing large integration steps obtained
by suitable stepsize control.

Suppose we have available efficient optimization methods and efficient methods
for initial value problems of ordinary differential equations. The main purpose of
this paper is to show how these methods can be efficiently applied to dynamical
systems described by (1) or (2). Even if the description (1) or (2) is not the most
general, it contains a broad class of real problems and it can be easily generalized
using the approach proposed in Section 2. Note also that (1) or (2) define only the
objective function. If we have available efficient constrained optimization methods
we can append arbitrary constraints on parameters to (1) or (2).

We confine most of our attention to the special case when the objective function
is an integral of squares (8). This objective function is commonly used as a scalar
criterion for continuous approximation, and it is applicable, for instance, as a tool
for the design of electrical networks or mechanical systems in the time domain.

The paper is organized as follows. In Section 2 we describe procedures for both
the gradient and the Hessian matrix evaluations. These procedures consist in solv­
ing differential equations as augmented and as adjoint (the augmented system is
solved in a forward direction while the adjoint system is solved in a backward di­
rection). Furthermore, we derive a Gauss-Newton-like method that is suitable for
small residual integral of squares problems. Convergence properties of this method
are studied in Section 3. Section 4 contains practical considerations concerning op­
timization methods and methods for initial value problems. Numerical experiments
are reported in Section 5. In these sections we use the notation d/dt and d/dx for
differentiation with respect to t and total differentiation with respect to x, respec­
tively, and the notation d/dx and d/dy for partial differentiation with respect to x
and differentiation with respect to y, respectively.

2. COMPUTATION OF DERIVATIVES

In this section we describe several procedures for computing the gradient and the
Hessian matrix (or its approximation) of the objective function (la). We suppose
that all conditions stated in Section 1 are satisfied so that smooth solutions of both

Optimization of Dynamical Systems 467

(2b) and (2c) exist and their derivatives can be computed by a changing order of
differentiation.

(a) Gradient evaluation using forward integration:

Let u(x,t) = dy(x,t)/dx £ IRn s X n be a matrix with ns rows and n columns.
Differentiating (2) we obtain

9T(x) = УÏOMi) +
дfт(y(x,ti))

дy
i(x,ti) (Зa)

where

du(x,t) dfs(x,y(x,t),t)

dt дy
< *\ , dfs{x,y(x,t),t) dfi(x)

u(x,t) + j, , u(x,t0) = ^ (3b) dx

and
dgA(x,t) _ дfA(y(x,t),t)

dt дy
l(x,ł), firj(æ,ť0) = 0 (Зc)

and where gT(x) = dF(x)/dx and g^(x,t) = dFA(x,t)/dx. Thus we have to solve
the system of (ns + 1) (n + 1) differential equations (2b), (2c) and (3b), (3c) in
the forward direction for simultaneous computation of both the value (2a) and the
gradient (3a) of the objective function.

(b) Gradient evaluation using backward integration:

Let p(t) £ IRns be an arbitrary function and y(x,t) be a solution to the differential
system (2b) so that fs(x,y(x,t),t) — dy(x,t)/dt = 0 for all t £ [t0,^il. Then using
(la) we can write

F(x) = £ (fA(y(x,t),t)+pT(t)hs(x,y(x,t),t)-<^^

and utilizing integration per partes we obtain

F(x) = J1hA(y(x,t),t) + pT(t)fs(x,y(x,t),t)+^^y(x,t)\dt

+pT(t0)y(x,t0) - pT(ti)y(x,t1) + fT(y(x,t1)) .

The last formula can be differentiated with respect to the parameter vector x £ IRn

so that we get

i-ti

'(*) = /
Jto

дfA(y(x,t),t)_ т дfs(x,y(x,t),t) dpт(t)

дy

+ P

т(t)дfs{x>y{xЛt)ìdt
дx

+PT(to)
dfi(x)

dx +

дy

дfт(y(xM))__ тu\

dt

dy(x,t)

дy

dy(x,ti)

468 L. LUKŠAN AND J. VLČEK

Now we can chose the function p(t) in such a way to eliminate terms with dy(x, t)/dt.
If we choose

dp(x,t) _ fdfs(x,y(x,t),t)\T (dfA(y(x,t),t)^T

dt \ dy J \ 9y

p (x , ť l) - ^ / r (y (X ' ť l) r T

dy

then
дfs(x,y(x,t),t) т dfr(x) T(\ f1 T(,\dfs(x,y(x,t),t) T gl(x)= px(x,t) '-^dt + pL(x,t0)

Jt0 ox ax

This result can be summarized in the form

(4a)

/ ~ \ f&fi(x)\
g(x) = gA(x,t0)+ \—j—1 p(x,t0) (5a)

where

dp(x,t) _ fдfs(x,y(x,t),t)\т (дfA(y(x,t),tyт

dt \ dy J ' \ dy

p{x,tl)=ížMÉ^)rT (5b)

and
dgA(x,t) fдfs(x,y(x,t),t)\T „

ďť = 1 Ъ~x J p(>' 9A(X,Һ) = 0 (5C)

(here gA(x,t) is different from gA(x,t) in (3)). Thus we have to solve the system of
(ns + 1) differential equations (2b), (2c) in the forward direction for computation
of the value (2a) and the system of (ns + n) differential equations (5b), (5c) in the
backward direction for computation of the gradient (5a).

(c) Hessian matrix evaluation using forward integration:

Denote v(x,t) = du(x,t)/dx = d2y(x,t)/dx2 £ I R " * * " * " . Differentiating (3) we
obtain

n(\ n t 4 \ . T(4 \ d
2fT(y(x,t1)) dfT(y(x,t1))

G(x) = GA(x,tx) + ul(x,ti) T~2 -u(x,ti) + v(x,ti) (6a)

where

dv(x,t) _ dfs(x,y(x,t),t)

dt ~ dy
v(x,t)

+
д2fs(x,y(x,t),t) д2fs(x,y(x,t),t)

u (x,t) +
dy2 ' dydx

o u(x,t)

d2fs(x,y(x,t),t) d2fs(x,y(x,t),t)
+ TI* -H-5,ť)+ -"2

óxdy dxz

Optimization of Dynamical Systems 469

*.-.)---££- (вь)

j g x (M) _ ? / T f r tx Q2/A(y(g,0,0 , , dfA(y(x,t),t)
dt ~ l ' j 5y2 u ^ . ^ + dy «l*.*J. (6 c)

C M (M O) = 0

and where G(x) = d 2 E(x)/dx 2 and G A (* M) = d 2 /^(x,t)/dx 2 . Thus we have to
solve the system of (ns + 1) (n 2 + n + l) differential equations (2b), (2c) and (3b), (3c)
and (6b), (6c) in the forward direction for simultaneous computation of all the value
(2a) and the gradient (3a) and the Hessian matrix (6a) of the objective function.
Note that we have used a nonstandard matrix notation for tensor quantities: the
symbol "o" means a summation over the last but one (middle) index of a cube
matrix.

(d) Hessian matrix evaluation using backward integration:
Let u(t) 6 IR n s X n be an arbitrary function and p(x,t) be a solution to the differen­

tial system (5b) so that dp(x,t)/dt + (dfs(x,y(x,t),t)/dy)Tp+(dfA(y(x,t),t)/dy)T

= 0. Then using (4) we can write

9

TW = r(pT(-.') j/'(''!(''')'')

Jtc (°x

+ rdpT(-,Q + P T (> I 0 Q M - . » (- . 0 . «) +8h(vj>,o,Q1 ,A i t dt ' дy дy

+p т (x ,ť 0)-T/ 4 \áh(x)
dx

and utilizing integration per partes we obtain

gT(x) =]^X [p^{xtt)
dMt^i)A

+ [pT (, | 0 djs^^t)^ flWl^Ml^)_pT(l|0^dt
L oy dy \ d* J

, T/ 4 \ j/Kg) , dfT(y(x,ti)) . . T , N , .
+ p 1 (x , i 0) — ; h 5 u(-i) - P (x,*o)«(<o) •

ax ay
The last formula can be differentiated with respect to the parameter vector x £ R
so that we get

G,x) _ ftl \ fdfs(x,y(x,t),t)\T dp(x,t)

• £ V! дx) dx

-г, ^ | д21з(х,у(х,г),1) д2?3(х,у(х,1),1) &у(х,1)

дх2 дхду 6.x

470 L. LUKŠAN AND J. VLČEK

, T/,% T T/ 4,(d2fs(x,y(x,t),t)d2fs(x,y(x,t),t)dy(x,t)\]
+ U (t)[P (M H dy^x + W ďx-)\
, TU\ d2fA(y(x,t),t) dy(x,t) fdfs(x,y(x,t),t) f . . T dp(ar,ť)

+ W W oy dar + (% W ()] dx

du(t) \ T dp(x, t) \ ^ + jd//(.r)\ * dp(ar, _) + ^ T ^ d2//^)
d̂ / dr \ dar j dar da;2

. T/, ,d2fT(y(x,t1)) dy(x,t1) T dp(ar, t 0)
+ w (' l } — . v d ^ ~ - u (' o) - d ^ - -

Now we can chose the function u(t) in such a way to eliminate terms with dp(x, t)/dx.
Therefore we choose

du(x,t) dfs(x,y(x,t),t) dfs(x,y(x,t),t) d//(ar)
—-—-- = u(x,t)+ ^ , u(x,t0) = v

d£ oy ox dx

so that u(x,t) = dy(x,t)/dx by (3b). Then

ед -

+ ..*(-, o [P

T(x, t) (ZIsízÉEiM + m?02M u(Xt t)

+^(-,0^,(g,0,<)«.(-,o}ď

+ p T (g | t o) j ! £ M + „Tfr./VrM-...)) u(g[ti)

This result can be summarized in the form

T/ , , d2/7(x-)
C7(ar) = GA(x, t0)+pl(x, t0) ^J > (7a)

where

dGA(x,t) __ T (d2fs(x,y(x,t),t) d2fs(x,y(x,t),t)
— P {X,tJ -h o n , U{X,l) d t V ^ 2 <9аг<9г/

+ ,*(-,.) грТ(;М) (ZžsbteM + ^ (- . r f - , 0 . .) u(g[f)N

~ T , x d2fT(y(x, t\)) , , .
GA(x, h) = uT(x, U) JI^2'

 l)) u(x, h) (7c)

(here GA(x, t) is different from GA(x, t) in (6)). Thus we have to solve the system of
("5 + 1) (n + 1) differential equations (2b), (2c) and (3b), (3c) in the forward direction

Optimization of Dynamical Systems 471

for simultaneous computation of both the value (2a) and the gradient (3a) and the
system of (ns + n2) differential equations (5b), (7c) in the backward direction for
computation of the Hessian matrix (7a).

Equations (7) were derived from (5) using an arbitrary matrix u(t) £ IRn s X n .
Note that the same result can be obtained from (3) using an arbitrary vector p(t) £
IRns.

(e) Hessian matrix approximation using forward integration:

Suppose that the functions /__ : IRns x [t0,ti] —> IR and fa : IRns —• IR have the
special form

fA(y(x,t),t) = \(y(x,t) - z(t))T W(t)(y(x,t) - z(t)) (8a)

so that

./*___.,.),«) = wím.,t)-*(«)), a i / A '? l;' l) ' ') = w(t)
дy ' ' дy

and
1 ^т fт(y(xM)) = ^(У(x,h) - z(tг))1 WMxM) - *(-_)) (8b)

so that

0 / r (g (M i)) _ w , , , , ,. ^ 02fT(y(x,ti)) _
g j -Wx(y(x,ti)-z(ti)), — -Wi

where W(t) G I R n s X n s is a symmetric positive semidefinite matrix and Wi ^ W(t\)
in general. If F(x) —+ 0 then necessarily y(x,t) —> z(t) so that dfA(y(x,t),t)/dy —> 0
and dfT(y(x,t\))/dy —»• 0. After substituting the last assertions into (6) we obtain

G(x) » H (x) = HA(x,ti) + wT(x,ti) Wiu(x,ti) (9a)

and

" 7 ^ = w T (^ - 0 W(0 «(*.*). BA(arf<o) = 0. (9c)

Thus we have to solve the system of (ns + 1) (n + 1) + n 2 differential equations (2b),
(2c) and (3b), (3c) and (9c) in the forward direction for simultaneous computation
of all the value (2a) and the gradient (3a) and the approximation of the Hessian
matrix (9a).

(f) Hessian matrix approximation using backward integration:

Assume that dfA(y(x,t),t)/dy = 0 and dfr(y(x,ti))/dy = 0, as in the previous
case. Then (5b) implies that p(x,t) = 0 for all t £ [^o,^i]- Substituting this solution
into (7), we obtain

G(x)^B(x) = BA(x,t0)

472 L. LUKŠAN AND J. VLČEK

where

A{X,) _ uT(x^W(tju(xt^ BA(x,t\) = uT(x,t\)W\u(x,t\).

Therefore, BA(x,to) = BA(x,t\) + uT(x,t\) W\ u(x,t\) and backward integration
gives the same result as the forward one. Since forward integration can be imple­
mented by a more easier and more efficient way than the backward one, backward
integration is not suitable for Hessian matr ix approximation.

We have derived several procedures for both the gradient and the Hessian matr ix
evaluations. In fact Hessian matrices will not be used in practical implementations
since their evaluations require a great amount of computations. Still, the formu­
las for Hessian matrices allowed us to derive an efficient procedure (9) for their
approximations which leads to efficient Gauss-Newton-like methods.

3. C O N V E R G E N C E P R O P E R T I E S

In this section, we will study convergence properties of Gauss-Newton-like methods
for integral of squares problems t h a t use the matr ix B(x) given by (9) instead of
the Hessian matr ix G(x). The Gauss-Newton-like methods are usually realized in a
trust region framework which leads to good global convergence properties. Assume
a class of methods which can be described by the following algorithmic scheme.

A l g o r i t h m 3 . 1 .

D a t a : 0 < 0\ < 02 < 1 < 7i> 0 < p\ < p2 < 1, 0 < €\ < €2 < 1.

S t e p 1: Choose an initial point XQ 6 lRn and an initial trust region bound
A 0 > 0. Set i := 0.

S t e p 2: Compute the value F,- = F(xi), the gradient gi = g(xi) and the approxi­
mation of the Hessian matr ix H,- = B(xi) by (2), (3) and (9) respectively.
If either E, < E\ or ||<7i|| < Ei then stop.

S t e p 3: Determine the vector di G IRn so that :

d{ = argmin QAd)
||djj<A,

where 1 „ ™
Qi(d)=-dTBid+dTgi

is a local quadratic approximation of the objective function F : IRn —> IR

in a neighborhood of the point £..

S t e p 4: Compute the value F(xi + rf,) by (2) and the ratio pi = (F(xi + di) -
Fi)/Qi(di). If pi < p\ then compute the value /?,-, j3\ < # < j32, by a
quadratic interpolation and set A , + i = /?*||<-*'H- If Pi < pi < Pi then set
A , + i = A,-. If p2 < Pi then set A , + i = max(A,-,71 | |o', | |).

S t e p 5: If pi < 0 then set Xi+\ = xit i := i + 1 and go to Step 3, otherwise set
xi+1 = Xi + di, i := i + 1 and go to Step 2.

Optimization of Dynamical Systems 473

Typical data are ft = 0.05, (32 = 0.75, 71 = 2.0, px = 0.1, p2 = 0.9, ex = 10~12,
e2 = 10"6.

Convergence properties of trust region methods were studied in [7]-[8]. We use
these results together with classical theory of differential equations to prove the
global and superlinear convergence of the Gauss-Newton-like method represented
by Algorithm 3.1. Denote

X = {x £ ET : F(x) < F(x0)}

and assume the following conditions hold

(Al) System (lb) has a unique continuous solution y(x,t) on [t0,ti] for all x G X
and

max | |y(x,ť)|| < K
te[t0,ti]

holds for all x G X.

(A2) F u n c t i o n s ^ *) and z(t) are bounded on [<0,ti],i.e. ||WY*)|| < A'and \\y(x,t)-
z(t)\\ < K, say, on [t0,ti] for all x eX. Also | |Wi| | < K.

(A3) Function fi(x) is Lipschitz continuously differentiable with respect to x on X.
It means that dfi(x)/dx exists on X and

àfi(x2) dfr(xi)

dx
< L\\x2 ~xi\\

for all xi Є X and x2 Є X.

(A4) Function fs(x,y,t) is Lipschitz continuously differentiable with respect to x
and y on X x Y x [<0-<i] where y = {i/e IR n s : ||y|| < K}. It means that
dfs(x,y,t)/dx exists on X and

дfs(x2,y,t) дfs(xi,y,t)

дx дx

дfs(x,y2,t) дfs(x,yi,t)

дз дx

<Щx2~Xl\

< L l | y 2 - y i |

for all x E X, xi G X, x2 G X, y G Y, yi G Y, t/2 G Y and ^ G [̂ 0,̂ 1], and the
same holds for dfs(x, y,t)/dy.

For the sake of simplicity, we use the same constant K in both (Al) and (A2) and
the same constant L in both (A3) and (A4).

Assuming (Al) is very natural since we require, for optimization process, that a
bounded unique solution y(x,t) exists for all x G X. This assumption together
with assumptions (A2)-(A4) imply an existence and continuity of the function
u(x,t) = dy(x,t)/dt which have to satisfy the equation (3b) (see [4]). For sub­
sequent considerations we will need the following lemma (see [4]).

474 L. LUKŠAN AND J. VLČEK

Lemma 3.1. Consider the linear system

dy(t)/dt = A(t)y(t) + b(t), y(to) = y0

with A(t) and b(t) continuous on [to,^i]- Then

\\y(t)\\<(\\y(to)\\+ r | |&(r) | |dr)exp(7 MOOH <h
Jt0 \Jt0

for al l/ e [t0,ti]-

Now we can prove the main results.

T h e o r e m 3.1. Let the assumptions (A1)-(A4) hold. Then Algorithm 3.1 is glob­
ally convergent in the sense that

Uminf||flf(x,)||-=0.
i—.00

P r o o f . We have to prove that the matrix B(x) given by (9) is bounded on X and
that the gradient g(x) given by (3) is Lipschitz continuous on X. These conditions
already imply global convergence of a trust region method as it is proved in [7]- [8].

First we prove boundedness of the matrix B(x). Since Lipschitz continuity on a
compact set imply boundedness, we can assume that | |d//(x)/dx|| < K on X and
\\dfs(x,y,t)/dx\\ < K~, \\dfs(x,y,t)/dy\\ < ~K on X x Y x [t0,ti] respectively (for
the sake of simplicity we use the same constant K as in (Al) and (A2)). If we apply
Lemma 3.1 on the system (3b) we obtain

\\u(x,t)\\ < (K + K(ti -t0))exp(K(ti - t0)) = M

so that by (9) we can write

IIB0OII
/•Í1

< / \\uT(x,t) W(t)u(x,t)\\ dt + \\uT(x,ti) Wi u(x,ti)\\
Jt0

< KM (ti-10) + KM'

Second, we prove Lipschitz continuity of the gradient g(x). From boundedness of
u(x,t) = dy(x,t)/dt on X it follows that ||t/(.C2,i) — w(a?i,<)|| < M||x2 — xi | | which
together with (A4) gives as

дfs(x2,У2,t) дfs(xi,yi,t)

дx дx
<

+

дfs(x2,y2,t) дfs(x2,yi,t)

дx дx

дfs(x2,Уi,t) дfs(xi,yi,t)

дx дx

< £(J|îЛг-yi| | + | | x 2 - a r i | |)

< L(M + l) | | x 2 - x i | |

Optimization of Dynamical Systems 475

as similar inequality

\\dfs(x2,y2,t) dfs(xi,yi,t)

|| dy dy

Using (3) we get

d(u(x2,t) - u(xi,t)) dfs(x2,y2,t)

< L (M - г - l) | | a r 2 - я r i |

(u(x2,t) - u(xi,t))
dt dy

'dfs\

dfs(x2,y2,t) dfs(xi,yi,t)

, , дfs(x2,y2,t) дfs(xi,yi,t) .
+ (Щ Щ) «(«!.*)

+

and

u(x2,tQ) - u(xi,to) =

дx дx

àfi(x2) dfí(xi)

dx dx
Applying Lemma 3.1 on the last system and using the above inequalities together
with boundedness of u(x,t) on X we obtain

\\u(x2,t)-u(xi,t)\\<T(l + (M + \)\ti-U))exv(K(ti-t0^

This together with (A2) and boundedness of u(x,t) on X gives

\\uT(x2,t) W(t) (y(x2, t) - z(t)) - uT(xi, t) W(t) (y(Xl, t) - z(t))\\

< \\uT(x2,t)W(t)(y(x2,t) - y(xi,t))\\

+ \\(u(x2,t) - u(xi,t))T W(t) (y(xi,t) - z(t))\\

< KM\\y(x2,t) - y(xi,t)\\ + K \\u(x2,t) - u(xi,t)

< K(M +KN)\\x2-x1\

so that (3) and (8) imply

\\g(x2) - g(xi)\\ < r\\uT(x2,t)W(t)(y(x2,t)-z(t))
Iío

-uT(xi,t)W(t)(y(xi,t) - z(t))\\dt

+\\uT(x2,ti)Wi(y(x2,ti) - z(t))

-uT(xi,t)Wi(y(xi,ti) - z(ti))\\

< K(M +KN)((ti- t0) + l) | | s 2 - a n d .

and Lipschitz continuity of the gradient g(x) is proved. •

Theorem 3.2. Let {xi}fl0, be a sequence of points generated by Algorithm 3.1
such that Xi —* x* as i —> oo where x* G H n is a point that satisfies a second or­
der sufficient condition for local minimum of the function F(x). Suppose that (Al)

476 L. LUKŠAN AND J. VLČEK

and (A2) hold and continuous and bounded second oder derivatives d2fi(x)/dx2,
d2fs(x,y,t)/dx2, d2fs(x,y,t)/dxdy, d2fs(x,y,t)/dy2 exist for all x from some
neighborhood X* C X of x* £ IRn and for all y 6 Y and t 6 [tQ,ti]. Then, if
F(xi) —>• 0 as i —> oo, the sequence {.ri}^.0 converges superlinearly to x* £ H n in
the sense that

lim " ? W - *.'." = 0.

P r o o f . We have to prove that H(.ri) —> C7(.ri) when £i —> oo. This condition
together with the positive definiteness of B(x*) already imply superlinear conver­
gence of a trust region method as it is proved in [7].

Continuity and boundedness of second order derivatives imply continuity and
boundedness of the function v(x,t) = du(x,t)/dx on X* x [to,^i] (it follows from
(6b) using Lemma 3.1). Therefore we can write ||u(.Ci,i)|| < C for all t 6 [io,^i]
whenever Xi 6 X*. Using this fact together with (6) and (9) we get

\\G(xi) - B(xi)\\ < I ' \\(y(xi,t) - z(t))TW(t)v(xi,t)\\ dt
Jt0

M\(y(^,ti) - z(h))T wlv(xi,t1)\\

< CK1/2 I l \\Wll2(t) (y(xi,t) - z(t))\\ dt
Jt0

+CKl/2\\wl/2(y(xi,t1)-z(t1))\\.

But from (la) and (8) we obtain

2F(xi) = I (y(xi,t)-z(t))TW(t)(y(xi,t)-z(t))dt
•It0

+(y(z .,*i) - ^(*i)) T Wi (y(xi,h) - z(n))

\\W^2(t) (y(xi,t) - z(t))\\2 dt + \\W}/2 (y(xiit1) - z(h))\\2

to

so that F(xi) -> 0 only if Wl/2(t) (y(xi,t) - z(t)) —> 0 in the L2 norm and
1/9

W1 (y(xi,t\) — z(^i)) —» 0 in the Euclidean norm. This together with estimation
of ||C7(.ri) — H(z;)|| proves that B(xi) —> G(xi) as i —» oo (since L\ norm of bounded
function on bounded interval is equivalent with the L2 norm). •

We have proved that Gauss-Newton-like method represented by Algorithm 3.1
converges superlinearly if it is used for zero residual problem. In the case of a large
residuum the superlinear convergence is usually lost. Therefore it is advantageous to
combine Gauss-Newton-like method with the BFGS quasi-Newton method. A very
effective possibility is proposed in [2]. It consists in replacing Step 2 of Algorithm 3.1
by a sequence of the following two steps.

Optimization of Dynamical Systems AJJ

Step 2a: If i = 0 or F,\-i - F{ > n1Fi_1 then compute the value F,- = F(_,) ,
the gradient gt = g(xf) and the symmetric positive semidefinite matrix
Bi = B(xi) by (2), (3) and (9) respectively. If either F,- < t\ or ||^-|| < e2

then stop.

Step 2b: If i > 0 and F»'_i — F,- < 7/iE,-_i then compute the value F,- = F(x,), and
the gradient gi = #(_,) by (2) and (3) respectively. If either F,- < £i or
11*7.11 < ^2 then stop. Otherwise set _,_! = a?,- - „,•_!, J/,-_J = gr,- - ^ _ i
and compute

B-- B- _-_i-_-i £»-Ick-1(-3«-i<*.-•-i)T

dj_xyi^x dJ_xBi-idi^i

A typical value is 771 = 10~4. We denote such a combination as GN+QN method.
A more detailed description of GN+QN-like methods is given in [2] and [6].

4. PRACTICAL CONSIDERATIONS

First we would note that forward integration leads to larger systems of differential
equations then a backward one. On the other hand backward integration has this
unpleasant feature: the adjoint system requires the solution of the basic system (2b)
which is usually obtained by forward integration. There are two possibilities for
proceeding. The first possibility, we denote as Bl, consists in additional solution of
the basic system in the backward direction

dy(x,t) N / . \ • 1 i- 1 •
— i j — - = fs(x,y(x,t),t), y(x,ti) —given by forward integration.

dt

This system is added to the system (5b) and (5c) so that the resulting system
contains 2ns + n differential equations. When the basic system (2b) is sensitive
to initial values and, at the same time, the value y(x,ti) computed by forward
integration is affected by unneglected global truncation error then we can lose some
precision and also stability. However this situation never appeared in our numerical
experiments.

The second possibility, we denote as B2, consists in storing the solution to the
basic system in all mesh points during forward integration. Backward integration
then uses the same mesh points as a forward one so that the solution of the basic
system is always available. If we denote by n^ the number of mesh points used in
forward integration, we have to store nAns additional values. Since mesh points are
given automatically by a stepsize control (based on local truncation error estimation)
their number could be too large. Moreover, since the adjoint system (5b) used
in backward integration is different from the basic system (2b), the mesh points
obtained during forward integration can be unsuitable for backward integration.
Also utilizing uniformly distributed mesh points may not be suitable since solution
of the basic system can vary quickly in some parts of the integration interval so that
uniformly distributed mesh points can be insufficient in this case.

478 L. LUKSAN AND J. VLČEK

The following table summarizes the requirements for individual procedures.

Table 1. Requirements of individual methods.

method гealization F гealization Bl гealization B2

QN(o)
Nf = ns + 1
Nь = 0
Ne=n+1
Ns =0

iггelevant iггelevant

QN(1)
Nf = (ns + l)(n + l)
лtь = o
Ne = 1
Ns = 0

Nf = n s + 1
Nь = 2ns + n 2

Лte = 1
N4 = 0

Nf = n s + 1
Nь = ns + n
Ne = l
N« = nAns

MN(1)
Nf = (ns + l)(n + l)
/vь = o
Лte = n + 1
Лts = 0

Nf = n s + 1
Лtь = 2 n s + n 2

Л!e = n + 1
N. = 0

Nf = ns + 1
Nь = ns + n
Ne=n+1
Ns =nAns

MN(2)
Nf = (ns + l) (n 2 + n + l)
лt6 = o
Лte = l
Na = 0

Nf = (ns + l)(n + l)
Nь = ns{n+2) + n2

Ne = 1
Ns =0

Nf = (ns + l) (n + l)
Nь = ns + n2

Ne = 1
Ns = nA{ns + l)n

GN(1)
Nf = (ns + l) (n + l) + n 2

Лtb = 0
Лte = 1
N. = 0

unsuitable unsuitable

Rows of Table 1 correspond to selected optimization methods:

QN(0) — quasi-Newton method with numerical differentiation,

QN(1) — quasi-Newton method with gradients computed by integration,

MN(1) — modified Newton method with numerical differentiation,

MN(2) — modified Newton method with Hessian matrices computed

by integration,

GN(1) — Gauss-Newton method with gradients computed by integration.

The methods QN(0), QN(1), MN(1), MN(2) can be used in the general case while

the method GN(1) is applicable only in the case of integral of squares. Columns of

Table 1 correspond to various realizations of evaluation:

F — forward integration,

B l — backward integration with recomputing the basic solution,

B2 — backward integration with storing the basic solution.

Table 1 contains four numbers:

Nj — number of equations in the forward system,

Nb — number of equations in the backward system,

Ne — number of repeated evaluations during numerical differentiation,

Ns — number of additional stored values.

From Table 1, we can deduce, for example, that the total number of solved differ­

ential equations, which is equal (Nf + Nb)Ne, is the same for both the QN(0)/F and

Optimization of Dynamical Systems 479

Q N (1) / F methods while the total number of stored values, which is approximately
equal 15max(N / ,Nf t) + N, if we use the D 0 P R I 8 integration procedure, is much
less for the Q N (0) / F method. This observation demonstrates certain advantages to
methods tha t use numerical differentiation.

Now let us concentrate our attention on numerical solution to differential systems.
There are two possibilities: the basic system (2b) can be either stiff or nonstiff. We
confine our at tention only to the nonstiff systems. In the nonstiff case we should use
high order explicit methods which give solution with high precision and utilize suffi­
ciently large steps. In [3] the Dormand-Prince methods D 0 P R I 5 and D 0 P R I 8 were
recommended which are the Runge-Kut ta methods of 5 and 8 order respectively,
with automatic stepsize control. These methods require 9TIE and 15njs of storage
space respectively where TIE is a number of differential equations. All numerical
experiments proposed in the next section were made using these methods.

Finally let us make several comments on optimization methods. Consider the
special case of the sum of squares (8). If the problem has a small residuum, which
means tha t the optimal value of F(x) is small, then we can use the Gauss-Newton
like method (9). In the opposite case the Gauss-Newton-like method can lose a
convergence so tha t quasi-Newton methods can be more efficient. Another possi­
bility is using the hybrid G N + Q N method as described in Section 3. This method
has usually good convergence properties for both small and large residual problems.
Experience with all GN, QN and G N + Q N methods is proposed in the next section.

At the end of this section, we would like to show a connection between our work
and so-called automatic differentiation. Automatic differentiation is based on a set
of highly structured explicit equations, generally nonlinear, which correspond to
elementary functions and algebraic operations. The structure of these equations is
determined by the computational graph, which defines the resulting function from
elementary functions and algebraic operations. We want to compute derivatives of
the resulting function, knowing explicitly the derivatives of elementary functions and
algebraic operations; see [5]. This problem can be solved using an implicit function
theorem. There are two possibilities how the implicit function theorem can be
interpreted: direct elimination, which leads to so-called forward accumulation, and
the Lagrange multiplier approach, which leads to so-called backward accumulation;
see [1].

A similar approach can be applied to preliminarily discretized dynamical sys­
tems, which are also described by a set of explicit nonlinear equations. The com­
putat ional graph is now given by a discretization method (the Euler method for
instance), and the implicit function theorem gives two possible procedures: forward
integration and backward integration. This approach, often used for optimization
of dynamical systems, has one disadvantage: preliminary discretization usually does
not allow us to obtain a minimizer of the original continuous problem with a re­
quired precision. Therefore, we used a slightly different approach; we consistently
use a continuous formulation together with principles from calculus of variations. In
such a way, we obtain differential equations, which allow us to compute resulting
function values, together with gradients and Hessian matrices, with an arbitrary
precision. This precision is influenced by the selected numerical method, i.e., by

480 L. LUKŠAN AND J. VLČEK

the choice of an integration formula along with a reasonable strategy of stepsize
control. Mesh points, characterizing discretization method or computational graph,
are automatically generated during the integration process, according to the local
truncation error. Therefore, computational graphs of forward and backward in­
tegration, respectively, may be different from each other. Moreover, higher order
integration formulas, such as DOPRI5 and DOPRI8, use additional intermediate
points, which are not distributed symetrically; they are different for both forward
and backward traversal. Therefore, gradients and Hessian matrices, computed by
backward integration, are not related to the function values, computed by forward
integration, even if both the mesh points and the integration formula are the same.
These considerations give explanation for the difference between the strategies Bl
and B2 (see Table 1). Mesh points in the case Bl are selected from the systems (2)
and (5) together, while mesh points in the case B2 are derived from the system (2)
only. This fact can cause insufficient precision for the case B2, when a higher order
integration formula is used: the stepsizes determined from the system (2) can be too
large for the system (5). This phenomenon was proved by our computational expe­
rience; see Tables 2a and 2b for DOPRI8. The continuous approach has a further
advantage: an arbitrary integration formula, not only explicit, can be used. This
allows us to use implicit integration formulas for stiff dynamical systems.

5. NUMERICAL EXPERIMENTS

In this section we demonstrate properties of several optimization methods with var­
ious procedures for evaluation of gradients and approximation of Hessian matrices.
We use the following test problems:

Problem A:

Consider the objective function

л l ҙ

•I0 . = i

F(x)= / У>.(ť)-г.(ť))2dť

where

dyi(i)/d- = -xm(t) + x2y2(t), yi(0) = 2
dy2(t)/dt = -xlV2(t) + x2y3(t), y2(0) = 1
dy3(t)/dt = -xiy3(t) + x3y2(t), y3(0) = - 1

and Zi(t) = (2-K-* 2 /2)exp(-2i) , z2(t) = (1 -t) exp(-2t) and z3(t) = -exp(-2t).
These functions are solutions to the given differential system so that we have a zero
residual problem. The starting point is xQ = 0.

Problem B:

Consider the same objective function and the same differential system as in Prob­
lem A, but now zi(t) = 2(1 — t), z2(t) = (1 — t) and z3(t) = (t — 1). These functions

Optimization of Dynamical Systems 481

are not solutions to the given differential system so that we have a nonzero residual
problem. The starting point is XQ = 0.

P r o b l e m C:

Consider the objective function

F(x) = ((yi(l)-l)2 + y2(l))/2

where
dVl(t)/dt = y2(t), yi(0) = ~i

dya(t)/d* = +0.64yi(E) exp(y3(t)/(l + 0.05y3(0), y2(-) = 0

dij3(t)/dt = yA(t), y3(0) = x2

dy4(t)/dt = -2.56yi(Oexp(y 3(0/(1 + 0.05y3(0) l y 4 (0 = 0.

This problem is a reformulation of two point boundary value problem arising in
chemical kinetics. It is of course a zero residual problem. The starting point is
XQ = 0.

We use these problems for demonstrating properties of the methods QN(0),
QN(1)/F, QN(1)/B1, QN(1)/B2, GN(1) described in the previous section and also
the hybrid method GN(1)+QN(1) based on ideas proposed in [2]. Result of numeri­
cal experiments are listed in three tables. Each table corresponds to one problem.
Rows of tables correspond to individual methods and columns corresponds to dif­
ferent solvers (DOPRI8 and DOPRI5). Each table contains as numbers n;, nj, ng

(n{ is a number of iterations, nj is a number of function evaluations, ng is a number
of gradient evaluations) as final values |E | , ||y|| obtained by the iterative process as
consumed computational time.

Table 2a. Results for problem A.

DOPRІ8 - pгecision 10~ 9 DOPRІ5 - pгecision 10" -9

Method ПІ — Пf — Пg | E | — | Ы | time Пi — П f — Пg IEI-IЫI time
QN(0) 18-76-0 1 0 - 1 2 - 1 0 _ 6 2.47 19-80-0 ю - y - 10~ b 5.16
QN(1)/F 14-15-15 1 0 - 1 0 - 1 0 - 6 1.54 14-15-15 ю - 1 0 - 1 0 _ 6 2.80
QN(1)/B1 14-15-15 1 0 - 1 0 - Ю " 6 1.38 14-15-15 1 0 - 9 - 1 0 - 6 2.64
QN(1)/B2 insufficient pгecision 14-15-15 ю-9 - ю - 6 2.81
GN(1) 5-11-6 10~ 1 4 - 1 0 - 6 0.94 5-11-6 ю - 9 - 1 0 - 8 1.75
GN(1)+QN(1) 5-11-6 1 0 " 1 4 - 1 0 - 6 0.98 5-11-6 1 0 - 9 - ю - 8 1.76

Table 2b. Results for problem B.

DOPRІ8 -- pгecision 10 ь DOPRІ5 - precision 10 -9

Method Пi — Пf — Пg IEI-IЫI time П, — Пf — Пg I E I - I Ы I time
QN(0) 18-76-0 ю - 1 - ю - 0 1.97 18-76-0 1 0 - 1 - 1 0 - ь 3.02
QN(1)/F 14-15-15 Ю" 1- ю - 6 1.38 14-15-15 ю - 1 - ю - 6 2.14
QN(1)/B1 14-15-15 Ю" 1- ю - 6 1.10 14-15-15 1 0 - 1 - 1 0 - 6 1.81
QN(1)/B2 27-68-68 ю - 1 - ю - 5 4.34 14-15-15 ю - 1 - ю - 6 1.76
GN(1) 7-15-8 ю - 1 - ю - 6 1.05 7-15-8 1 0 - 1 - 1 0 - 6 1.71
GN(1)+QN(1) 5-11-6 1 0 _ 1 - ю - 6 0.83 5-11-6 1 0 - 1 - 1 0 - 6 1.26

482 L. LUKŠAN AND J. VLČEK

Table 2c. Results for problem C.

D 0 P R І 8 - pгecision 10 9 DOPRI5 - pгecision 10 9

Method Пi — Пf — Пg IЛ-IЫI time П, — Пf — Пg IЛ-IЫI time
QN(O) 35-130-0 ю - 1 5 - 1 0 - ь 4.56 35-130-0 1 0 - 1 5 - 1 0 - ь 8.07
Q N (l) / F 16-22-22 ю - 1 4 - ю - 5 2.72 16-22-22 1 0 - 1 4 - 1 0 - 5 5.44
QN(1)/B1 16-22-22 ю - 1 4 - ю - 5 3.02 16-22-22 ю - 1 4 - ю - 5 5.33
QN(1)/B2 18-23-23 1 0 - 1 3 - ю - 5 2.85 16-22-22 ю - 1 3 - ю - 5 4.56
GN(1) 9-20-10 10--4- 1 0 - 1 0 1.65 9-20-10 ю - 2 4 - ю - 1 0 2.96
G N (l) + Q N (l) 9-20-10 ю - 2 4 - ю-10 1.76 9-20-10 l O " 2 4 - ю - 1 0

2.96

The above tables show that integration method of higher order is more efficient, if

expressed by consumed computational time, than lower order one, even if it requires

a greater number of right hand side evaluations in each integration step. The further

observation if t h a t the Gauss-Newton-like method GN(1) is very efficient, especially

if it is used for zero residual problems and that hybrid method GN(1)+QN(1) keeps

this property also for nonzero residual problems. The most important implication

of the above tables is tha t methods for optimization of dynamical systems based

on higher order integration routines are able to find a solution with great precision

(gradient can be computed with precision about 10~ 6).

(Received July 27, 1995.)

REFERENCES

1] Y. G. Evtushenko: Automatic differentiation viewed from optimal control theory. In:
Automatic Differentiation of Algorithms: Theory, Implementation, and Application
(A. Griewank and G. F. Corliss, eds.), SIAM, Philadelphia 1991, pp. 25-30.

2] R. Fletcher, and C. Xu: Hybrid methods for nonlinear least squares. IMA J. Numer.
Anal. 7(1987), 371-389.
E. Harier, S. P. Norsett and G. Wanner: Solving Ordinary Differential Equations I,
Nonstiff Problems. Springer Verlag, Berlin 1987.

4] P. Hartman: Ordinary Differential Equations. John Wiley &; Sons, New York 1964.
5] A. Griewank: On automatic differentiation. In: Mathematical Programming: Recent

Development and Application (M. Iri and K. Tanabe, eds.), Kluwer Academic Pub­
lishers, London 1989, pp. 83-108.

6] L. Luksan: Hybrid methods for large sparse nonlinear least squares. J. Optim. Theory
Appl. 89 (1996), 575-595.

7] M.J .D. Powell: Convergence properties of a class of minimization algorithms. In:
Nonlinear Programming 2 (O.L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.),
Academic Press, London 1975, pp. 1-27.

8] M . J . D . Powell: On the global convergence of trust region algorithms for unconstrained
minimization. Math. Programming 29 (1984), 297-303.

Ing. Ladislav Lukšan, DrSc, RNDr. Jan Vlček, CSc, Ústav informatiky a výpočetní
techniky AV CR (Institute of Computer Science - Academy of Sciences of the Czech
Republic), Pod vodárenskou věží 2, 18207 Praha 8. Czech Republic

		webmaster@dml.cz
	2012-06-06T06:53:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

