
Kybernetika

Emil Pelikán
Spectral analysis of ARMA processes by Prony's method

Kybernetika, Vol. 20 (1984), No. 4, 322--328

Persistent URL: http://dml.cz/dmlcz/124829

Terms of use:
© Institute of Information Theory and Automation AS CR, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124829
http://project.dml.cz


K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 4 

SPECTRAL ANALYSIS OF ARMA PROCESSES 
BY PRONY'S METHOD 

EMIL PELIKÁN 

In this paper a method based on the ARMA process autocovariance coefficients fitting to the 
exponential model is presented. It is shown that the parameters of the exponential model can be 
estimated by the extended Prony's algorithm which requires solving two systems of linear equa
tions and usual methods for finding polynomial roots. Futhermore, it is shown that the spectral 
density of ARMA process can be computed directly from the parameters of the exponential model. 
Two numerical examples demonstrate that the presented method can give good spectral estima
tions even in the cases where classical methods based on the estimates of the covariance coefficients 
give no results. 

1. INTRODUCTION 

We shall consider an ARMA process defined by 

p i 

(1) Z fljXr-y = £ bket-k, 
j=0 fc=0 

where t = ... —1,0,1,..., a0, ax, ..., ap are real autoregressive parameters (a0 = 1, 

ap =£ 0), b0, bx, ••-,bq are moving average parameters (b0 = 1, b9 -* 0), {e„ t = 

= . . . — 1, 0, 1,...} are independent random variables with zero mean and the 

variance E (e2) = a2 > 0, p and q are integer parameters. Usually we suppose that 

the polynomials 

(2) A(z) = faJz'>-;, 
j = 0 

(3) B(z) = ibkz«-k 

k = 0 

have all their zeros inside the unit circle. Without any substantial loss of generality 

we shall further suppose that the polynomials A(z) and B(z) have neither identical 
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nor multiple roots, and that p > q. The spectral density of the ARMA process is 

(4) JK) 2K\A(eiX)\2' 

where — n < X = n. Obviously/( — A) = /(A). Let c(l) = £(xtxt-{) be autocovariance 
coefficients of the ARMA process (l), where c(— I) = c(l), I = 0, 1, . . . . From (l) 
it can be easily derived that (see [ l ]) 

(5) c(q), c(q - 1), . . . , c(q - p + 1) 
c(q + í), c(q),...,c(q- p + 2) 

c(q + p - 1), c(q + p - 2), ..., c(q) 

c(q + 1) 
c(q + 2) 

c(q + p) 

Thus we can obtain autoregressive parameters by solving the system of linear equa
tions with the Toeplitz matrix (5). If we know the parameters a,, a2,..., ap, we can 
define the process {yt, t = . . . — 1, 0 ,1 , . . .} by 

(6) 

From (l) we get 

(?) 

yt = £ ajxt-j. 
j = o 

yt = Y bke,-k • 

Thus the process yt is an MA process (Moving Average process). Putting cy(l) = 
= E(ytyt-,) we can easily get 

,a , ,A p 2 £ '*>A + 1 for O^lSq 
(8) cy(l) = \ t=o 

(0 for I > q . 

Classical identification of ARMA parameters from the autocovariance coefficients 
is based on solving equations (5) and (8) where the autocovariance coefficients are 
replaced by their estimates computed as 

(9) 

and 

(10) 

t(l) = 
N - l ( " 

У > t x ( + i for (5) 

m = N - p - l ,= :1 

N-p-l 

Ż Уt+pУt+p+i for 

where I = 0,1, ... L - 1, L = N, {x„ t = 1,2, ... N} is the given realization of the 
process (l). Nonlinear system of equations (8) can be solved, for example, by Wilson's 
method [2]. Spectral analysis is finished by substitution of the obtained parameters 
into theoretical relation (4) for the spectral density. 
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2. SPECTRAL ANALYSIS BY PRONY'S METHOD 

We shall start from the classical definition of the spectral density of the stationary 
process 

(11) / ( A ) - i - + f c(0e-u<, 
2n ( = -» 

where — n < X ̂  jr. Autocovariance coefficients can be expressed by the relation 

(12) c(0= | + V(A)e u ' dA. 

Substituting (4) into (12) we have 

(„) c(l),r^(e")j' »,,u.£i| MM!)2,-.d, 
V ' J-.2-HOI2 2nifM,tA(z)A(llz) 

where z = eu. 

Let us put 
A,(z) = zM(l/z) = £ fl,z^ 

j = 0 

(14) ^ ( Z ) = ^ - ) = P Z ^ - i ) z - - 1 

dz j = o 

Bt(z) = Z*B(l/z) = £ bkz
k . 

t = o 
Then 

(15) <l) = fl B^~f\^-q-1^-
2ra J|Z| = iA(z)Ai(z) 

If we suppose that the polynomials A(z) and B(z) have neither identical nor multiple 
roots and that p > q, only zeros zm of A(z) contribute to the contour integral and 
thus 

(«) ^"•ifH'tU"-' 
™ = i A-2(zm) A^Zn) 

where / = 0, 1, ... . Relation (16) can be rewritten by 
(17) <l) = f dmzl 

m = 1 

where dm, m = 1, 2,.. . . p are complex parameters and zm, m = 1, 2, ..., p are the 
roots of A(z). By the backward substitution (17) into (11) we get 

(18) f(X) = — Ydm A ~ Z") . 
2 7 ! ^ ! m ( l - z m e u ) ( l - z m e~ u ) 
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If we know the parameters d„„ zm, m — 1, 2 , . . . , p of the exponential model (17), 
the spectral density can be calculated from the relation (18). 

Now we consider the problem of the identification of parameters of the exponential 
model from the estimates of autocovariance coefficients £(l), I = 0 , 1 , . . . . L — 1 
by extended Prony's method (see [3]). It can be easily shown that 

(19) t aj c(t -j) = 0 
j = 0 

where t = p, p + 1, ... . Thus the parameters at, ...,ap can be obtained from the 
autocovariance coefficients by solving the system of linear equations (l9).After 
finding the roots of A(z), the parameters dx, d2, ...,dp can be obtained by solving 
the system of linear equations (17). In practical situations we have only estimates 
c(l), I = 0,1, ••., L- 1 and therefore we shall minimize 

L-l 

г ř=ŁЧč(t-Л> 
;=o 

I a , ( I č ( í - / ) É ( t - k ) ) = 0 
j = 0 t=p 

(20) 

where 

(21) 

Thus we solve the system of linear equations 

(22) 

where k = 1, 2,.. ., p. The parameters jf., •••, dp can be obtained by minimizing 

(23) i W ) - i d,ymy, 
1=0 m=1 

which leads to the solution of the system of linear equations 

(24) d = ( # H 0 ) - 1 <PH8 

where 

dT = (du d2,..., dp), P = (e(o),e(i),.. ., C(L- i ) ) , 
H denotes complex conjugative transpose and # is the L x p matrix 

(25) [I, 1, . . . , 1 
ф = Zl, z2, 

If Vt,j is the element of matrix ^ H $ which is in the fcth row and in the Zth column, 
then 

z * z , - l 

Relation (26) reduces the computational burden of (24). 

(26) Уk.i 
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3. NUMERICAL RESULTS 

The methods presented in this paper was applied to the first N = 100 values of 

realizations of two ARMA processes which are represented in Fig. 1 and Fig. 4. 

The sequence {et, t — ... — 1, 0, 1,...} was chosen as an uncorrelated Gaussian ran

dom sequence with E(et) = 0 and E(ef) = 1. Theoretical spectral densities of the given 

Fig. 2. 

a . i • . 2 a. 3 
FREQUENCY C m 

True spectrum of the ARMA 

process from Fig. 1. 

Fig. 3. Spectral estimate by Prony's 

method of the ARMA process from 

Fig. 1. 

Fig. 1. A realization of the ARMA pro

cess with parameters p = 4, q = 3, at = 

= -0-874, a2= 1-728, a3 = - 0-677, 

aA = 0-625, bt = 0-327, b2 = 0-524, 

b, = 0-722. 

D. 2 D. 3 O. 4 
FREQUENCY ( I n H i 5 

Table 1. 

m am ы fm Am <Pm 

1 -0-945 0-862 0-237 0-990 0160 
2 1-682 0-862 -0-237 0-990 - 0 1 6 0 
3 -0-714 0-907 0-177 1-549 -0-073 

4 0-613 0-907 -0-177 1-549 0073 
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two processes are in Fig. 2 and Fig. 5 (the horizontal axis corresponds to the frequency 
/ = Xj2n). First L = 20 autocovariance coefficients were calculated according to (9). 
The parameters ax = -0-505, a2 = 3-199, a3 = -1-137, a4 = 1-770 for the first 
ARM A process were obtained as a solution of the Toeplitz system (5). In this case 
A(z) has two roots outside the unit circle and the classical method cannot be used. 
In Table 1 the parameters obtained by Prony's method for the first ARMA process 

Fig. 4. A realization of the ARMA pro
cess with parameters p = 2, q = 1, Uj = 

= -0-556, o2 = 0-810, />t = 0-800. 

• . 1 • . 2 • . 3 • . 4 
FREQUENCY ( I n H»3 

Fig. 5. True spectrum of the ARMA 
process from Fig. 4. 

I 
K 
D 

Fig. 6. Spectral estimate by Prony's Z 

method of the ARMA process from a 

Fig. 4. 
• . 2 • . 3 • . 4 

FREQUENCY ( i n H-5 

are presented. The parameters am were obtained by solving the linear system (22), 
the parameters z,„ are the roots of A(z) and zm = |zm| ei2*-fm, dm = Am e1*""1, m = 
= 1, 2, 3, 4. The spectral density calculated by (13) is in Fig. 3. 

By solving the Toeplitz system (5) for the second ARMA process we obtained the 
parameters ax = -0-559, a2 = 0-878 and by (10) we obtained cy(0) = 1-754, 
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cy(i) = 0-912. But for these values of autocovariance coefficients the system (8) 
has no real solution (see, for example, [4]). In Table 2 the parameters obtained by 
Prony's method for the second ARM A process are presented. The spectral density 
calculated by (13) is in Fig. 6. 

Í 7 m \*m\ f« Am 4>m 

1 
2 

-0-561 
0-863 

0-929 
0-929 

0-201 
-0-201 

5-079 
5-079 

-0-082 
0-082 

4. DISCUSSION 

Numerical results clearly indicate that our method can give good spectral estimates 
even if a classical method cannot be used. This is caused by using all L autocovariance 
coefficients in the calculation of parameters and by using a relatively simple numerical 
algorithm. Finally we can mention some disadvantages of our method: Difficulties with 
the determination of the integer parameter p, the restricting condition p > q and 
the production a negative spectral density in some cases. 

(Received August 29, 1983.) 
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