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KYBERNETIKA — VOLUME 26 (1990), NUMBER 6

ON THE CONVERGENCE RATE OF EMPIRICAL
ESTIMATES IN CHANCE CONSTRAINED
STOCHASTIC PROGRAMMING

VLASTA KANKOVA

The chance constrained stochastic programming problems with unknown probability laws
were discussed e. g. in [9], [11]. In these papers empirical distribution functions were used to get
some estimates on the optimal value and the optimal solution. In particular, some sufficient
conditions for the consistency of the estimates on the optimal value were introduced in [9] and
in [11] convergence rate of estimates on the optimal solution in a rather special case was studied.

In this paper we present some results on the optimal value estimates under rather general
conditions including also some type of stochastic dependent samples. The paper employs the
methods used in [7], [8], [9].

1. INTRODUCTION

Let (@, &, P) be a probability space,

¢ = {w) = [¢4(w), ..., &(w)] be an I-dimensional random vector defined on
(@, &, P),

F(z) be the distribution function of the random vector &(w),

& = Mw) = [€i(w), ..., &(w)] be a sequence of random vectors such that for
every k = 1,2, ... the random vector &*(w) has the same distribution function as
the random vector &(w),

fi(x),i=1,2,...,1 be a real valued continuous function defined on E, (E,, n =1
denotes an n-dimensional Euclidean space), and

f(x) = [fi(x), s filx)]
Let, further, g(x, z) be a real-valued, continuous function defined on E, x E,.
If we define the function U,(z, w) = Uy(z), Fy(z, ©) = Fy(2), Z = [z4, ..., z,] € E,,
weQ, k=12,..,.NJN =12, ...by

Uz, 0) =1 o) <z, forall j=1,2,..,1,

= 0< &(w) = z; foratleastoneje{l,2,...,1},

% Uiz, o).

1
Fylz, w) = —
Wz, ©) N2
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then we can define the sets Z(x), X(«), Xy(a) = Xp(o, @), N=1,2,...,x€E],
in the following way

Z(x) ={zeEf:z=(zy,e02z): filx) S z,i=1,2,..,1};. A

X(«) ={xeE:P[Z(x)] 2 «}, for ae0,1),

X(«) =Xx(1) for a>1,

X(x) = X(0) for a <O,

Xy(@) = Xp(o, 0) = {x € Ejf: P\[Z(x)] 2 «} , for «e<(0,1),
where P[Z(x)] = P{w: &(w) € Z(x)}, Py[+] = Py{+,w} is the empirical prob-

ability measure corresponding to the distribution function Fy, E; = {x€ E,: x =

= (X4, .0 X):x; 20,0 = 1,2,...,n).
Denoting by Eand Ey, N = 1, 2, ..., the theoretical and the empirical mathematical
expectation, respectively, it is easy to see that

inf Ey g(x, &(0)) ¢))
Xn(a) N

estimates the theoretical value
inf Eg(x, &(w)) . 2
X(a)

Remark. It can generally happen that some symbols in (1) and (2) are not meaning-
ful. However, this situation cannot appear under the assumptions considered in this
paper.

Some sufficient assumptions under which (1) is a consistent estimate of (2) are
presented in [9]. The present paper goes deeper in this direction. Namely, we shall
study the convergence rate. In particular, we shall try to find an upper bound on
the following probabilities

P{w: | inf Eyg(x, &(w)) — inf Eg(x, &(w))| > 1},
Xn(a) X(a)

Plow: X(a + 1) = Xy(2) = X(x — 1)} )
teE;,, t>0, N=1,2,....

These results generalize some of the author’s previous results for stochastic program-
ming problems in which the optimum is sought with respect to the deterministic
constraints only (cf. [7], [8]). We restrict our consideration to the special (however
from the practical point of view important enough) case.

Leta, 8 > 0, a ¢ (0, 1) be arbitrary. We make the following assumptions:

i) fx),i=1,2,...,1 are real valued, continuous function on E; such that

a) f(0)=0, i=12..,1, O€E,,
b) there exists a constant y, > Osuch that

16 = £6) 2 1 3 (55 = %)
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for every x = (xy,...,x,), x" =(x},....,%,), x 2 x' componentwise,
i=12..,Lxx eE};

c) there exists a constant y, > 0 such that
Ifi(x) —fi(x')| < yofx - x'“

for i =1,2,...,1x,x" €X(a 25), x <x' componentwise. X(, ) is
defined by the following relations

X(x, 8) = {x = x; + x5, x, € X(«), x, € B()} (4)

where B(8) denotes the é-surrounding of 0 € E,. ||+ |denotes the Euclidean norm
in E,.

ii) &(w) fulfils the conditions

a) the probability measure of the random vector &(w) is absolutely continuous
with respect to the Lebesgue measure in E;,. We denote by h(y) the prob-
ability density corresponding to the distribution function F(+) of the random
vector &(w).

b) there exists a real number ¢;, j = 1,2,...,1 such that ¢; z 0 and that

Plow: {(w) e ﬂ(O ey =1,
c) there exists 92 > 0, 3, € E; such that
h(z) <9, forall zeE/,

d) there exists a constant 3, > 0 such that
1
3, = h(z) forevery ze[][<0,¢;>.
j=1

Remark. It is easy to see that under these assumptions the sets X() for « € (0, 1)
are compact.

2. SOME AUXILIARY DEFINITIONS

The Hausdorff distance between two subsets in E, is defined in the following way:

Definition 1. If X. X' < E,, n = 1 are two non-empty sets then the Hausdorff
distance of these sets 4,(X’, X") is defined by

4,(x, X") = max [6 (X’ X”) 3(X", XN,
5(X' Xr/

x‘eX’ x'eX

(we usually omit the subscripts in the symbols 4,, 6,,).

Let, further, {#*};> _, be an I-dimensional strong stationary random sequence
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defined on (2, &, P), #(—, a) be the o-algebra given by ..., n*" ', 1%, B(b, + o)
be the o-algebra given by #°, n®*1, ... (a, b are integers).

If N denotes the set of natural numbers, &(+) a non-negative real-valued function
defined on N then we can define the ¢-mixing random sequence by the following
definition.

Definition 2. We say that the strong stationary random sequence {n*};% ., fulfils
the condition of ®-mixing if
|P(4; N A;) — P(A,) P(4,)] < &(N) P(4,)
for A, e B(—0,m), A,eB(m + N, +®), ~c0 <m < +0, N = 1.
Remark. Of course, it is assumed that lim ®(N) = 0.
N-w
If D < E, be a bounded set then there exist d;, d; € E,,j = 1,2, ..., n and natural
numbers m; = m;(D,d), j = 1,2,...,n for d >0, de E;, d < inf(d] — d}) such
that i
d{D) = d; = inf {x;: x = (x,,..., x,) € D},
dj(D) = dj = sup {x;: x = (xy, ..., x,) € D}
Further, we can define x;,...,x;,, j=1,2,...,n such that d; = x;;, x;, =
= xjr-—x + d/n,r = 1, 2, cooy mj,xj’mj_l < d_l; ijj % df;,] = 1, 2, R (B
It is easy to see that we can define the system S as follows:
S=8(D,d) = {x =[xy,...x,]: x,€[x o X ) T = 1,2, ..., n}.
It holds that
inf|x — x'| £d forall xeD

x‘'eS

“inf |x — x| £d forall xe[]<d},d}>
x'eS ji=1

i

rji2 o

s |
and

n
m=1[[m,
i=1

where we denote by m = m(D, d) the number of elements of the system S.

3. MAIN RESULTS

In this section we present some upper bounds for the expression given by relations
(3). First, we shall consider the case of independent random samples.

a) Independent Case

Theorem 1. Let « e (0, 1), § > 0. If assumptions i), ii) are fulfilled (for these «, J)
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and if {£};2, is a sequence of independent random vectors then, for t > 0, d > 0

!
such that d < &, \/nfy, {/(2t/9,) < 8, 9,9,dY. []e, < t/6, it holds

i+l v¥1l
L P{lo: X(a + 1) © Xy(a) = X( — 1)} = 1 — 2m[X(a, 26), d] exp [ - N#*[18],
2. Pl ALX(@), Xy(0)] £ 1/(2t/8,) Jnfy.} =1 — 2m[X(x, 28), d] exp [ —N1]18] .
Theorem 2. Let 2 €(0,1),6>0,d>0,1>0, 1,2 = \/nfy, {/(2t/9,). If assump-
tions i), ii) are fulfilled (for this «, 5) and if
i) {&}, is a sequence of independent random vectors,
ii") d < min (6, t/6), /nfy, 4/(21/94) < &

!
9,7,d Y Tle, < 1f6,

i=1 v#i

iii") g(x, z) is for every z e E/ a Lipschitz function of x € X(«, 26) with Lipschitz
constant L not depending on z then

P{w: | inf Eg(x, &(w)) — inf Exg(x, &(w))| = t,L} <
X () Xn(a)
< 2m[X(a,26),d] exp[ —Nt*/18]+2m[ X (a, 25),d] exp [ — Ntg[*/(4.18M?)]
where the constant M fulfils the inequality
lg(x,z)] < M for xeX(a,26).

Corollary 1. If the assumptions of Theorem 2 are fulfilled and if there exists
a constant I such that

0 < I £ infEg(x, &(w))
X(a)

then .
|inf Eg(x, &(w)) — inf Exg(x, &(o))|
P w" X(2) Xn(x) g tOL é
inf Eg(x, &(w))
X(a)

< 2m[X(«, 28), d] exp [ —N(tI)*[18] +
+ 2m[X(a, 26), d] exp [ = N(t,IL)*/(4.18M)] .
Since the proof of the presented assertions is rather complicated and long we

present it in detail in the Appendix. In this section we introduce further some similar
results for dependent samples fulfilling also the conditions of @-mixing.

b) Dependent Case
Theorem 3. Let « € (0, 1), § > 0. If assumptions i), ii) are fulfilled (for this «, d)

and if {€"}%_, is a random sequence fulfilling the conditions of ®-mixing then
fort > 0,d > Osuchthatd < 4,

92y2di [Te, <tls, V(2t9,) ynfyy <6,

i=1 v¥i
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L P{o: X(a + 1) = Xy(@) = X(a — 1)} =
21— 2m[X(«, 20), d] 36/(*N*) [N + IE:;I(N - k) o(k)],
2 Plos ALX(), %] 5 Y/(2f5) V) 2
2 1—-2m[X(«,28),d]36/(*N*)[N + Y (N — k) (k)] .
Theorem 4, Let a € (0, 1), 6 > 0, d, t € E, to)2 = \/n[y, \/(2¢/9,). If assumptions
i), ii) are fulfilled (for this «, §) and if

i") {£} _  is a random sequence fulfilling the conditions of $-mixing,
ii”) the assumptions ii’), iii") of Theorem 2 are fulfilled then

P{w: | inf Eg(x, &(w)) — inf Eyg(x, &(w))| > toL} <
X(a) Xn(a)

< 2m[X(«,26),d] [N Jél(zv — k) &(k)] [;% 26%42—2]

Corollary 2. If the assumptions of Theorem 2 are fulfilled and if there exists
a constant I such that

0 < I < inf Eg(x, &(w))
X(a)

then
|inf Eg(x, &(w)) — inf Exg(x, &(w))]
w: X@ Xn() > 1,Lb <
inf Eg(x, &(w)) -
X(a)
N 36 4.36M?
< m[X(s, 8), d] [N+ 3 (N — k) &(k + .
[X(e ), ) [+ 3 (N = 1) o] [ 20 + 0]
4. APPENDIX

The aim of this section is to give the proof of the former assertions. First we
prove some auxiliary results.

Lemma 1. Let o € (0, 1). If assumptions ia), ib), iia), iid) are fulfilled then

4 [X(oc),X(o: - 91(%)')] < % ford >0 such that (oc - 91(\7%)’) > 0.

Proof. Let d > 0 be arbitrary given such that the assumptions of Lemma 1 are
fulfilled. Since

o[reox(e= ()]

= max [ sup inf [x = x|, sup inf |x — x|
XeX(a) x'eX(a—81(d/ym)) x'eX(a—9:(d/ymb) xeX(a)

]
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and since
X(2) = X(a - 9,(d[/n)"),
it is necessary to prove the inequality
sup inf |x - x| < dfy,, - (8)
xeX(a—81(d//m)") x'eX(a)
only

Let x = (xy, ..., x,) € X(« — 8,(d//n)") be an arbitrary point. To prove (8) it
is sufficient to find x* = x*(x) such that |x — x*|| < d/y;, x* € X(«).

It is easy to see that if x € X(«) then we can set x = x*. So it remains to consider

the case x ¢ X(x). If we define in this case the point x' = (xj, ..., ), x; = x; —
— df(yy /n), i=1,2,...,n we get |x — x’| = dfy,. Two different cases can happen
a) thereexistsanre {1, 2, ..., n} suchthatx, = 0
b) x; < Oforj =1,2,...,n.
Let us, first, consider the case a). In this case we can define the point x* = (x’f, x5, ...
..., X) by the following prescription x} = x/, x} = x;,j # r. It follows from the
assumption ib) that f(x*) < fi(x), |[f(x*) — fx)| 2 d/\/n, i=1,2,...,1 and
simultaneously [x* — x| = d/(y, \/n) £ dfy,.

Further, it follows from the properties of the probability measure that for d
fulfilling the assumptions we get

Plw: fi(x*) < &fw), i = 1,2,.., I} 2 P{o: fi(x) £ &fw), i =1,2,..., 1} +
+ Ploifi(x*) € E(w) S fi(%),i=1,2,..,1} =
=o— 9,(d/\/n) + 9, M{iljz < filx*), fi(x)>} =

Cz o — 9,(d/\/n) + 94(d[Jn) =«

(u(+) denotes the Lebesgue measure in E;)}.

It remains to consider the case b). However as we have x| < dfy,, in this case,
the assertion of Lemma 1 follows from the assumption iia). O

Lemma 2. Let «€(0, 1). If assumptions ia), ib), iia), iid) are fulfilled then for
B > 0,a— > 0 the inequality

ALX(), X(a - p)] < X2 [ £

Y1 94
holds.
Proof. The assertion of Lemma 2 follows immediately from the assertion of
Lemma 1. O

Lemma 3. Let ae(0, 1). If assumptions ia), ib), iia), iid) are fulfilled then for
t>0,0— 84(ty,//n) >0 it is

ATX(6), X(x — 4(ipsJy/m))] < 1.
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Proof. The assertion of Lemma 3 follows immediately from the assertion of
Lemma 1. 0

Lemma 4. Let o, 6 > 0, « € (0, 1). If assumptions ia), ic), iia), iib) iic) are fulfilled
then for t > 0, te E,, d > 0 such that d < 9,

smdﬁ [Te <13 ' 9

i=1 v¥i
»

there exists a system S(X(a, 26), d) such that
P{w: |P(Z(x)) — Py(Z(x))] > t for at least one x € X(x, &)} <
S T Pl |PyE(x) - PEE))| > 1)

xveS(X(«,26),d)
Proof. First we get from the definition of the system S(X(«, 26), d)and from the
assumptions that

xeX(a,20)= inf |fi(x) - fx))| S dy, i=1,2,..,1

xJeS(X(a,8),d)
and moreover there exist x’, x"e S(X(, 8), d), x’ < x"

componentwise such that f(x/) < fi(x) < fx"), i=1,2,...,1
and simultaneously [[x" — x| < d .

However, it follows from this and from the assumptions that for x € X(«, J)
there exists x/ = x/(x), x" = x"(x), x/, x" e S(X(a, §), d), x < x" componentwise,
[/ — x"|| < d such that

Plo:fi(x") < Efw), i = 1,2,..,1} £ Plo: fix) £ &(w), i = 1,2, .., 1} <
S Plo:fi(¥) £ E(w),i=1,2,...,1}
and simultaneously

Plw: fi(x) < éw), i =1,2,..., 1} —Plo: fi(x") £ &(w), i
é ‘9221“{1—'[ <O’ C,-) x<fv(xj),fv(xr)>} é sz?zd

I
=
>
=
A

[Te, <t/3.
& L

v¥i i=1v#*i

i=

So we have
P{w: [Py(Z(x)) — P(Z(x))| > ¢ for at least one x € X(a, 8)} <
< P{w: [Py(Z(x")) — P(Z(x"))| > t/3 for at least one x” e S(X(a, 26), d)}
S S Pl - HEE)] > 3 o

xveS(X(«,28),d)

Lemma 5. If a €(0, 1), § > 0. If the assumptions 1), ii) are fulfilled (for this «, 5)
then for ¢t > 0, d > O such thatd < 4,

Jnltlt ! .
yo 9—<6, 972dY [le.<1t/3, i=1,2,..,1 (10)
Y1 1

i=1v*i
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there exists a system S(X(a, 28), d) such that
Plw: X(a + 1) € Xy(a) = X(a — 1)} =
21— Y Plo:|Py(Z(x") — P(Z(x"))| > t[3} .

xveS(X(a,24),d)
Proof. First, it follows from the assumptions and from Lemma 2 that

X+ 1) = X(a — 1) = X(a, ) .
Further, since

x € Xy(o, 0) = x" € Xp(ot, ) forall x' < x,x 20

(componentwise) ,

we get :
{o: there exists x € Xy(, @) such that x ¢ X(x — 1)} =
{w: there exists x € Xy(a, ), x € X(a, §) such that x ¢ X(« — 1)}
c {w: there exists x € X(«, &) such that |Py(Z(x)) — P(Z(x))| > t} .
and moreover the relation ’

Q—[o: X(a + 1)  Xy(@) = X(ox — t)] =

< {w: there exists x € X(a, §) such that |Py(Z(x)) — P(Z(x))| > t}
too.
However from this and from the assertion of Lemma 4 we obtain that

Plo: X(« + 1) « Xy(e) = X(o0 — 1)} =
21— Y. Plo:|P(Z(x") — Py(Z(x"))| > 13} .

XVeS(X(x,28),d)

This completes the proof.

Remark. It is easy to see that if X', X” < E, are two sets such that X(cx + t) c
cX < X(a—1t),X(e +t) =« X" < X( — 1) then A[X', X"] < 4[X(« + 1),
X(x - 1)].

Lemma 6. If o €(0, 1), § > 0. If further the assumptions 1), ii) are fulfilled (for
this «, §)and if t > 0,d > Osatisfy the inequalities d < &, /n[y, {/(t/%) < &,

[
92y2d2 n c, < t/3 5
i=1 v¥i

then there exists a system S(X(«, 28)) such that

Pla: A[X(8). Xn(@)] < Y/(21/9,) Jnhrs) 2

21— Y Pl |Py(2(e)) - PEC)| > 3}

xveS(X(a,29),d)

Proof. First, it follows from the assumptions and the assertion of Lenima 2 that
X(oz - t) c X(oc, 25).
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If we denote by Q(7) the set such that
Q' ={weQ: X(x + 1) € Xy(x) = X(a — 1)}
then we get
A[X(x), Xp(o)] £ A[X(2 + 1), X(« — 1)] for weQ".
Employing again Lemma 2 we oi)tain that
@ = {0 A[X(@), Xn(®)] = nly V(2]9,))
and further that
P{w: A[X (), Xn(a)] < /nJy, /(21/8,)} = P(Q"} too .

The assertion of Lemma 6 follows immediately from the last inequality and from
the assertion of Lemma 5. O

Lemma 7. Leta €(0,1), § >0, 15> 0, d < t,/6, d > 0, to/2 < §. If the assumptions
!
i), ii) are fulfilled (for this a, 8) and if g(x, z) is for every z €[] < 0, ¢;> a Lipschitz
i=1

function of x € X(a, 28) with Lipschitz constant L not depending on z then there
exists a system S(X(a, 25), d) such that

P{w: |inf Eg(x, &(w)) — inf Eyg(x, &(w))| > Lt,}
X(2) Xn(2)

< P{ow: A[X(x), XN(oc)] > 10[2} +

+ P{w: [Eg(x, &(w)) — Eyg(x", &(w))| > t,L[6 for at least one

x* € S(X(, 28), d)} .

HA

Proof. Let t, > 0, t, € E, be arbitrary fulfilling the assumptions.
We can define the sets 2,, Q, in the following way

Q = {we Q: A[X(a), Xn(®)] < 10/2},
92 - Q — Ql .
Since it is easy to see that
P{w: | inf Eg(x, &(w)) — inf Exg(x, &(w))| > 1oL} < P{Q,} +
X(2) Xn(a)
+ P{Q; n [w: | inf Eg(x, &(w)) — inf Eyg(x, &(o))| > toL} (11)
X(a) Xn(a)
we can deal with

P{Q N [w: |Jl(r(1at; Eg(x, &(w)) «nxin(f)ENg(x, Ew))| > toL}

only.
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Since the triangular inequality implies

| inf Eg(x, &(w)) ~ inf Exg(x, (o) <

< |inf Eg(x, &(w)) ~ Xin(f)Eg(x, E(w))| +

X(a)

+ | inf Eg(x, &(w)) — inf Exg(x, &(w))|
Xna) Xn(a)
we get

P{@y 0 [w: | infEg(x, &(w)) — inf Exg(x, @) > toL} =

X(a)

< P{Q, n [w: ] inf Eg(x, &(w)) — inf Eg(x, &(w))| > 1,L[2 +
X(@) Xn(z)
+ P{Q n [w: | inf Eg(x, &(w)) — inf Eyg(x, &(w))] > t,L[2} .
Xn(a) Xn(a)
Further, it follows from the definition of the set 2, and the assumption that
P{Q, n [w: | inf Eg(x,&(w)) — inf Eg(x, &(w))| > toL[2} = 0.
X@ Xn(@) .
So to prove the assertion of Lemma 7 it is sufficient to prove the inequality

P{Q, N [w: | inf Eg(x, &(w)) —-xin(f)ENg(x, Ew))| > toL)2} S

Xn(a)
< Plw: [Eg(x, &(w)) — Eng(x, &(w))| > t,L[2 for at least one
x € S(X(a, 268), d)} .

It is easy to see that the functions Eg(x, &), Eyg(x, £) are Lipschitz functions on
X(a, 28) with Lipschitz constant L. Using these facts along with the assumptions we get

P{Q, N [o: IXin(I:)Eg(x, &(w)) —Xin(E)ENg(x, Ew))| > toLf2} <

< P{w: |Eg(x, &(@)) — Exg(x, &(w))| > toL[2 for at least one

x € X(x, 20)} < P{w: |E(x, &(w)) — Exg(x, &(w))| > t,L[6

for at least one x € S(X(a, 25), d)} . O
To prove Theorem 1 and Theorem 2 we have to recall here one well-known ine-

quality first introduced in [2]. We shall present it in the special form suitable for
our problem. If x(z) is a measurable function defined on E, such that |x(z)| < M
1

for z €[] <0, ¢;> and if Fy corresponds to an independent random sequence {&*}2 ,,
then ‘=!
Plo: Exe(£()) — Ex(&(w) > 3} < exp {— Ny*J(2M?)} (13)
foreveryy > 0, ye E,.
Proof of Theorem 1. Assertion 1 of Theorem 1 follows immediately from

Lemma 5 and inequality (13). Assertion 2 follows in a quite similar way from Lemma 6
and the inequality (13). |
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Proof of Theorem 2. It is easy to see that we can obtain the assertion of
Theorem 2 from Theorem 1, Lemma 7 and the inequality (13). O

The assertion of Corollary 1 follows immediately from the assertion of Theorem 2.
It remains to deal with the case, when the members of the random sequence
{&}% | are dependent. In [1] some inequalities are proved for random sequences
fulfilling the conditions of @-mixing. We introduce one of them again in a special

(for us suitable) form.
If »(z) is a measurable function defined on E; such that [x(z)| < M for z € H <0, ¢;>

and if the random sequence {gk}k__w fulfils the condition of ®-mixing then
|E[%(£"()) — Ex(¢(0)) (5("()) — Ex(&(w)]| < 2M>d([r — k|) (14)

foreveryr,ke{... —1,0,1,2,...}.

It is easy to see that utilizing the last inequality we can prove the assertions of
Theorem 3 and Theorem 4 similarly to the proof of the assertion of Theorem 1 and
Theorem 2 employing inequality (14) instead of the inequality (13).

Proof of Theorem 3. Assertion 1 of Theorem 3 follows immediately from
Lemma 5, the Chebyshev inequality and relation (14). Assertion (2) can be proved
in a quite similar way utilizing Lemma 6 instead of Lemma 5. O

Proof of Theorem 4. Utilizing Lemma 7, Theorem 3, the Chebyshev inequality
and the inequality (14) we get the assertion of Theorem 4. O

It is easy to see again that the assertion of Corollary 2 follows immediately from
the assertion of Theorem 4.

Remarks. 1. Number m(X(«, 28), d) was used in the assertions of this paper.
The upper bound of this number is presented in [8]. 2. The case when the support
]

of the random vector £(w) is in the form [] <0, ¢;) is considered in the paper. How-
i=1
ever it is easy to see that the assertions of this paper are valid for the support in the
form H {chy ey, el ¢l e Ef, ¢} < ], too.
i=1

(Received November 1, 1989.)
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