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K Y B E R N E T I K A - VOLUME 26 (1990), N U M B E R 6  

"v..- ' 
ON THE CONVERGENCE RATE OF EMPIRICAL 
ESTIMATES IN CHANCE CONSTRAINED 
STOCHASTIC PROGRAMMING 

VLASTA KAŇ KOVÁ 

The chance constrained stochastic programming problems with unknown probability laws 
were discussed e. g. in [9], [11]. In these papers empirical distribution functions were used to get 
some estimates on the optimal value and the optimal solution. In particular, some sufficient 
conditions for the consistency of the estimates on the optimal value were introduced in [9] and 
in [11] convergence rate of estimates on the optimal solution in a rather special case was studied. 

In this paper we present some results on the optimal value estimates under rather general 
conditions including also some type of stochastic dependent samples. The paper employs the 
methods used in [7], [8], [9]. 

1. INTRODUCTION 

Let (Q, $*, P) be a probability space, 
£ = £(to) — [^(ca),..., £i(co)~\ be an /-dimensional random vector defined on 

(Q, sr, P), 
F(z) be the distribution function of the random vector £(co), 
£k = £k(co) = [£i(ft>), -.., ^(cof] be a sequence of random vectors such that for 

every k = 1,2,. . . the random vector £k(co) has the same distribution function as 
the random vector £(co), 

fi(x), i = 1, 2, ..., / be a real valued continuous function defined on En (En, n — i 
denotes an ^-dimensional Euclidean space), and 

f(x) = [fl(x),...,fl(x)]. 

Let, further, g(x, z) be a real-valued, continuous function defined on En x Et. 
If we define the function Uk(z, co) = Uk(z), FN(z, co) = FN(z), Z = \zx, ..., z^]e Eh 

co e Q, k = 1, 2, ..., N, N = 1, 2, ... by 

Uk(z, co)=lo ej(co) < z j for all j = 1, 2, ..., / , 

= 0 o !;)(co) ^ Zj for at least one j e {1, 2, ..., /} , 

1 * 
FN(z, co) = - X Uk(z, co). 

N k = i 
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then we can define the sets Z(x), X(a), XN(a) = XN(a,co), N = 1,2,..., xe En , 
in the following way 

Z(x) ={zeEt:z = (zl,...,zl):fi(x) = zi,i = 1,2,..., I}; > , r ' 

X(a) = {x G £ + : P[Z(x)~] = a} , for a e <0, 1> , 

X(a) = X(l) for a > 1, 

Z(a) = Z(0) for a < 0 , 

XN(a) = XN(a, co) = {x€ E*: PN[Z(x)] = a} , for a e <0, 1> , 

where P[Z(x)] = P{a>: £(«) e Z(x)}, PN[-] = PN{',co} is the empirical prob­
ability measure corresponding to the distribution function FN,En = {xeEn:x = 
= (xu ..., xn): xt = 0,i = 1,2,..., n}. 

Denoting by E and EN, N = 1,2,..., the theoretical and the empirical mathematical 
expectation, respectively, it is easy to see that 

mf£Ng(x,^(co)) (1) 
XN(<x) 

estimates the theoretical value 

infE#(x, £(*/)). (2) 
X(a) 

Remark. It can generally happen that some symbols in (1) and (2) are not meaning­
ful. However, this situation cannot appear under the assumptions considered in this 
paper. 

Some sufficient assumptions under which (1) is a consistent estimate of (2) are 
presented in [9]. The present paper goes deeper in this direction. Namely, we shall 
study the convergence rate. In particular, we shall try to find an upper bound on 
the following probabilities 

?{co: | inf E^(x, £(©)) - inf E<?(x, £(o>))| > t} , 
X N O ) X(a) 

?{co: X(a + t) c XN(a) c= X(a - t)} (3) 

teEu t > 0, N = 1,2,.... 
These results generalize some of the author's previous results for stochastic program­

ming problems in which the optimum is sought with respect to the deterministic 
constraints only (cf. [7], [8]). We restrict our consideration to the special (however 
from the practical point of view important enough) case. 

Let a, 3 > 0, a e (0, 1) be arbitrary. We make the following assumptions: 

i) fi(x), i — 1, 2 , . . . , I are real valued, continuous function on E„ such that 

a )L (0) = 0 , i = 1,2,..., / , 0eEn, 

b) there exists a constant yl > 0 such that 

ttx)~rtx')Znt(xs-Xj) 
J = l 
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for every x = (x l5 ...,x„), x' = (xi, ...,x'„), x = x' componentwise, 
i = 1,2,..., /, x, x' eEn; 

c) there exists a constant y2 > 0 such that 

| L ( x ) - L ( x ' ) | = y 2 | | x - x ' | | 

for i = 1, 2, ..., /, x, x' eX(a, 28), x < x' componentwise. X(ct, 8) is 
defined by the following relations 

X(oc, 8) = {x = xt + x2, xx e X(a), x2 e B(d)} (4) 

where B(S) denotes the ^-surrounding of 0 G E„. || • [denotes the Euclidean norm 
inE„. 

ii) £(CD) fulfils the conditions 

a) the probability measure of the random vector £(co) is absolutely continuous 
with respect to the Lebesgue measure in Ev We denote by h(y) the prob­
ability density corresponding to the distribution function F(') of the random 
vector £(co). 

b) there exists a real number Cj, j = 1,2,. . . , / such that Cj = 0 and that 

P{a>:t(cD)eYl(0,Cjy} = l , 
J = I 

c) there exists #2 > 0, #2 e Et such that 

h(z) < S2 for all z e Ez
+ , 

d) there exists a constant # t > 0 such that 
i 

&i ^ h(z) for every Z G [ ] < 0 , Cy> . 
y = l 

Remark. It is easy to see that under these assumptions the sets X(oc) for a e (0, 1> 
are compact. 

2. SOME AUXILIARY DEFINITIONS 

The Hausdorff distance between two subsets in En is defined in the following way: 

Definition 1. If X. X' a En, n ^ 1 are two non-empty sets then the Hausdorff 
distance of these sets An(X', X") is defined by 

An(X', X") = max [8n(X', X"), Sn(X", X')] , 

Sn(X',X") = sup inf ||x' - x"|| , 
x'eX' x'eX" 

(we usually omit the subscripts in the symbols An, Sn). 

Let, further, {nk}™= _m be an /-dimensional strong stationary random sequence 
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defined on (Q, £f, P), ^ ( - o o , a) be the cr-algebra given by ..., rf"1, rf, @(b, + 00) 
be the ^-algebra given by nb, rjb+l, ,..(a,b are integers). 

If N denotes the set of natural numbers, 4>(*) a non-negative real-valued function 
defined on N then we can define the ^-mixing random sequence by the following 
definition. 

Definition 2. We say that the strong stationary random sequence {nk}^~oa fulfils 
the condition of ^-mixing if 

\P(A, n A2) - P(AX) P(A2)\ = *(N) P(A,) 

for Ai e B(-cc, m), A2 e B(m + N, + 00), -co < m < +co, N = 1. 

Remark. Of course, it is assumed that lim $(N) = 0. 
JY-OO 

If D c= En be a bounded set then there exist d), d'jeE^j = 1, 2 , . . . , n and natural 
numbers nij = my(D, d), j = 1, 2, ..., n for d > 0, deEt, d < inf (d'j - d)) such 
that 

d'j(D) = d'j= inf {Xj: x = (xu ..., x„) e D} , 

d'!(D) = d] = sup {Xj: x = (xu ..., x j e f i ) 

Djnjd = nij = Djn\d + 1, Dj = d] - d) . 

Further, we can define xilt..., xJmji / - = 1, 2, ..., n such that d) = xJU xjr = 
= */--, + <*/"> r = 1, 2, ..., m^x,-^ . . ! < <fj xJmj = d], j = \,2,...,n. 

It is easy to see that we can define the system S as follows: 

S = S(D,d) = {x = [Xl,...,xn~]:xre[xrjl,...,xrmi], r = 1,2, . . . , n } . 

It holds that 

infjx - x'[ = d for all x e D 
x'eS 

' inf Jx - x ' | = d forall x e{\ (d), d]y 
x'eS j=l 

and 
m = 11 m j ' 

where we denote by m = m(D, d) the number of elements of the system S. 

3. MAIN RESULTS 

In this section we present some upper bounds for the expression given by relations 
(3). First, we shall consider the case of independent random samples. 

a) Independent Case 

Theorem 1. Let a e ( 0 , 1), S > 0. If assumptions i), ii) are fulfilled (for these a, d) 
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and if {£k}£°=i is a sequence of independent random vectors then, for t > 0, d > 0 
i 

such that d < 8, y/njy1 V ( 2 ^ i ) < ^ d 2 M . _ 1 c„ < f/6, it holds 

1. P{co: Z(a + t) c XN(a) c Z(a - t)} _ 1 - 2m[x(a, 25), </] exp [-Nf2/18] , 
2. P{co: J[X(a), X„(a)] _ V ( 2 ^ i ) vVVi} ^ 1 - 2m[X(a, 25), rf] exp [-Nf2/18] . 

Theorem 2. Let a e (0, l), 5 > 0, d > 0, f > 0, L.0/2 = V^fri V ( 2 f M - I f assump­
tions i), ii) are fulfilled (for this a, 5) and if 

-') {£*}r=i is a sequence of independent random vectors, 
ii') d < min (5, tl6), y]n\yx V(2tl&t) < 8 

^ ^ i FK<</6> 
1 = 1 v*i 

iii') _r(x, z) is for every z e £,+ a Lipschitz function of x e X(a, 25) with Lipschitz 
constant Lnot depending on z then 

?{co: | inf E_.(x, .(a))) - inf EN^(x, _(©))| _ t0^} < 
X(a) XN(«) 

_ 2m[X(a,25),ci] exp[-7Yt2/l8] + 2m[Z(a,25),ci] exp[-Nf2L2/(4.18M2)] 

where the constant M fulfils the inequality 

\g(x,z)\ < M for x e X ( a , 2 5 ) . 

Corollary 1. If the assumptions of Theorem 2 are fulfilled and if there exists 
a constant I such that 

then 

O<J_ in fE0(x , . (<o) ) 
X(z) 

|inf E_/(x, £(co)) - inf EJV_/(x, <_(co))| 

inf E_i(x, £(«)) 

_ 2m[Z(a, 25), d] exp [-N(t/)2/18] + 

+ 2m[X(a, 25), ti] exp [-N(f0/L)2/(4.18M)] . 

Since the proof of the presented assertions is rather complicated and long we 
present it in detail in the Appendix. In this section we introduce further some similar 
results for dependent samples fulfilling also the conditions of (^-mixing. 

b) Dependent Case 

Theorem 3. Let a e (0, 1), 5 > 0. If assumptions i), ii) are fulfilled (for this a, 5) 
and if {.''j^L-oo is a random sequence fulfilling the conditions of ^-mixing then 
for t > 0, d > 0 such that d < 8, 

Silid E EI Cv < -/a > V ( 2 # i ) y/»hi < * . 
i = l v±i 
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1. P{æ: X(a + t) c ^ ( a ) c: X(a - t)} = 

> 1 - 2m[X(a, 2ð), d] Збj(t2N2) [N + £ (JV - fe) Ф(fc)] , 
л = i 

2. P{CÜ: Л[X(a),XN(a)] й V ( ^ , ) V«/ľil ^ 

^ 1 - 2m[X(a, 2ð), d] Щt2N2) [N + £ (N - k) Ф(к)] . 

Theorem 4. Let a e (0, 1), S > 0, d, t e Ef, t0\2 = ̂ /n/y.. [J(2tlS1). If assumptions 
i), ii) are fulfilled (for this a, 3) and if 

i") {£*}*=-oo is a random sequence fulfilling the conditions of ^-mixing, 
ii") the assumptions ii'), iii') of Theorem 2 are fulfilled then 

P{co: | inf Eg(x, £(co)) - infENg(x, Z(co))\ > t0L} < 
X(a) XN(a) 

g 2m[X(*,2S),d] [N + i(N - k) mi [gL + g ^ ] . 

Corollary 2. If the assumptions of Theorem 2 are fulfilled and if there exists 
a constant I such that 

0 < 7 ^intEg(x,š(a>)) 

then 
X(a) 

|inf Eø(x, £(ю)) - inf E^(x, Ç(æ))\ 
^ í^— > t0L\ š co:^ 

inf Eg(x, Ç(co)) 
X(a) 

1 m[X(a, Ь), 4 [*+£(» - *) ФW] [-*- + J Ц g ] . 

4. APPENDIX 

The aim of this section is to give the proof of the former assertions. First we 
prove some auxiliary results. 

Lemma 1. Let a e (0, 1). If assumptions ia), ib), iia), iid) are fulfilled then 

A \x(a), X (a - St (~\ Y] < - for d > 0 such that (a - $i(-j-\ ) > 0 . 

Proof. Let d > 0 be arbitrary given such that the assumptions of Lemma 1 are 
fulfilled. Since 

íx{*Ha-9im= 

= max [ sup inf ||x: — x' 
xeX(a) x'eX(a-9i(d/Jn)1) 

sup inf ||л; - x'J] 
x'єX(a-»i(d/y/n)i) xєX(a) 
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and since 

X(m) e= X(m - ^(d^n)1) , 

it is necessary to prove the inequality 

sup inf ||x - x ' | < d\yt, (8) 
xeX(a-,9i(d/Vn)') x'eX(a) 

only 
Let x = (xu ...,xn)eX(m — S^d/y/n)1) be an arbitrary point. To prove (8) it 

is sufficient to find x* = x*(x) such that [x — x*J < d\yu x* eX(m). 
It is easy to see that if x e X(m) then we can set x = x*. So it remains to consider 

the case x^Z(a). If we define in this case the point x' = (xi, ...,x'n), x- = xt — 
— dj(yx y/n), i — 1,2,..., n we get [|x — x'J = d\yv Two different cases can happen 
a) there exists a n r e { l , 2 n) such that x', = 0 
b) x'j < Ofor/ = 1,2, ...,n. 
Let us, first, consider the case a). In this case we can define the point x* = (x*, x*,... 
..., x*) by the following prescription x* = x'r, x* = Xj,j + r. It follows from the 
assumption ib) that ft(x*) <L(x), |/i(x*) - L ( x ) | = djy/n, i = 1,2,..., / and 
simultaneously Jx* — x|| = dj(y^ yjn) ^ djyv 

Further, it follows from the properties of the probability measure that for d 
fulfilling the assumptions we get 

?{miflx*) S U«>)>l = 1, 2,...,/} = ?{co:f{x) = ^(co), i - 1, 2,..., 1} + 

+ P{a>:L(x*) < Zfyo) < A(x) , i - 1, 2, ...,/} = 

= a - S^d/y/n)1 + Slri{U <fi(x*),fi(x)>} = 
i = i 

= a - ^(djy/n)1 + Udly/n)1 - a 

(//(•) denotes the Lebesgue measure in E{)}. 
It remains to consider the case b). However as we have Jx|| < djyu in this case, 

the assertion of Lemma 1 follows from the assumption iia). Q 

Lemma 2. Let a e (0,1). If assumptions ia), ib), iia), iid) are fulfilled then for 
ft > 0, a - ft > 0 the inequality 

4X(a),X(a~/5)]<^'/A 

holds. 
Proof. The assertion of Lemma 2 follows immediately from the assertion of 

Lemma 1. Q 

Lemma 3. Let a e (0,1). If assumptions ia), ib), iia), iid) are fulfilled then for 
t > 0, a - ^(tfily/n)1 > 0 it is 

A[X(m),X(m-$l(ty1ly/n)l)-]<t. 
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Proof. The assertion of Lemma 3 follows immediately from the assertion of 
Lemma 1. • 

Lemma 4. Let a, 5 > 0, a e (0,1). If assumptions ia), ic), iia), iib) iic) are fulfilled 
then for t > 0, te Eit d > 0 such that d < 8, 

s2y2di EK<'/3 (9) 
i = l i>*i 

there exists a system S(X(<x, 25), d) such that 

?{co: \P(Z(x)) - PN(Z(x))\ > t for at least one x e x(a, <5)} = 

< X P{co: \PN(Z(x*)) - P(Z(x% > t/3} . 
xveS(X(a,2d),d) 

Proof. First we get from the definition of the system S(X(cc, 23), J) and from the 
assumptions that 

x E X(a, 25) => inf \ft(x) - L(x')| = dy2 i = l,2,...,l 
xJeS(X(a,d),d) 

and moreover there exist xJ, xr e S(X(a, 5), d) , xJ < xr 

componentwise such that ft(x
J) = /,(„) ^ f((x

r), i = 1, 2, ..., / 

and simultaneously ||xr — xJ§ ^ d . 

However, it follows from this and from the assumptions that for x E X(a, 8) 
there exists xJ = xJ(x), xr = xr(x), xJ, xr E S(X(a, 8), d), xJ < xr componentwise, 
|| xJ - xr\\ < d such that 

P{co:ft(x
r) < {fa), i - 1, 2, ..., /} < P{co:ft(x) < £.(©), i - 1, 2, ..., /} < 

< P{co:fi(x
J) = U^),i = t,2,...,l} 

and simultaneously 

P f ^ / M _ 6(a>), / - 1, 2,.. . , /} -P{oKL(xr) ^ £,(©), i - 1, 2,...,/} _ 

= *a 2X11 <°> c«> ^aM,/„M>} _ S2y2</£ fie- < '/3 • 
i = 1 f 4= i i = 1 D 4= i 

So we have 

P{„: |PW(Z(„)) - P(Z(x))| > t for at least one x e _~(a, <5)} ^ 

= P{„: |i>JV(Z(xv)) - P(Z(xv))| > f/3 for at least one xv e S(A"(a, 2<5), d)} 

< X P{<^ W ^ M ) - R(Z(xv))| > f/3} . D 
xveS(X(a,2«5),d) 

Lemma 5. If a e (0, 1), <5 > 0. If the assumptions i), ii) are fulfilled (for this a, <5) 
then for t > 0, d > 0 such that d < 8, 

^ l l ± < 5 , 92y2dXf\cv<tl3, i = l ,2, . . . , / (10) 
JX V # ! i= l u*i 
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there exists a system S(X(a, 26), d) such that 

P{co: X(a + t) c XN(a) c x(a - ()} ^ 

S> 1 - I P{co: I P ^ Z M ) - P(Z(xv))| > r/3} . 
xveS(X(a,2^),(i) 

Proof. First, it follows from the assumptions and from Lemma 2 that 

X(a + t) cz X(a - t) c X(a, <5) . 

Further, since 

x E XN(a, co) => .x' e XN(a, co) for all x' < x, x' ^ 0 

(componentwise), 

we get 

{co: there exists .x e XN(a, co) such that x £ X(a — t)} c 

{co: there exists x e XN(a, co), x e x(a, <5) such that x $ X(a — t)} cz 

c {co: there exists x e X(a, <5) such that \PN(Z(x)) - P(Z(x))\ > t} . . 

and moreover the relation 

Q - [co: X(a + t) <= XN(a) c= X(a - t)] c 

c= {co: there exists x e X(a, 6) such that |PAr(Z(x)) - P(Z(x))| > t} 
too. 

However from this and from the assertion of Lemma 4 we obtain that 

P{co: X(a + t) cz XN(a) cz X(a - t)} ^ 

£ 1 - £ Pfco: |P(Z(*V)) - PN(Z(x% > t/3} . 
xveS(X(a,2<5),d) 

This completes the proof. 

Remark. It is easy to see that if X', X" cz En are two sets such that X(a + t) cz 
czX' cz X(a - t), X(a + t) cz X" cz X(a - t) then A[X', X"] z% A[X(a + t), 
X(a - 0]. 

Lemma 6. If a e (0, 1), <5 > 0. If further the assumptions i), ii) are fulfilled (for 
this a, 6) and if t > 0, d > 0 satisfy the inequalities d < 6, yjnjy^ ly/(tjSi) < 6 , 

3272^1 r R < < / 3 , 
i = l v*i 

then there exists a system S(X(a, 2<5)) such that 

P{co: A[X(a),XN(a)] ^ {J(2p,) JnjyJ ^ 

£ 1 - £ ?{<»• \PN(Z(XV)) - P(Z(xv))| > r/3}. 
xveS(X(a,2d),d) 

Proof. First, it follows from the assumptions and the assertion of Lemma 2 that 
X(a - t) cz X(a, 26). 
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If we denote by Q"(t) the set such that 

Q" = {coeQ: X(a + t) c XN(a) c= X(a - t)} 

then we get 

A[X(a), XN(a)] = A[X(a + t), X(a - t)] for co e G" . 

Employing again Lemma 2 we obtain that 

Q" <= {co: 4x (a ) ,X»] ^ vtyVi V(2#i)} 
and further that 

P{co: J[X(a),ZN(a)] ^ V M V ( 2 ^ i ) } ^ p(^"} too . 

The assertion of Lemma 6 follows immediately from the last inequality and from 
the assertion of Lemma 5. • 

Lemma 7. Let a e (0, 1), d>0, t0>0, d < tj6, d > 0, t0\2 < <5. If the assumptions 
i 

i), ii) are fulfilled (for this a, 8) and if g(x, z) is for every z e f\ < 0, c,-> a Lipschitz 
i = l 

function of x e X(a, 25) with Lipschitz constant L not depending on z then there 
exists a system S(J£(a, 23), d) such that 

P{co: |inf Eg(x, £(<»)) - inf E^(x, £(o>))| > Lf0} < 
X(a) XN(a) 

= P{co:A[X(a),XN(a)\> r0/2} + 

+ P{co: |E#(xv, £(«)) - ENg(xv, £(co))\ > t0L\6 for at least one 

xv e S(X(a, 26), d)} . 

Proof. Let t0 > 0, t0eEl be arbitrary fulfilling the assumptions. 

We can define the sets Qu Q2 in the following way 

Q, = {co e Q: A[X(a), XN(a)] = t0J2} , 

a2 -= a - QX . 

Since it is easy to see that 

P{co: | inf Eg(x, £(©)) - inf E^(x, £(<o))\ > t0L} = P{Q2} + 
X(«) X„(a) 

+ P{Q, n [co: | inf Eg(x, £(&)) - inf E^(x, £(co))\ > t0L} (11) 
X(a) XN(a) 

we can deal with 

P{Qt n [o>; I inf E<?(x, £(©)) - inf ENg(x, £(co))\ > t0L} 
X(a) XN(a) 

only. 
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Since the triangular inequality implies 

| inf Eg(x, c;(o>)) - inf E^(x, Z(co))\ = 
X(a) XN(a) 

= | inf Eg(x, c;(a>)) - inf Eg(x, £(a>))\ + 
X(a) XN(a) 

+ | inf Eg(x, £(a>)) - inf ENg(x, £(co))\ 
XNytx) XN(a) 

we get 
?{Ql n [co: | inf Eg(x, £(co)) - infENg(x, Z(co))\ > t0L} = 

X(a) XN(a) 

= P{.Q. n [co: I inf Eg(x, £(co)) - inf E#(x, c;(a>))| > *0L/2 + 
X(a) XN(a) 

+ ?{Qt n [to: | inf Eg(x, £(«)) - inf ENg(x, £(co))\ > t0L\2} . 
XN(a) XN(a) 

Further, it follows from the definition of the set Qx and the assumption that 

?{Q, n [co: | inf Eg(x,Z(co)) - inf Eg(x, £(co))\ > t0L/2} = 0 . 
X(a) XN(a) 

So to prove the assertion of Lemma 7 it is sufficient to prove the inequality 

P{Ox n [co: | inf Eg(x, £(©)) - inf E ^ x , d;(a>))| > f0L/2} ^ 
Jtiv(ti) XN(a) 

= P{co: |E<j(x, £(co)) - ENg(x, £(co))| > t0L\2 for at least one 
x e S(X(a, 26), d)} . 

It is easy to see that the functions Eg(x, £), ENg(x, £) are Lipschitz functions on 
X(a, 2(5) with Lipschitz constant L. Using these facts along with the assumptions we get 

?{QX n [co: | inf Eg(x, £(co)) - mfENg(x, £(co))\ > t0L/2} = 
XN(a) XN(a) 

= P{co: \Eg(x, £(co)) - ENg(x, £(co))\ > t0L\2 for at least one 

xeX(a, 23)} ^ P{co: |E(x, £(co)) - ENg(x, Z(co))\ > t0L\6 

for at least one x e S(X(<x, 26), d)} . Q 

To prove Theorem 1 and Theorem 2 we have to recall here one well-known ine­
quality first introduced in [2]. We shall present it in the special form suitable for 
our problem. If x(z) is a measurable function defined on Et such that \x(z)\ = M 

i 

for z G J ] (0, c(> and if FN corresponds to an independent random sequence {£fc}"=1, 
then i==1 

P{o>: ENx($(co)) - Ex(Z(co)) > y} ^ exp {- Ny2l(2M2)} (13) 

for every y > 0, y e L^ 

Proof of Theorem 1. Assertion 1 of Theorem 1 follows immediately from 
Lemma 5 and inequality (13). Assertion 2 follows in a quite similar way from Lemma 6 
and the inequality (13). Q 
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Proof of Theorem 2. It is easy to see that we can obtain the assertion of 
Theorem 2 from Theorem 1, Lemma 7 and the inequality (13). • 

The assertion of Corollary 1 follows immediately from the assertion of Theorem 2. 
It remains to deal with the case, when the members of the random sequence 

{£fc}fc°=i a r e dependent. In [1] some inequalities are proved for random sequences 
fulfilling the conditions of <£-mixing. We introduce one of them again in a special 
(for us suitable) form. , 

If x(z) is a measurable function defined on Et such that \x(z)\ ^ M for z e Y[ <0> c,/ 

and if the random sequence {cfc}k°=-a> fulfils the condition of ^-mixing then 

\E[x(e(w)) - Ex(?;(c»))(x(?(a>)) - EK(£(O>)]| g 2M2$(\r - k\) (14) 

for every r, fee {.,. — 1, 0 ,1 , 2 , . . . } . 
ft is easy to see that utilizing the last inequality we can prove the assertions of 

Theorem 3 and Theorem 4 similarly to the proof of the assertion of Theorem 1 and 
Theorem 2 employing inequality (14) instead of the inequality (13). 

Proof of Theorem 3. Assertion 1 of Theorem 3 follows immediately from 
Lemma 5, the Chebyshev inequality and relation (14). Assertion (2) can be proved 
in a quite similar way utilizing Lemma 6 instead of Lemma 5. • 

Proof of Theorem 4. Utilizing Lemma 7, Theorem 3, the Chebyshev inequality 
and the inequality (14) we get the assertion of Theorem 4. • 

It is easy to see again that the assertion of Corollary 2 follows immediately from 
the assertion of Theorem 4. 

Remarks. 1. Number m(X(a, 26), d) was used in the assertions of this paper. 
The upper bound of this number is presented in [8]. 2. The case when the support 

/ 
of the random vector £(co) is in the form f\ <0, c,-> is considered in the paper. How-

i = l 

ever it is easy to see that the assertions of this paper are valid for the support in the 
i 

form n <<& cl>, c\, c"t e JEf, c\ < c'[, too. 
i = l 

(Received November 1, 1989.) 

R E F E R E N C E S  
fl] P. Billingsley: Convergence of Probability Measures. J. Wiley, New York 1977. 
[2] A. B. UbidaKOB: OucHKa TOHHOCTH MeTOfla MHHHMH3auHH SMnHpHMecKoro pHCKa. npo6neMbi 

nepeflann HH(})opMauHH 17 (1981), 1, 50—61. 
[3] J. Dupacova: Stochastic programming with incomplete information: A survey of results 

on postoptimization and sensitivity analysis. Optimization 18 (1987), 4, 507—532. 
[4] J. Dupacova and R, Wets: Asymptotic behaviour of statistical estimators and the optimal 

solutions of stochastic optimization problems. Ann. Statist. 16 (1988), 4, 1517—1549. 
f5] W. Hoeffding: Probability inequalities for sums of bounded random variables. J. Amer. 

Statist. Assoc. 58 (1963), 301, 13-30. 

460 



[6] V. Kaňková: Optimum soJution of a stochastic problem with unknown parameters. In: 
Trans. Seventh Prague Conference, Academia, Prague 1977, pp. 239—244. 

[7] V. Kaňková: An approximative solution of a stochastic optimization problem. In:Trans. 
Eighth Prague Conference, Academia, Prague 1978, pp. 327—332. 

[8] V. Kaňková: Empirical estimates in stochastic programming. In: Trans. Tenth Prague 
Conference, Academia, Prague 1986. 

[9] V. Kaňková: Estimates in stochastic programming — chance constrained case. Problems 
Control Inform. Theory 7* (1989), 4, 251-260. 

[10] W. Romisch and A. Wakolbinger: Obtaining convergence rates for approximations in 
stochastic programming. In: Parametric Optimization and Related Topics, Akademie-
Verlag, Berlin 1987. 

[11] R. Wets: A Statistical Approach to the Solution of Stochastic Programs with (Convex) 
Simple Recourse. Research Report, Univ. Kentucky, Lexington, Kentucky 1979. 

[11] S. Vogel: Stability results for stochastic programming problems. Optimization 19 (1988), 
2, 269-288. 

RNDr. Vlasta Kaňková, Ústav teorie informace a automatizace ČSAV (Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou věží 4, 
182 08 Praha 8. Czechoslovakia. 

461 


		webmaster@dml.cz
	2012-06-05T21:34:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




