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KYBERNETIKA —VOLUME 10 (1974), NUMBER 2 

Complete Characterization 
of Context-Sensitive Languages 

MlROSLAV NOVOTNY 

Intrinsic complete characterizations of constructive, context-free and regular languages have 
been formulated by means of configurations of languages. The definition of a semiconfiguration 
is given here by generalizing the definition of a configuration. By means of semiconfigurations, 
an intrinsic complete characterization of context-sensitive languages is formulated. 

1. Languages and generalized grammars. If V is a set we denote by V* the 
free monoid over V, i.e. the set of all finite sequences of elements of the set V 
including the empty sequence A this set being provided by the binary operation 
of concatenation. We identify one-member-sequences with elements of V; it follows 
V £ V*. If x = X]X2, ... x„ e V* where n is a natural number and xt e V for i = 
= 1,2, ..., n we put |x| = n; further, we put \A\ = 0. 

An ordered pair (V L) where V is a set and L £ V* is called a language. The 
elements of V* are called strings. If (V, L), (U, M) are languages then we define the 
intersection (V, L) n (U, M) of these languages by the formula (V L) n (U, M) = 
= (Vn U,LnM). 

Let Vbe a set, suppose R £ V* x V*. Let us have x, y e V*. We writte x -• y(R) 
if (x, y) e R. Further, we put x =*• y(R) if there exist such strings u, v, t, z e V* 
that x = utv, uzv =- y, t -> z(R). Finally, we write x =>*• y(R) if there exist an integer 
p ^ 0 and some strings x = t0, tu ..., tp = y in V* that tt_x=> r,(R) for i = 1,2,. . . 
..., p. Then the sequence of strings (t,)f=o is called an x-derivation of y of length 
pinR. 

Let V be a set, VT £ V, S £ V*, R £ V* x V*. Then the quadruple G = 
= <V, VT, S, R> is called a generalized grammar. We put _?(G) = {x; x e V*, there 
exists an s e S with s =>* x(R)}. Then (VT, i?(G)) is called the language generated 
by the generalized grammar G. A generalized grammar G = <V VT, S, R> is 
called special if VT = V; then we write <V, S, R> instead of <V V, S, R>. A generalized 
grammar G = <V, VT, S, R> is called a grammar if the sets V, S, R are finite. 



2. Phrase structure grammars. Let G = <V, VT, S, R} be a grammar. This grammar 
is said to satisfy the condition 

(A) if (x, y)e R implies A #= x; 
(B) if (x, y) e R implies x e (V - VT)*; 
(C) if there exists and element c e V — VT with the property S = {a}; 
(D) if (x, y)e R implies |x| :§ | j | ; 
(E) if (x, y)eR implies jx| = 1; 
(F) if (x, y) e R implies 1 = |x| ^ \y\. 

A grammar with the properties (A), (B), (C) is called a phrase structure grammar. 
A phrase structure grammar with the property (D) is called context sensitive. A phrase 
structure grammar with the property (E) is called context free. A phrase structure 
grammar with the property (F) is called context free A-free. 

A language is called constructive [context sensitive, context free, context free 
A-free~] if it is generated by a phrase structure grammar [by a context-sensitive, 
by a context-free, by a context-free A-free grammar] (cf. [1]). Clearly, each context-
-free A-free grammar is context sensitive. Thus, each context-free A-free language 
is context sensitive. 

3. Theorem. (A) To each grammar G = <V, VT, S, R} there exists a phrase 

structure grammar H = <U, VT, {a}, P> such that £f(H) = Sf(G). 

(B) To each grammar G = <V, VT, S, R} with the property (D) there exists 

a context-sensitive grammar H = <U, VT, {a}, P> such that Sf(H) = Sf(G) - {A}. 
(C) To each grammar G = <V, VT, S, R} with the property (E) there exists 

a context-free grammar H = <U, VT, {a}, P> such that Se(H) = S£(G). 
(D) To each grammar G = <V, Vr, S, R> with the property (F) there exists 

a context-free A-free grammar H = <U, VT, {a}, P> such that S£(H) = Sf(G) - {A.} 

The assertions f A), (B) can be found in [2] Theorem 4.4, the proofs can be found 
in [3] p. 51 -52 . The assertion (C) coincides with 1.16 of [4]. The assertion (D) 
follows from (C) by Theorem 1.8.1 of [1]. 

4. Conditions for grammars. Let G = <V, VT, {a}, R} be a phrase structure [con
text-sensitive, context-free, context-free A-free] grammar. Then, we can suppose, 
without loss of generality, that G has the following two properties: (M) (x, y) e R 
implies x #= y; (N) (x,y)eR implies the existence of such zeV*, u,veV* that 
a =>* uxv(R), uyv =>* z(R). 

Clearly, each (x, y) e R for which the condition contained in (M) is not fulfilled 
can be cancelled and the language generated by the grammar obtained in this way 
is (Vr, Se(G)). Thus, we can suppose that G has the property (M). Similarly, a pair 
(x, y) e R which does not fulfil the condition contained in (N) does not appear 
in any cr-derivations of strings of Se(G) in R. Thus, each such pair can be cancelled 
and the language generated by the grammar obtained in this way is (VT, Se(G)). 



5. Topics of paper. The definitions of constructive, context-sensitive, context-free 75 
and regular languages (cf. [ l ] , Chapter II, 2.1) are formulated by means of grammars 
with certain properties. A complete characterization of regular languages which does 
not use explitcitly the concept of a grammar is well known ([1] Theorem 2.1.5). 
The author found complete characterizations of constructive languages [5], of con
text-free languages [4] and of regular languages [6] in the terms of the theory of con
figurations. 

The aim of this paper is to give an intrinsic complete characterization of con
text-sensitive languages, i.e. a complete characterization which does not use explicitly 
the concept of a grammar. It was necessary to generalize the notion of a configu
ration to this aim. A modification of this generalized notion gives a new intrinsic 
complete characterization of context-free languages. 

6. Definitions. Let (V, L) be a language. 
For x e V* we put x v (V, L) if there exist such strings u, v e V* that uxv e L. 
For x, y e V* we put x > y(V, L) if, for all u, v e V*, uxv e Limplies uyv e L. 
For x, y e V* we put (y, x) e E(V, L) if the following conditions are satisfied: 

y v (V, L), y > x(V, L), y 4= x, \y\ ^ |x|. Then x is called a semiconfiguration with 
the resultant y in the language (V L). 

7. Remark. If (V L) is a language, t, z e V* such strings that t =>* z (E(V, L)) then 
|f| ^ \z\ which follows from the fact that (y, x) e E(V, L) implies |y| ^ |x|. 

8. Definition. Let (V, L) be a language. Then, for x e L, we put x 6 B(V, L) if, for 
each t e L, t =>* x(£(V, L)) implies |f| = |x|. 

9. Remark. Let (V, L) be a language. Then for each x e L there exists a string 
s e B(V, L) that s =>*.x(£(V, L)). — Indeed, there exists at least one string se L 
with the property s =>* x(£(V L)); e.g. we can put s = x. If we take such an s of 
minimal length then, clearly, s e B(V, L). 

10. Definitions. Let (V, L) be a language. If s, t e V* are such strings that s => 
=> f(£(V, L)) then we put |(s, f)| = min {\q\; (p, q) e E(V, L), s => t({(p, q)})}. If 
s, t e V* are strings and (f,)f=0 and s-derivation of t in E(V L) then we put ||(f;)f_0| = 
= 0 if p = 0 and |(fi)f=o| = max{|(fi_1, f,)|; i = 1, 2, ..., p} otherwise. The integer 
||(fj)f_0| is called the norm of the s-derivation (fi)?=o °f t in -Ely* L). If s, f e V* are 
such strings that s =>* f(£(V, L)) then we define the norm \\(s, f)|| of the ordered pair 
(s, t) to be the minimum of norms of all s-derivations of t in £(V L). If t e L then 
we put |f|| = min{|(s, f) |; seB(V, L), s =>* f(£(V, L))}; the integer |fj| is called 
the norm of t. 

11. Lemma. Lef (V, L) be a language. Then, for each t e L, there exists a string 
s e B(V, L) and an s-derivation of t in E(V, L) such that the norm of this s-derivation 
is equal to ||f||. 



Indeed, there exists such an element s s _ ( V L ) that ||(s, f)|| = \\t\\. It means the 
existence of such an s-derivation of t in £(V L) that its norm is equal to || r||. 

12. Definition. Let (V L) be a language. Then we put X(V, L) = {(y, x); (y, x) e 
e £(V L), \x\ > \\t\\ for each t e L}, Z(V, L) = £(V L) - X(V, L). 

13. Corollary. Let (V L) be a language. Then, for each t e L, there exists at least 
one element s e B(V, L) such that s =>* t(Z(V, L)). 

Proof . According to 11, there exists a string seB(V, L) and an s-derivation 
(r;)f_0 of f in £(V L) such that ||(f.)f_o|| = ||t||. It follows from 10 that |(f,_ls *;)| ^ 
g |r|| for i = 1, 2, ..., p. Thus, for each i = 1, 2 , . . . , p, there exists an element 
(ph q,)eE(V, L) such that rf_ 4 => t,-({(p,-, a,-)}) and |a,.| = |(ief_ l s f,-)| <j ||f||. It follows 
(ph q-) e Z(V L) for i = 1, 2 , . . . , p and s =>* z(Z(V _)). 

14. Definitions. Let (V L) be a language. We put K(V, L) = <V _(V L), Z(V L)>. 

15. Theorem. Lef (V L) be a language. Then £C(K(V, L)) = L. 

Proof . According to 13, L _ ££(K(V, L)). 

LetV(«) denote the following assertion: If t e SC(K(V, L)) and there exists an element 
s e B(V, L) and an s-derivation of t of length n in Z(V L) then t e L. 

If t e _?(_;(V L)) and there exists an element s e _ (V L) and an s-derivation of t 
of length 0 in Z(V L) then t = se B(V, L) _ L. Thus V(0) holds true. 

Let m = 0 be an integer and suppose that V(m) holds true. Let us have 
t e <£(K(V, L)), s e _(V L) and an s-derivation ( f , ) ^ 1 of t of length m + 1 in Z(V L). 
Then ( m e L according to V(m). Further, rm => r(Z(V L)) which means the existence 
of strings u, v,x, ye V* such that tm = uyv, uxv = r, (y, x) e Z(V L) _ £(V L). 
It implies y > x(V, L), thus, t e L. We have proved that V(m) implies V(m + 1). 

It follows thatV(n) holds true for n = 0, 1, 2, .... It means -'(i-CV, L)) _ L. 

16. Definition. Let (V L) be a language. Then it is called finitely semigenerated 
if the sets V B(V L), Z(V L) are finite. 

17. Lemma. Let (V L) be a finitely semigenerated language such that A£L, U 
an arbitrary finite set. Then (V L) n (U, U*) is a context-sensitive language. 

Proof . If (V L) is a finitely semigenerated language then L = _f(i_(V L)) accord
ing to 15 and K(V L) = <V _(V L), Z(V, L)> is a special grammar according to 16. 
We put H = <V Vn U,. (V L), Z(V L)>. Then H is a grammar with the following 
properties: (y, x) e Z(V L) implies | . | _ |x| and i f (# ) = _?(J_(7, L)) n U* = 
= Ln U*. According to 3 (B) there exists a context-sensitive grammar G = 
= < ! . Vn U, {_}, R> such that ,S?(G) = _?(/_) - {A} = Ln U* - {A} = Ln U*. 



Thus, (V, L) n (U, U*) = (VnU,Ln U*) is the language generated by the context- 77 
sensitive grammar G, i.e. it is a context-sensitive language. 

18. Lemma. Let (U, M) be a context-sensitive language. Then there exists a finitely 
semigenerated language (V, L) with the property A $ Lsuch that (V, L) n (U, U*) = 
= (U, M). 

Proof . A) There exists a context-sensitive grammar G = (W, U, {o}, R> such 
that Sf(G) = M. According to 4, we can suppose that (y, x)e R implies y =f= x 
and the existence of strings z e U*, u, v e W* such that o =>* uyv(R), uxv =>* z(R). 
We put H = (W,{a},K}. Then Sf(G) = Sf(H) n U*. We prove that (W,Sf(H)) 
is a finitely semigenerated language. Clearly, A <£ Sf(H). 

B) First of all, as (y, x)e R implies the existence of u, v e W* with the property 
a =>* uyv(R), we have uyv e Sf(H) and yv(W, Sf(H)). 

Further, (y, x)e R implies y > x (W, Sf(H)) and y #= x follows from our hypo
thesis. The fact |j>| g |x| follows from the supposition that G is context sensitive. 

Thus, (y, x)eR implies (y, x) e E(W, Sf(H)) and R != E(W, Se(H)). 
C) Let us have z e Sf(H), |z| > 1. Then o =>* z(R) which implies o =>* 

=>* z(E(W, ^(H)) according to B. As \o\ = 1, we have z£B(W, Sf(H)) according 
to 8. Thus, z e B(W, Sf(H)) implies \z\ S 1 and B(W, Se(H)) is finite. Clearly, 
o e B(W, Sf(H)). 

D) We put N = max{|x|; (y, x ) e R } . Since z e Sf(H) implies o =>* z(R) and 
R c E(W, Sf(H)) according to B, we have | |z| ^ N for each z e Sf(H). According 
to 12, (y, x) e Z(W, Se(H)) implies (y, x) e E(W, Sf(H)) and the existence of a z G L(H) 
such that |x| ^ |z | | which implies \y\ g |x| ^ N. It implies the finiteness of 

z(w, se(H)). 
E) It follows from C and D that (W, Sf(H)) is finitely semigenerated language and 

that (U, M) = (U, Sf(G)) = (Wn U, Sf(H) n U*) = (W, Sf(H)) n (U, U*). 

19. Theorem. Let U be a finite set, (U, M) a language. Then the following two 

assertions are equivalent: 

(A) (U, M) is a context-sensitive language. 
(B) There exists a finitely semigenerated language (V, L) with the property 

A$L such that (V, L) n (U, U*) = (U, M). 

It is a consequence of 17 and 18. 

20. Remarks, definitions. We can modify the concept of a semiconfiguration 
in the following way: Let (V, L) be a language. For x, y e F * w e put (y, x) e E(V, L) 
if the following conditions are satisfied: yv(V, L), y > x(V, L), y 4= x, 1 = \y\ ^ |x|. 
Then x is called a strong semiconfiguration with the resultant y in the language 
(V, L). For x e Lwe put x e B(V, L) if, for each teL,t=>* x(E(V, L)) implies |r| = |x|. 
Further, for s,teV* such that s => t(E(V, L)), we put [(s, r)] = min {\q\; (p, q) e 



e E(V, L), s => t({(p, q)})}. If s, t e V* are strings and (t;)f=0 is an s-derivation of t 
in E(V,L) then we put [0 ;)f= o] = 0 if p = 0 and [(t ;)f=0] = max{[(.V-i, t .)]; 
i = 1, 2, ..., p} otherwise. The integer [(i,)f=0] is called the strong norm of the 
s-derivation (t,)f=0 of t in E(V, L). If s, t e V* are such strings that s =*-* t(E(V, L)) 
then we define the strong norm [(s, i)] o/ f/te ordered pair (s, t) to be the minimum 
of strong noms of all s-derivations of t in E(V, L). If teL then we put [t] = 
= min{[(s, *)]; seB(V,L), s =>* f(E(V, L))}; the integer [*] is called the strona 
norm of t. 

Further, we put X(V, L) = {(y, x); (y, x) e E(V, L), \x\ > [*] for each r e L } , 
Z(V, L) = E(V, L) - X(V, L). Finally, we define K(V, L) = <V, E(V, L), Z(V, L)>. 
Similarly as in 15 we prove 

21. Theorem. Let (V, L) be a language. Then Se(K(V, L)) = L. 

22. Definition. Let (V, L) be a language. Then (V, L) is called strongly finitely 
semigenerated if the sets V, E(V, L), Z(V, L) are finite. 

Similarly as in 19 we prove 

23. Theorem. Let U be a finite set, (U, M) a language. Then the following two 
assertions are equivalent: 

(A) (U, M) is a context-free A-free language. 
(B) There exists a strongly finitely semigenerated language (V, L) with the 

property A$L such that (V, L) n (U, U*) = (U, M). 

If we take into account the connection between context-free A-free grammars 
and context-free grammars described in the Theorem 1.8 A of [1] then we obtain 

24. Theorem. Let U be a finite set, (U, M) a language. Then the following two 
assertions are equivalent: ' 

(A) (U, M) is a context-free language. 
(B) There exists a strongly finitely semigenerated language (V, L) such that 

(V, L) n (U, U*) = (U, M). 

(Received December 4, 1972.) 
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