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KYBERNETIKA — VOLUME 33 (1997), NUMBER 4, PAGES 445 -461

BLOCK BIALTERNATE SUM WITH APPLICATIONS
TO COMPUTATION OF STABILITY BOUNDS

R. GHosH, S. SEN aAND K.B. Darta

The block bialternate sum for partitioned matrices is introduced in this paper and its
basic properties are established. Using the block bialternate sum, exact values of the max-
imal stability range of the parameter in integral control systems and singularly perturbed
systems as also the minimal range of the gain parameter in a high-gain feedback system are
determined. The proposed method is claimed to be computationally superior to all other
existing methods.

1. INTRODUCTION

Stability 1s an important property to be analyzed for all practical control systems.
For cases of integral control, singularly perturbed systems and high-gain feedback
systems, the bound of a scalar parameter has to be determined beyond which the
system stability is lost. Fuller [2] showed that the Kronecker sum of the n x n system
matrix with itself may be used for such stability analysis. The key property of the
Kronecker sum which makes it suitable for this purpose is that its eigenvalues are
the pairwise sums of the eigenvalues of the original matrix. However, any block
structure in the original matrix is lost while computing the Kronecker sum. Hyland
and Collins [3] defined a block Kronecker sum which has similar properties to the
Kronecker sum while preserving the block matrices of the original system. In spite
of this, the block Kronecker sum (as also the Kronecker sum) is not convenient
for analytical purposes owing to its high dimension of n?. Tesi and Vicino [11]
gave a lower order n(n + 1)/2 formula for finding the robust stability bound based
on the Lyapunov sum matrix properties as given in Fuller [2]. Mustafa [8] used
the concept of the block Kronecker sum to define a block Lyapunov sum of order
n(n + 1)/2. This reduced the dimension of the matrix being used for computation
while still retaining the block structure of the original system matrix. Fuller [2]
in the same work provided an alternative critical criteria for stability involving the
system matrix of order n as well as the bialternate sum of the matrix with itself
which is of dimension n(n — 1)/2 only. In the present paper, a block bialternate sum
of the system which combines the advantages of the low order bialternate sum with
those of the block Kronecker sum is defined, and its basic properties are established.
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The block bialternate sum thus defined is used with advantage to solve various
two block-structured stability problems. Firstly, the radius of integral controllability,
defined by Lunze [5] and Morari [7] as the maximal integral gain for closed-loop
stability as the integral gain increases from zero, is determined using this approach.
The second problem solved using this method is that of determining the stability
bound ¢ of a singularly perturbed system such that it is stable Ve € [0, &) where
¢ is the singular perturbation parameter. This problem has earlier been solved by
Sen and Datta [9] using the bialternate sum to obtain an (ny + ng)(n1 +ny — 1)/2
dimensional eigenvalue formula, n; and ny being the dimensions of the two blocks in
the two block-structured system. Both the first and the second problem have been
solved by Mustafa [8] using the block Lyapunov sum leading to a much lower nin,
dimensional formulae in both cases. For the singularly perturbed system, however,
his approach requires two extra assumptions to be made for the solution. The
method presented in the present paper requires only one of those assumptions, thus
incurring considerably less loss of generality for the solution. Moreover, while still
retaining the overall dimension of the eigenvalue formula at nins for both cases, the
dimensions of two block matrices required to be inverted have been reduced from
ni(ni+1)/2 to n;(n;i—1)/2 for i = 1,2 as compared to Mustafa’s formulae, leading to
a considerable saving in computation, particularly for higher order systems. Finally,
another stability problem has also been addressed using this same approach. The
lower bound gy of the high gain parameter g in high-gain feedback systems such
that the systems are stable Vg € (go,o0) has been computed by Sen, Ghosh and
Datta [10] using Fuller’s [2] approach. The present apyroach yields a much lower
dimensional formula for the solution of the minimal stability bound.

The paper has been organized as follows. In Section 2 of the paper, the critical
stability criteria developed by Fuller [2] have been stated in terms of the Kronec-
ker, Lyapunov and bialternate sum of the system matrix A with itself. Then, the
Kronecker sum, the block Kronecker sum as well as the bialternate sum have been
defined and their basic properties have been stated, particularly those required for
the stability analysis. While the Kronecker sum and block Kronecker sum have
been essentially compiled from Brewer {1] and Hyland and Collins [3] respectively,
the properties of the bialternate sum have been taken in part from Fuller [2] while
the rest have been developed analogous to the properties of the block Lyapunov ma-
trix as in Mustafa [8]. In Section 3, the block bialternate sum has been defined and
the structure of the matrix for systems with a 2-block structure has been derived. Ir
Section 4, the properties of the block bialternate sum have been exploited to solve
the stability problems as stated above. Finally, some lengthy proofs have been given
in the Appendix.

2. DEFINITIONS AND PROPERTIES

- 2.1. Critical stability criteria (CSC)

Let us consider a nominally stable system A, which is subject to disturbances. When
this system encounters instability, due to perturbations, one or more of its eigen-
values cross over into the right half of the s-plane (RHP) from the left half (LHP).
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At the boundary of stability, either a real eigenvalue becomes 0 or a complex con-
jugate pair of eigenvalues pass onto the imaginary axis or both these cases occur
simultaneously.

The Kronecker sum matrix A®A has eigenvalues A; + A; V1 < 4,5 < n, where
Ai (1 < i< n) are the eigenvalues of A. Thus, we have

n
det(A4@4) = [ i+ ),
1,j=1
which becomes 0 iff either or both of the above cases occur. So, a critical stability
criteria (CSC) is that
2

(=)™ det(A®A) > 0. (1)
But, in this case, we note a redundancy in the sense that every eigenvalue of the
form (A; + Aj) Vi # j is repeated twice. This is removed, causing a considerable
saving in dimension, by considering the Lyapunov sum matrix A®A which also has
eigenvalues (A; + A;) but only for 1 < ¢ < j < n. So, the CSC can alternatively be

expressed as
(=1)/Dn(+D) Get (AT A) > 0. (2)

This naturally leads us to consider the possibility of a further reduction in the
dimension of the matrix used for determining the CSC. We note that any crossing
over of the eigenvalues through the origin is detected by det(A). So, it is required
o.ly to check if a pair of complex conjugate roots cross over through the imaginary
axis. This is done using the bialternate sum matrix AGA (Fuller [8]) which has
eigenvalues A; + A;,V1 < ¢ < 7 < n. Thus, the third CSC is

(i) (—1)" det(A) > 0
> 0

(i) (=1)A/2n(=1) det(ABA) (3)

Let us now consider the construction and some basic properties of these matrices.

2.2. Kronecker sum

If A€ ®R"*" and B € R"*", then (A ® B) € R *"" is the Kronecker product of
matrices A and B (Brewer [1]) such that
anB -+ aB
A®B = . - (4)
anlB e annB
For A € R"*" and B e R™"*", (A@ B) € #7°%7” is the Kronecker sum of matrices

A and B such that
. APB=AQ®I,+I,® B. (5)

It is useful to know that there exists a permutation matrix (so called because it
only interchanges certain rows and columns) Kmn € R77X™mn with the property

Kmn = KE =Ko , (6)
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such that for B € R™*™ anq 4 ¢ pnxn
B®A=Kn, (A®B) - Kum (N

which justifies the nomenclature as in (Magnus [6]). For the case when m = n
2
Kmn = Knn € R %7 with the property

)

Kon = KT = K} » (8)

nn

‘2.3. Block Kronecker sum

Let us consider the case when the matrices A and B are partitioned matrices. Then
the operations of ® or @ destroy the block structure. Hyland and Collins [3] over-
came this drawback by defining block-structured versions of ® and & which retain all

important properties without destroying the partitioning. Let the matrix 4 € ®7xn
be partitioned as

A o Ay, .
A = -9
Arl T Arr
where A;; € R™:%"% and 5°7_, ni = n. Then A is said to have the block structure®

7 := (n1,---,n,;) and is said to belong to W™*® which denotes the set of all real
n x n matrices with block structure @ = (n; ... n,). Then, for 4, B € R7*7

(A®yB) € R7°%n% is the block Kronecker product where

A11®GB ... A,OB
A@yB = v (10)
Arl@B s AM-@B ’
such that (A;;©B) € R xn5n ig defined ag

Aij® By - A;; @ By
AijOB = . (11)
Aij ®Br1 Aij®Brr
Thus, similar to (5), we have (A®;, B) € R %1% is the block Kronecker sum matrix
such that
A@bB = A®b1n + [n®bB~ ’ a (12)

The block Kronecker sum is just a rearrangement of the elements of the Kronecker
sum and vice versa. Thus, there exists a permutation matrix Kam € R"**n* guch
that

A®yA = KE (A A) K. (13)
Thus, (A®yA) and (A @ A) are similar matrices, so the eigenvalues of (4@, A) are

also the n? numbers (); + A;) [1 < i,5 < n] where ;(1 < i < n) are the eigenvalues
of A.
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2.4. Bialternate sum matrix

We have seen that of all the n? eigenvalues of (A® A) [or equivalently (AdyA)], it is
necessary to know only n(n — 1)/2 of them, namely (A; + A;)[1 < j < i < n], where
Ai (1 €7 < n) are the eigenvalues of the matrix A, for stability analysis (Fuller
[2]). For an n x n matrix X with elements z;;, the n? vector vec(X) of the stacked
columns of X is defined as (Brewer [1])

T R
vee(X) = {xu-'-znﬁxuu-wngf---5x1n~~-$nn] . (14)

Let us define the column vector bivec(X), having only n{n — 1)/2 elements of X, as

' T
bivec(X) = [l‘gl A--xn13m32-~zn25-- *rn(n—l)] . (15)

Moreover, let X be a skew-symmetric matrix, that is

—ZXjq lfl#]
0 ifi=j.

(16)

Lij =

For such a matrix X, the elements of vec(X) are the same as those of bivec(X)
with some repetitions and some additional zeros. Thus, there exists an unique full
(column) rank n? x n(n —1)/2 matrix By, called bialternation matrix (say) satisfying

vec(X) = B, - bivee(X) (17)

for all skew-symmetric X € "> It is to be noted that the only possible elements
of B, are 0, 1 or —1.

Now as B, is ¢/ full (column) rank, its pseudo-inverse is

- -1 -
Bl = (B B,) By ~ , - (18)

such that

A bivec(X) = B} - vec(X) (19)
for all skew-symmetric X € Rnxn,
Then, for A € Rn*7, .
. ABA = Bl(A® A)B, ‘ ©(20)
is the n(n — 1)/2 dimensional square matrix defined as bialternate sum matrix in
Fuller [2].

In order to appreciate some properties of the bialternation matrix B,, let us
define the n? x n? matrix

Nipn = (In2 = Knn)/2. (21)

- The following lemma states some of the properties of K, By, and Ny, as well as
their interrelationships which will be used quite often to develop the desired results.
These properties follow analogous to those in Lemma 2.1 of Mustafa [8].
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Lemma 2.1. Let B,, Knn and Np, be defined as in equations (17), (8) and (21)
of this paper. Then '

(i) BLBn = In(n-1)/2

(i) BBl = Non = (=Knn) - Non = Non - (—Knn)

(iii) By = (—Knn) - Bn = Non - Bn

(iv) BJL = BrTm ) (—I{nn) = BrTx * Nin

Considering matrices A and B € R"*", we have

(v) (ABA) = Bl (A®A)"'B, if (A® A) is nonsingular

(vi) 2Bl (A® B) B, = 2B}(B® A)B, = B} (A® B+ B® A) B,

(vii) (A — B)B(A - B) = (ABA) — (BBB) = (ABA) — 2B} (I, ® B) B,
(viii) (kA)B(kA) = k(ADA) Yk € R.

Finally, for X € fmxn

(ix) (X ® X) Bn = Nom (X ® X) By,.

3. BLOCK BIALTERNATE SUM

3.1. Definition

The motivation for defining the block bialternate sum arises from the fact that the
computation of (A@GA) does not exploit the block-structure of the system matrix
A, though it takes into account the skew-symmetry. The block bialternate sum is
conceived to retain the block-structure of A while still exploiting the skew-symmetry
as used in the third critical stability criteria by Fuller [2] so as to be of order only
n(n —1)/2.

Proceeding on lines similar to those for defining the bialternate sum, we define
the n(n — 1)/2 x n(n — 1)/2 matrix

ABpA = BIL—(AGBbA)Bﬁ (22)

which we call the block bialternate sum of A with block-structure @ = (ny,-- -, n;)
while By is called the block bialternation matrix having elements 0, 1 and (-1). The
pseudo-inverse B% is simply obtained from BL by replacing all BZ‘,» blocks by B,Tl_‘
and dividing all other non-zero blocks by 2.

We note that A@;A is obtained by just a rearrangement of the rows and colurans
of A®A. This is analogous to the case for the Kronecker and block Kronecker sums
and we infer similarly that (A®;A) and (A®A) are similar matrices having the same
n(n — 1)/2 eigenvalues, namely (A; + A;) [1 < j < i < n] where A;(1 < i < n) are
the eigenvalues of A. This allows us to restate the critical criteria of stability in (3)
as

() (=1 det(A) > 0} (23)

(i) (~1)rr=D/2det(AB,4) > 0

thus exploiting the lower order of matrix (AGA) while still retaining the block-
structure.
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3.2. The 2-block case

Several practical systems are those with a 2-block structure as is the case with
singularly perturbed systems also. For the general 2-block case, 7t := (n1, n2) is the
block-structure of A so that

A Ap !
A = 24
[ A1 Az ] - ' (24)
where Aj; € RM1X"M1 | Ay, € RM2XN2,
Then,
B, 0 0
_ 0 Inin, 0
Br = | ¢ (CKkoa) 0 (25)
0 0 B,
and
B, 0 0 0
Bl = | 0 (/Dlan, (1/2)(~Knwm,) 0 | (26)
0 0 0 B,
From Hyland and Collins [3],
A1 @A L, ®A1n A1 QI 0
I, Ay A1 ® Ax 0 A2 ® 1,
AP A = ! 2 2
B A ® I, 0 Ap®An I, ® A (27)
0 A ®IL,, In,®A2 Axpn®Axn

Using (25), (26) and (27) in (22) and simplifying using the properties as in Lem-
ma 2.1, we have

_ An®An 2B} (In, © Ar) 0
ADpA = [(%@Au)Bm A1 & Agy (A12® In,)Bn, | . (28)
0 2B} (A2 ® I,) AxB A

4. APPLICATIONS

The block bialternate sum has been used to solve the general problem of integral
controllability. This approach has then been adapted to solve for stability bound
of the standard singularly perturbed system. The high-gain feedback system has
also been considered, in which the lower bound of the high-gain parameter has been
evaluated using this method. In all these cases, the use of block bialternate sum
results in a lower-order formula while also providing certain other computational
advantages over other methods.
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4.1. Radius of integral controllability

Let us consider the negative feedback cennection of the m x m stable n-state system
G(s) = D+ C(sI — A)”'B and an integral controller kI,,/s. Lunze [5] and Morari
[7] showed that there exists k* > 0 such that (kIn/s) stabilizes G(s)Y k € (0, k*) iff
G(0) has eigenvalues only in the open RHP, in which case G(s) is said to be integral
controllable. Mustafa [8] used the concept of block Lyapunov sum to evaluate the
largest possible k*, denoted as the radius of integral controllability & .. using a
mn dimensional eigenvalue formula. However, this formula requires that two block
matrices of dimension m(m + 1)/2 and n(n + 1)/2 be inverted. The use of the
block bialternate sum reduces the order of these block matrices to m{m — 1)/2
and n(n — 1)/2 respectively. This provides considerable computational advantage,
particularly when n and m are of higher orders, while still retaining the overall
dimension of the eigenvalue formula at mn.

Some notations used for stating the following results are:
At () = smallest positive real eigenvalue
or + oo (if no positive real eigenvalues exist)

and
Max() = largest positive real eigenvalue

or 0 (if no positive real eigenvalues exist).

Theorem 4.1. Let G(s) = D + C(sI — A)"' B be the transfer function of an n-
state stable (m x m) system that is integral controllable. Assuming that D and —D
as well as A and (—A) have no common eigenvalues where A := A — BD~'C, the
radius of integral controllability is

Frax = Mn(Y), Y g R 7 (29)
where |
Y = (A8 D)+2(A@ D C) By (B® L) Byl
[ @@ a7 0

“Bl(Ce D) |

[ Bl (I, ® BD™1)
0 (DED) "

Proof. See Appendix A.1l.
4.2. Stability bound of singularly perturbed systems
The standard singularly perturbed system

zy = Az + Az
€xy = Anzi+ At



Block Bialternate Sum with Applications to Computation of Stability Bounds 453

where z; € R"1, 20 € RN™* is stable Ve € (0,¢™) where there exists an €* > 0 if
Az—zl exists and both Asy and Ag(= Ay — A12A;21Agl) are asymptotically stable
(Kokotovié et al [4]), € being the singular perturbation parameter. Mustafa [8]
transformed the problem to one of radius of integral controllability for which an
niny dimensional eigenvalue formula was derived using the block Lyapunov sum
approach. Sen and Datta [9] had solved the same problem using the bialternate
sum approach to give a (n; + ny) (n1 + ny — 1)/2 dimensional eigenvalue formula.
Here the block bialternate sum is used to obtain an nyny dimensional formula which
also incorporates the advantage of reducing the order of the two block matrices to
be inverted to n;(n; — 1)/2 from n;(n; + 1)/2 for ¢ = 1,2 as required in the block
Lyapunov sum approach. Moreover, no transformation of the original system matrix
(as required in Mustafa’s [8] approach) is necessary for this method. This ensures
that one of the two extra assumptions made by Mustafa [8] becomes redundant.
The maximal stability bound €},,, 1s thus obtained from the formula as stated in
the following theorem.

Theorem 4.2. Consider the following singularly perturbed system

z Az + Ajazo

{l

Exy = Asixi+ Ao

where ©; € R"', 2y € R™2. Assume that A4,y and Ag = Ay, — 141214;21,421 are
asymptotically stable and A;; and (—A11) have no common eigenvalues. Then, the
maximal €* > { such that the system is stable Ve € (0,¢*) is given by

E;Knax = 1/A;ax(Z) (30)

where Z is the niny X nyny matrix

Z = (A ®A5)+2[(Ao® Az Az1) By (A2 ® In,) Ba,)
=, -1
X (AO@AU) —0 " y [ le(‘[nl ®A12A—2—121) ] |
0 (Ag2DAz) —Bl (A1 ® A7)

~ Proof. Considering the critical criteria of stability as stated in eqn(3), we have

(i) (—=1)"det(A) >0
, — (31)
(i) (=1)*(r=1/2det(AB,A) > 0 }

where
A = ( An Ayg >
' A21/6 Azg/E '
" The first condition is satisfied as Ay and Ag, are assumed to be asymptotically

stable. The eigenvalue formula i1s obtained from the second condition in a manner
similar to that in Appendix A.1.
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4.3. Minimal stability bound for high—gain feedback systems

The high-gain feedback system can be locked upon as a particular case of singularly
perturbed systems. Introduce a high-gain feedback system

a] = s e la ] (32)
v = g[C cz][g], )

Young et al [12] have shown that under certain assumptions the closed loop system

can be transformed into the singularly perturbed form
& = Hudi+Hipd
. R R - (34)
HI2 = ,qulazl +(/lH22+CzBQ)l‘2

where p = 1/g; g being the high-gain parameter. H;; V ¢, j = 1,2 are the trans-
formed block matrices along with CyBy. As p — 0(g — o), the system eigenvalues
in (34) decompose into the fast and slow modes as shown in Young et al [12] as

M =(UMWKMM+OWHi=L%~m2}
A= Ai(Hn)+0(p) i=12,...,n1.

Kokotovié et al [4] states the condition for the existence of a lower bound go > 0 for
which the system as in (34) remains stable Y g € (go, 0}, as

(35)

Lemma 4.1. If (C2B;2) and Hy; are Hurwitz matrices, then there exists a go > 0
such that the resulting closed loop system (34) is asymptotically stable V g € (go, 00).

Let us now represent the closed loop system (34) as

= H(g)% (36)
where
. Hyy Hy,
Hig) = Hy1 (Haa+9CaBs)

which is Hurwitz as g — oo owing to the aforementioned conditions in the Lemma.
The investigation of the stability of the system matrices when subjected to parameter
variations leads to the critical criteria as in (31). Of the two criteria, the first
criterion, as shown in Sen, Ghosh and Datta [10], reduces to det[gI+P(C2B2)~'}>0
where P = Hgy — H21H1_11H12.

The second criterion can also be transformed into an equivalent form, details of
which are given in Appendix A.2.

The minimal stability bound for the high-gain feedback system can thus be ob-
tained from the following theorem in terms of an ng[n; + (ny — 1)/2] dimensional
eigenvalue formula which is lower than the (n; + ng) (n1 + ny — 1)/2 order formula
given by Sen, Ghosh and Datta [10] particularly as (n1 + n2) becomes greater than
3. It is to be noted that the order of the matrix cannot be reduced in this case to
nyng, as for singularly perturbed systems.
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Theorem 4.3. Consider the linear time-invariant high-gain feedback system with
its singularly perturbed representation (34), with g = 1/g > 0, and assume H;; and
CyB; are Hurwitz. The necessary and sufficient conditions for the stability of the
system are

(a) det[gl + P -(CaB3)"]>0 } 37)

(b) det[gl + QR™!] >0
where P = Hyy — Hngl_llle and

- = -1
(Hii®Ha2)-(In, ®(C2B2)™")  (H12®1n,) B, (CyBa®C2Bs)

- —1
QR = —{2(1n,®H21)Bn, - (H11@&H11)
= B} - (In, ® H12(C2B2)" 1)}

- = = -1
2B}, - (H21 ® (C2B2) Y (H22®H22)(C2B2@C2 Ba)

Under these conditions, the minimal go > 0 such that the system is stable Vg €
(g0, 00) is given by

go = max(g1, g2) (38)
where
g1 = Andi:xax[_‘P'(CZB?)—I]
g2 = ’\r-;ax[_QR_l]'

Proof. As given in Appendix A.3.

4.4. Examples
4.4.1. Singuarly perturbed system

Consider the example of a 4 x 4 dimensional singularly perturbed system as given
in Sen and Datta [9] and Mustafa [8]. The block matrices for this system are

-3 4 -3 4
AA11 = [ 0 2], A = [_1 _2]

3 Ly P
An = [0 2],1422:[0_3].

Using Theorem 4.2,

-0.7 01 0.4 2.0
0.2571 -0.6 -—0.1714 1.4476
0.0286 0.2  0.5143 0.8571
0.0286 0 0.1143 0.7238

7z =

whose eigenvalues are the same as the non-zero eigenvalues of (—F E~1) as computed
in Sen and Datta [9]. The matrices E and F' (both of order 6) were constructed
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using the bialternate sum concept as defined in Fuller [2].

The eigenvalues of Z are —0.7976, —0.4865, 0.2021 and 1.0201.

So, €fax = 1/1.0201 = 0.9803. Mustafa [8], using the block Lyapunov sum approach,
also obtains a 4 x 4 matrix Z' whose eigenvalues are —2.0555, —1.2538, 0.9803 and
4.9480, such that ¢}, ., is the minimum real positive eigenvalue.

However, while computing Z', his method requires the inversion of two 3x 3 matrices.
The two matrices, which are the Lyapunov sums of A (= Agg — AglAl"llAlg) and

Aq1 with themselves, are

o ~8/3 46/3 0 -6 8 0
A@A = 1 —7/3 23/3 N AlléA“ = 0 -1 4
0 2 -2 0 0 4

which have to be inverted in order to evaluate Z’._The block bialternate sum ap-
proach requires the inversion of (Ag@Ap) and (A28 A22), which in this case are

(ABAg) = (=35/6) and (Agp®Ag) = =5.

\

Thus, in addition to an overall saving in dimension as compared to Sen and
Datta’s [9] method, we also achieve a considerable saving in computation of the two
inverses. These advantages are also obtained while evaluating the radius of integral
controllability of an integral control problem. ’

4.4.2. High—gain feedback

The eigenvalue formula for the minimal stability bound g¢ for a high-gain feedback
system is slightly different from the other two cases owing to the particular structure
of the closed loop high-gain feedback system.

Considering the feedback system studied by Young et al [12], we have

Hy = [-3], Hs = [1 -05]
_ 0 _ 3 0 _ 0 1
Using these in the formula given in Theorem 4.3, we obtain
- |3 0 o o_ [ -3 -15
P = l: 8 —3 } , SO P(CZB2) = [ _11 -4 :I .
while v
0 0 —-025
QR '=[ 16 6 =050
60 30 -—5.00
Thus
g1 = 7593,

9o = 2.807
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and

go = max(7.593,2.807)
7.593.

For the 3 x 3 system, the dimension of QR™! is the same as that of FE~! as
evaluated in Sen, Ghosh and Datta [10] using the bialternate sum. However, as the
system order increases, the saving in dimension is considerable. For n; = 4,ny = 2
(namely, for a 6 x 6 system), E and F are 15 x 15 matrices while QR™! is of order
8 x 8 only. Moreover, matrix E requires to be inverted in the earlier case, while the
maximum order of inversion required in the present method (in order to compute

QR 1)isn;.(n;—1)/2.

5. CONCLUSION

In this paper, the block bialternate sum has been defined and its properties have
been explored. This has then been used to solve various stability problems, namely
those of integral controllability, singularly perturbed systems and high-gain feedback
systems. Exact bounds for these problems have been evaluated using this method
as for example, in the high-gain feedback case, the minimum value of the high-gain
parameter ¢ has been evaluated such that the system shows instability if any value
of g lower than or equal to that value is used for feedback purposes. Mustafa [8] uses
the block Lyapunov sum approach to compute the exact bounds for both the integral
control as well as the singularly perturbed problems. Though the dimensions of the
eigenvalue formulae in both cases (block Lyapunov sum approach and block bialter-
nate sum approach) are the same, yet the dimensions of the matrices required to be
inverted to compute these formulae are lower using the present method. This gives
a considerable saving in computation. Moreover, for the singularly perturbed case,
two additional assumptions have been made by Mustafa [8] of which one becomes
redundant using the present approach.

The approaches used by Sen and Datta [9] and Sen, Ghosh and Datta [10] yield
exact results for the singularly perturbed and high-gain feedback systems respec-
tively. The present method is, however, computationally superior to both, being of
lower dimension, as it exploits the block-structure inherent in the systems.

. A. APPENDICES

A.1. Proof of Theorem 4.1

The closed loop A-matrix for the feedback connection of kI, /s to G(s) is

_ [A -Bk
Ao = [c —Dk]'

Let us define _
I/(k’) = det(AC]§bAC|).
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Then
v(k) = [T +25)
i>j
where the upper limits of the product are ntm and A; (i=1:n+m) are the eigenvalues
of Aq. Thus, if k varies from a value at which A is Hurwitz, then v(k)=0iff 3 a
pair of purely imaginary eigenvalues. The cendition that D and —D as well as A
and —A have no common eigenvalues takes care of the fact that no eigenvalues of
Aq crosses into the RHP through the origin. Thus, integral controllability of G(s)
ensures that all the eigenvalues of A belong in the open LHP Yk € (0, kJ,,,) where
kX .. is the smallest positive real root of v(k) = 0 (or +oo if there are no positive
real roots).
Now, to consider v(k) = 0 as an eigenvalue problem, we have from (28),

_ ABA —2kB}(I, ® B) 0
CAa®rAa = (I, ® C) By A® (—kD) —k(B® In) Bm |- (39)
0 2BL(C® In) —k(D®D)

Note that the assumptions made for this problem are
(1) A is asymptotically stable, so det(A@A) #0.
(ii) D and —D have no common eigenvalues, so det(DBD) # 0.
and (iii) A and —A have no common eigenvalues, so det(ABA) # 0.

Applying the Schur formula for partitioned determinants twice ylelds

v(k) = det(Aa@Aa) = (=)™ /2 det(ABA) - det(DSD) - det(A — kD)

where ,
A = (AQIn)=2AB® In)Bn(DBD)"'BL(C @ Im)
D = (I,®D)-2(I, ® C) Bo(ABA)™ B} (I, ® B).
Thus .
k:nax = ’\:ﬁn(AD—l)

which exists only if D=1 exists.
But using the properties of Kronecker products, we find

det D = det(D)™ - det(A @ A)~L. det(A @ A)

which is nonsingular as all the determinants are nonsingular. Thus D! exists.
Now to show that ¥ = AD~! we make use of the properties in Lemma 2.1. We
start by using the matrix inversion lemma to obtain

D' = (I, @ DY) +2(I, ® D™'C)B.(ABA)"'B! (I, ® BD™Y).
Then o
AD'=(A® DY) = 2(B® 1) Bn(DBD) 'BL(COD™ )+ as+as  (40)
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where
o = 2A®D'C)B.(ABA)"'B! (I, ® BD™)
az = —4(B® Iy) Bn(D®D) ™' B}, (C ® D™1C)B,.(AGA)~ B! (I, ® BD™1).

Examining part of a3, we have

2B!.(D® I,) B, B}, (D™'C ® D™'C) B,
(D&D) B}, (D'C ® D™'C) B,. (41)

2B!,(C® D~C) B,

Substituting (41) into the expression for a3, we have
ay = —2(BD™'C ® D™'C)B,(ABA)~' B! (I, ® BD™').

So,
a1+ ay=2(A® D™IC)B,(AGA)'Bl (I, ® BD™1) (42)

Substituting (42) into (40), we have

AD™' = (A®D ') —2B®In)Bn(D&D) !B} (C® DY)
+2(A© D™'C)B.(ABA)"'Bl (I, ® BD™Y)
=Y

as claimed.

A.2. Proof of Theorem 4.3

For the high-pain feedback closed loop system matrix

_ [ Hn Hyo
H(g) = Hy (H22+90232)]

the second critical criterion for stability in terms of (31) is
(~1)"(=1/2 det[H (9)BpH (g)] > 0.

From (28), we have

= Hu®Hn 2B}, (In, ® Hi2) 0
H(g)®sH(g) = | (Iny ® H21)Bn, Hu ® (H22+9C2By) (H12 ® Iny)Bn, ,
0 2B}, (H21 ® In,)  (Ha2+9C2B2)®(Hzz +9C2 Bz)

(43)

Using Schur’s partitioned determinant once yields

det(H(9)®,H(g)) = det(H1,®Hy1) - det S (44)
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where
(Hi1 @ (H22 + gCo By))
—{2(In, ® H21) By, (Hi2® I,,)B
S = (HHQBHU)_I.B:“.([,” ®H12)}
Bl ,(Hy ® In,) (Haz + gC2B2)&(Haz + gCaBs)
= Q+gR
where
(H11 ® Hyo)
"{2(_]_;?1 ®H21)-Bn,- (H12®In2)B
Q = (Hu®Hn) ™ B} (In, ® Hi2)}
QBlz(Hm ® In,) » (H22§H22)
and
0 (CQB2-§0232)
Now

detS = det(Q +gR)
= det(QR™' 4gI) -detR

because det R is nonsingular as C3B; is Hurwitz.
Similarly, det(H11®H11) is also nonsingular, H;; being Hurw1tz so the eigenvalue
problem reduces to the solution of

det(¢97 + QR™1) =0

which yields the critical value of g for which H(g) becomes unstable due to the
existence of a pair of purely imaginary eigenvalues of the system.

(Received February 14, 1995.)
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