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KYBERNETIKA CISLO 2, ROCNIK 6/1970

n-ary Grammars and the Description
of Mapping of Languages*

Karer CuLfk II

The n-ary grammars generating relations (set of n-tuples of words) are introduced. Chomsky’s
classification is generalized for them and closure, projective and other properties of different
classes of relations generated by n-ary grammars are studied. The n-ary grammars are used for
describing mappings of languages (e.g. translation) and for the classification of their complexity.

INTRODUCTION

Up to now, the phrase-structure grammars have been used for describing languages,
i.e. sets of words over some alphabet. There alrecady exists a number of different
generalisations of phrase structure grammars, we introduce another, namely the n-ary
grammars which generate relations, i.e. sets of n-tuples of words over some alphabets.
An n-ary grammar is a system of n terminal alphabets, n nonterminal alphabets, a set
of productions and an initial n-tuple of nonterminals. Each production is an n-tuple
of common productions or empty places. Three different types of generation of rela-
tions by n-ary grammars are introduced and their properties and relations are inves-
tigated. Chomsky’s classification is generalized for n-ary grammars and closure,
projective and other properties of different classes of relations are studied.

The binary grammars are used to describe alphabetical mappings, particularly
translations, from one language to another. The types § or y of generation are par-
ticularly convenient for this application. The translations definable by binary gram-
mars include well-translation [1] or syntax-directed translation [7] as simple cases.
The classification of complexity of mappings by the type of grammar defining them
are introduced and several examples are given.

* This research was partially supported by the National Research Council of Canada, grant
A-4096.



100 PRELIMINARIES

For basic terminology and notation see S. Ginsburg [4] and C. C. Elgot, J. E. Mezei
[3]. Here we consider them only briefly and with certain modifications:

Let 2 be an alphabet, Z* a set of all words over the alphabet including the empty
word g; (Z*)" is the set of all n-tuples of words over X.

Concatenation of n-tuples: if u, v are in (Z*)*, u = (uy, ..., u,), v = (05, ... V)
then uv = (u,vy, ..., u,0,).

Kleene’s operations for relations (sets of n-tuples of words):
if R < (2*)", S = (Z*)" then R U S is the common set union;
if R < (I*)", S = (Z*)" then concatenation RS = {uv |u in R, v in S};
if R = (2*)" then iteration R¥ = R®U R U RR U RRR U ..., where

R’ = (e3¢, ...,8)
———
n-times

The domain of a binary relation R is denoted by dom R, dom R = {x|(x, y) is
in R}.

Let G = (Vy, Vy, P, S) be a phrase structure grammar in the sense of [4], L(G) the
language generated by the grammar G. Let V = Vi U Vy.

A general phrase structure grammar is said to be of the type 0.

A grammar G = (Vg, Vy, P, S) is called context sensitive (type 1) if each produc-
tion in P is of the form uAv — uyv where A isin Vy, u, varein Vyand yisin V* — {e}.

A grammar G = (Vg, Vy, P, S) is called context-free (type 2) if each production
in P is of the form A — v where A4 is in Vy and v is in V*.

A grammar G = (Vy, Vy, P, S) is called finite state (type 3) if each production in P
is of the form A — vB or A — v, where A, B are in ¥y and v is in V?.

A finite state grammar G = (Vr, {5}, P, S) (one nonterminal symbol) is said to be
of type 4.

n-ARY GRAMMARS

Definition. An n-ary grammar G is a system (V3 x VZ x ... x V&, VE x V& x ...
. X Vi, P, (81, 83, ..., S,)), where VinVi=0,i=1,2,...n,

(i) Vi, i =1,2,..., nare alphabets (of terminal symbols);

(ii) Vi, i = 1,2, ..., n are alphabets (of nonterminal symbols);

(1ii) P is a finite nonempty set of n-ary productions. An n-ary production is an
n-tuple (41, 43, .-+, 4.), Where g; is cither empty or a pair (x, y), where x is in V5 —
— {¢}, yis in V*. V¥ denotes here and throughout the whole paper the union V3 U V4.




The pair (x, y) is a production in the usual way and is normally written in the form
X = y.
(iv) (S1, Sa» -..» S,) is the initial n-tuple, S;is in Vy for i = 1,2,...,n.

Note. A n-ary production (qy, 4, ..., q,) Will also be written in the form u — o,
where u = (uy, s, .., ), 0= (D), V2, o0, 0,), ;> 0, = g for q; £ 0, u; =v; =¢
for g; = 0.

Definition. Let G be an n-ary grammar. Let the n-tuples u, v be in V!* x V2% x
X ... x V"™, We write u = v if there exist n-tuples x, y, zin V1% x V2% x .. x P
win VE¥ x V2¥ x ... x V&, such that u = ywz, v = pxz and w — x is in P.

Let relation =* be the reflexive and transitive closure of =. If u =* v then there
exists the sequence wg, Uy, ..., 4, r = 0 such that u, = u, u, = v and u, = uy =

S ... S u,. The sequence is called derivation of v (from u).

Definition. Let £* be the minimal reflexive and transitive binary relation on

Vi* x V2* x ... x V™* closed under the following procedure for obtaining new
members from ones already admitted:
if for u, v in V'* x ... x V™ there exist y, z, 4,5 in V'* x ... x V™* and x in
VE* x ... x V2* such that u = ysz, v = yxz, s > £ in P and t &% x then u &% 4.
The length of u L+ is said to be the minimal necessary number of applications
of the given procedure when proving that u Ly by definition.

Example 1. G = ({a, ¢} x {b,d}, {S, A} x {S, B}, P, (S, S)) where P is the sct
of productions:

) - (S.S) - (SA, SB) ;
@ (S, 5) - (4, B);
©)] (4, B) > (a, b);
o) (4,B) - (c.d) ;

by the reflexivity of £.*

) (a, ) Z* (a, b) ;
(6) (e.d) &* (¢, d);
from (3) and (5)

M (4, B) &% (a, b) ;
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from (4) and (6)

(8) (54, SB) £* (8¢, 5d) ;
from (2) and (7)

9 (Se, Sd) 2* (ac, bd) ;
from (8) and (9) by transitivity

(10) (S4, SB) £* (ac, bd) ;
from (1) and (10)

(11) - (S, 5) &+ (ac, ba).

Obviously 4 is the minimal number of applications of the procedure for getting new
members when proving (11), thus the length of (11) is 4.

Definition. Let G = (V2 x V2 x ... x VE VA X VEx ... x Vi, P, (51,85, en
... S,)), then the relation (set of n-tuples of words)

{weVT* x V2* x .. x VI (Sy, Sz -.os S,) =* w}
({weVi* x VE* x ... % VI¥| (S, Sz ..., 5,) S+ w})

is said to be a-degenerated (ﬂ-generated) by the n-ary grammar G and is denoted by

R*(G) (RY(G))-

Example 2. For binary grammar G from example 1 it is R{G) = {(u,v)jue
efa, ¢} .{a, c}*, ve{b, d}.{b, d}*, the number of occurrences of a in u (¢ in u) is
equal fo the number of occurrences of b in v (d in v)};

RYG) = {(x1%2 ... X y1¥2 . y)| n 2 1, x;€{a, ¢},if x;=a then y,=b else
yi=d,i=12..n}

The f-generation is of principal importance in the application of binary grammars
to the description of the translation of languages, as will be shown later. We now show
the relation between a-generation and f-generation which will clarify the meaning
of the latter. Let u, = Uy S S u,, be the derivation of u,, (from ug). Then there
exists (foreach i = 0, 1,2, ..., m — 1) y;, z; such that u; = yx;z;, ;4 = yw;z; and
x; = w; is in P. The occurrences of symbols in w; are said to be created in (i + 1)—th
step of the derivation of u,,. The occurrences of symbols in u, are said to be created
in the zero step of the derivation. The derivation of u,, is said to satisfy condition §
if any production used in the derivation does not replace nonterminal symbols
created in different steps of the derivation, i.e. more precisely if in the above notation



foreach i = 1,..., m — 1 there exist j;, 0 < j; < i, a; and b, such that w;, = a,x;b;
and yza;b;z;, =% pz,

Theorem 1. Let G be an n-ary grammar, G = (V3 x Vi x ... x VP, Vi x V& x
X .. X VR, P, (81, S50 .. Sy). Let u be in V'* x V2% x .. x V™ p be in Vy* x

x V2 % ... x V5, then u ==* v iff there exists a derivation of v fron m satisfying
condition f.

Proof. 1. Let us assume that the derivation ug = , = ... = u,, satisfies condition
B. We prove by induction on the length of the derivation that u, L t,,. If the de-
rivation is of length 1 then trivially u, Lx uy. Otherwise let the assertion hold for all
derivations of length m. As u, = u, then there exist x, z, win V1* x V2% x . x V™
and y in V§* x V3* x ... x Vi* such that uy = xyz, u, = xwz and y ~ w is in P.
The derivation 1, = u, = ... = u,, satisfies condition f# and thus by the induction
assumption it follows that u, Lx u,,. From condition B it follows further that there
exist 7, s, 2 in VI¥ x VZ* x ... x V& such that u,, = rst and w L. By the defi-

. . 8,
nition of £* it follows that Uy Lx uy and thus uy =* u,,.

2. Let u be in V¥ x V2% x ... x V™, p be in VE¥ x V2* x ... x VI¥ y Lxy
We prove by induction on the length of u L %y that there exists the derivation of v
from u satisfying the condition f. If the length of u £+ 4 is one then = v and con-
dition B is obviously fulfifled. Otherwise, let the assertion hold when the length is
m~— 1. Letu L4y be of length m. Then there exist s, ¢, y, z in V** x V2% x ... x
x V"™ x in VE¥ x V2 x ... x V3* such that u = ysz, w = yxz, s — ¢ in P and
t£5x, 1 £ x and w &% v are both of length less than m. By the inductive assump-

tion there exist derivations satisfying condition 8:

a « a «
I=Xg= X =X, = ...= X, =X

and
« u a
W=10=20; = Uy =>...>0, =0.
a « « @ u « a « @ :
Thus U = ysz = ytz = yX,2 = yXpz = ... = YXZ = U; = 0, = ... = U, = v is the
derivation of » from u satisfying condition .

For the phrase structure (unary) grammars obviously = is the usual =. In the
case of a context-free grammar only one nonterminal symbol is sybstituted in each
step of a derivation and therefore condition B is always satisfied. We have the fol-
lowing:

Corollary 1. Let G be a context-free grammar, then R¥G) = R¥(G) = L(®)-

103



104

Example 3. We give an example of a context-sensitive grammar G for which
R”(G) + R“(G).
G=({a,b,c.d}, {S,4,B,C}, {S— ABC, 4B~ aB,BC - bC, A - d,
C—c},5).
Obviously, R(G) = {abe, dbc}, R¥(G) = {dbc}.
Definition. Let G be an n-ary grammar (V3 x Vi x ... x V§, Vi x Vi x ... x V§,
P, (S, Sz, ..., S,)). Then the (unary) grammars G, = (V, Vi, P, S)) where P; =

=1{q,|(q1, 2 -+» gi» .- 4,)€P, q; =0} for i =1,2,...,n are said to be the
partial grammars of the n-ary grammar G.

Theorem 2. Let G be an arbitrary n-ary grammar then
R¥(G) e R¥(G) = L(G,) x L(G,) x ... x L(G,),

where Gy, G,,...,G, are the partial grammars of the n-ary grammar G. There
exists a binary grammar for which both inclusions are proper.

Proof. 1. Validity of the first inclusion follows immediately from the theorem 1.

2. Let u', u?, ..., u’ be a derivation of the n-tuple u* in R*(G). Let u* = (uf, uf, ...
coulyfor k =1,2,..., 1t (particularly u* = (S, S,, ..., 5,)). Then leaving out the
repeating occurrences of the same members in the sequence u}, u?, ..., u we get the
derivation of uf in the grammar G,. Thus uf is in L(G;) and the second inclusion is
valid.

3. We give an example of a binary grammar for which both inclusions are proper.

Let G = ({a, b} x {a,b}, {S,. 4, B} x {S5, A}, {(Sy ~ A, S, — A), (4 ~ ad,
A ad), (A>a, A—a), (S, — B,0), (B~ b,S, > b)}, (5. S2)).

It is obvious that R(G) = {(a", a") |n =1,2,...},

R¥G) = {(a", a")|n = 1.2,..}u{(b b)},

L(Gy) x L(Gy) = {(a™, a"), (a"b), (b, a"), (b, b) | m, n = 1,2,...}.

Definition. The n-ary grammar G is said to be of type (i, i, -.., i,) if its partial
grammars Gy, G, ..., G, are of types iy, i,, ..., i, respectively. The class of n-ary
grammars of type (i,, iy euny i,,) is denoted by G;, ;,, -, ;.- The class of relations a-
generated (f-generated) by the n-ary grammars of type (iy, iy, ..., i) is denoted by
R:;,iz,,..',l',. (Rfl,iz,...,l”)'

Theorem 3. The classes R ,  , and R ;. ; are closed under union and con-
catenation.



Proof. Let Ry, R, be in R3, , (in Ri (. 1) R = R“(G,), R, = R¥G,);
Gy, Gy in GZ.Z,...,Z(GI,I ..... 1);

Gy = (Vi xVi X ...x Vi Vy x Vi x ... % Vi Py,(S1, 8% ..., D),
Gy = (Wi x Wi x ... x Wi, Wy x Wa x ... x Wa, P, (S5, S2,....53)).
Let Vi n Wi = @and Snotbein Vi U Wifori=1,2,..., n

1. We construct the n-ary grammar G,, G; = (V7 u W} x Viu Wi x ... X
XVEUWE VyUWyu{S'} x VROWu{S?} x...xVEu Whu{S}, Py
UP, U {(S" > 5], 8?81, 8" = Sh), (S' = S5, S, > 8%, ..., 5"~ SB), (S,
S2,...,8"). )

If G, Gyarein G, 5 5 (in Gy, ,)then Gyisin Gy, , (inG,,; ,). Itis
obvious that R’(Ga) = Ry UR,, thusboth R}, ;and R} , are closed under
union.

2. We construct the n-ary grammar G,, G, = (VU Wh x V32U WZ x ... x
X V3O WhVy UWy{S'} x VEUWR U {S%} x ... x ViU WaU{S"},P, UP, U
v {(S* > 8153, S? - SiS%, ... 8" 8uS)), (5L, S%,...8"). If Gy, G, are in

G,,..o (inGy,,  )then GoisinG,, ,(nG,, ;).

It is obvious that RY(G,) = RyR;, and thus both R}, , and R}, are closed
under concatenation.

Theorem 4. The classes Rg,z,_mz and R‘;,,,_Wl are closed under union, concatena-
tion and the class R , , under iteration.

Proof. Let Ry, R, be'in Rg,z....,z (Rll‘,l....,l)’ R,
in Gz,z....,z (i“ G1,1,...,1);

Gy =(V; xVE x...xVh Vi xVi % ...xVk Py, (SLS3, ... 80),
Gy = (Wi x Wi x ... x Wi, Wy x Wi x ... x Wi, P, (83, 53....,53)).

R¥G,), R, = R¥G,); G,, G,

Let Vi n Wi = 0 and S, Q' not be in Vi U Wi fori = 1,2,..., n.

1. We construct the grammars G, G, in the same way as in the proof of theorem 3.
If the derivations of u in grammar G, and v in G, fulfil condition (1) then the de-
rivations of u, v in G5 and of up in G, also fulfil condition (1) and therefore RH(G;) =
= R; U R,, R¥G,) = RyR,. Thus the classes R}, , and R{, ;| are closed
under union and concatenation.

2. For any R, we construct the n-ary grammar Gs,

Gy = (Vh X VEx oo x VA, (VU {5) x (V3 0 {S%)) x .. x (Vi {S]).P, 0
U{(S! =& 8% e, ..., 8" - g), (ST = SiSE, 8% - 818%,..., 8" - S1S}L (51, %, ...
<-» 8™). We shall show that RA(Gs) = RY. Let (S}, S%, ..., S}) be denoted by S, and
(s', S2,...,S" by S.
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a) Letube in R}, then there exists a sequence of n-tuplesin¥Vi* x V¥ x ... x V&
Uy, Uz, .o Uy, (m 2 0) such that u, is in R(G,) for k=1,2,...m and u =
= uy, Uy, ..., u,, (in the case m = 0, u = ). Then S; £* u* and using it and the pro-
duction S — S;S we have S Lx u; S L U, S Lx  Lx g, ... u,Sand finally
using the production S — (s, &, ..., £) we have S Lx Uytiy ... U, = u. Thus R¥ <
= RYG,). '

b) Let u be in R#(Gs). Then there exists a derivation S =* u, which fulfils condition
(1). The fulfilling of condition (1) enables us to rearrange the derivation of u as
S=SSS53*%u,SSuS,SS*uu, S .S uuy... Uy S=ugu, ... i, The steps
of the derivation show that §; =* u, for k = 1,2, ..., m. Since they also fulfil con-
dition (1) S, L%y, Thus u,isin R, and as u = uu, ... uy, uis in R¥ and RYG,) =

< R%.

Note. The question of whether the class R} , , is closed under iteration is open.

Definition. A binary grammar G is called linear if G is in G, , and both its partial
grammars Gy, G, are linear (see [4]).

Example 4. Let G be an arbitrary linear binary grammar. We construct the binary
grammar G’ such that (R*(G))* is in R} ,. The construction is not as simple as that
for the f-generation but nevertheless G’ exists for any linear grammar.

Let G = (V3 x Vi, Vi x V3, P, (S, S,)). Assuming X, Y, Z is not in Vi U Vy
we construct G’ = (Vi x Vi (Vi u{X.Y,Z}) x (Viu{X., Y, z}), Pu{(Z~
> SY.Z->8Y), (Z~eZ—e), (X>eY—2Z), (Yo Z X &), (Z,Z) where
P’ is created from P in such a way that each unary production, involved in an n-ary
production in P, of the form A — w, w € V¥ (with terminal right side) is rewritten as
A - wX (nonterminal X is added from the right); e.g. if (4 » aB, C — ab) is in P
then (4 — aB, C — abX) is in P'. It is not difficult to show that R(G") = (R*(G))*.

Further, we shall formulate and prove some results only for binary grammars but
their generalization for n-ary grammars is mostly only a formal matter.

Theorem 5. If G is a linear binary grammavr, then there exists a linear binary
grammar G' such that R*(G'} = R*(G) and a linear binary grammar G" such that
R*(G") = R¥(G). Moreover if G is in G 5 then also both G', G” are in Gy ,.

Proof.Let G = (V; U VE Vi U Vi, P, (54, S,)).

1. We construct the linear binary grammar G', G' = (V} x Vi, Vi x Vi, PU P/,
(S1» S2)), where the set P’ is created as follows:

(i) it (g, ®)isin P and A is in V} then (g,, 4 — A)isin P';

(if) if (9, g,)is in P and 4 is in V} then (4- 4, q,)isinP.



The productions from P’ do not increase the o-generative power of G, thus
R*(G') = R*(G). However, substituting the productions from P’ for some productions
of the type (q;, 9) or (B, q,), each derivation (S, S,) =* (w,, w,) in the linear gram-
mar G, (wy in V4, wy in V;) can obviously be rewritten in such a way that it fulfils con-
dition f and by

Theorem 1 (S, S,) L (w;, w,). Thus R%(G’) = R¥(G"). By
Theorem 2 R¥(G'} = R*(G’) and thus R(G) = R/(G").

2. We construct the linear binary grammar G”, G = (V5 x Vi, (Vx U Wy) x
x (ViU W3), P, (S5, S,)), where Wh = {A'| 4 in Vi}, Wi = 4’| A in Vi} (we
assume Wy nVh = @and Wi A V2 = @) and P” is created from P as follows:

(i) cach production in P of the form (A — {,Bt,, #) where 4, B are in V; and
t,, t, are in V¥, is replaced by two productions (4 — t,B'1,, 9)and (A’ — t,B't,, 0);
(ii) each production of the form (9, 4 — t,Bt,), where A, Bare in V3, t,, 1, in V7*
is replaced by two productions (0, 4 — t,B't,), (0, A’ — 1,B't,);
(iii) for each production of the form (4 — 1, 9), where A is in V3, ¢ in V3 another
production (4’ — 7, ) is added;
(iv) for each production of the form (@, A - t), where A4 is in V§, t in V2" another
production (§, A’ — 1) is added.

Obviously RA(G") = R¥(G). If (S;, S,) &% (w,, w,) in G then there exists a deriva-
tion (S;, S,) = u; DU, Sy, = (w,. w,) satisfying condition B. It is possible
only if for some r, I £ r < n the derivation u, S i, uses only productions of the
type (41, 42), q; + 9. @, + 0, and the derivation u, =* u, uses only productions of
the type (44, 8) or (9, ¢5). Let u be in V' x V? then the pair obtained from u by re-
placing all occurrences of each Ain Vy U V3 by the corresponding A" in Wy L Wy is
denoted by u’. Then obviously u, = u/, = u',, = ... u,_; = u, and therefore
u, =*u, is a derivation in G" satisfying condition f. Thus R(G) = R*(G") and
therefore R*(G) = R”(G"). Since no productions of the form (4;. 4,), 4, *= 9, q, = 0
contain a symbol from W} u W, no production of the type (qy, #) or (9, g,) has a
symbol from ¥} U Vz on the right side and the grammar is linear (the number of non-
terminals cannot incrcasc) each derivation in G” fulfils condition § and RY(G") =
= RYG). Thus RY(G") = R(G).

Corollary 2. RS ; = Rg,s.

Example 5. For an individual grammar in G, ; the generated relations need not
be equal. For instance, let G = ({a, ¢} x {b}, {5, C} x {S;}. {(S; — a. S, - b),
(8, = ¢C,0), (C~ ¢S, 0}, (Si,S,)). Obviously, R(G) = {(¢*a. b)|n =1,2,...
but RA(G) = {(a, b))
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In [3] the notation of transduction is introduced. Transductions are n-ary relations,
which are definable by means of the n-tape finite automata (NDA in [3]). It is shown
there that the class of transductions is equal to the class of regular relations, i.e. re-
lations obtainable from finite relations by means of a finite number of the Kleene’s
operations. Now we show, that the class of transductions is equal to R; 5.

Definition. Let M, denote the class of n-tape automata over an alphabet (NDA in
[3]). A in M, is the system (S, v, so, F), where S is a finite set (of states); v is a finite
set v = § x (£*)" x S (multivalued next-state function); s, in S is the initial state
and F < S is a set of terminal states. The n-tuple of words u in (2*)" is said to be ac-
cepted by the automaton A if there exists a sequence of states s, sy, ..., 5, such that

() (sig-upsyevfori=1,2,..,4
(i) = uu,...u
(iii) s,e F.
Let the set of n-tuples of words (relations) accepted by the automaton A be denoted

by R(A). The class of relations defined by automata in M, is denoted by R(M,);
R(M,) = {R(A4) | A€ M,}. In [3] such relations are called transductions.

Proof.1.LetGbeinGy 3 3,G=(Vh Vi X .. X VX . x Vi, P,(S1, .. Su)-
We shall construct the automaton 4 in M,, such that R(4) = R¥(G).

A=(Viv{e) x...x(Viu{e}),v,(Si,.., S, (e, e, ..., €)), where e is the
empty symbol and v is defined as follows:

Let A, BieVi u {e}, v;e Vi, then (4, 4s, -.s 4,), (01, 02, .., 1), (Byy Bas oo
..., B)) is in v if and only if there exists g in P such that ¢ = (g, g2, ..., 4,) Where
one of the following conditions holds foralli = 1, 2, ...:

(i) A;, By eVi, A;— v,B;;

(i) A;eVy, B, =e, 4, > v;

(iii) 4, BieVyu {e}, 4, = By q; = 0.

We need to prove that R(4) = R*(G). According to the definition of the n-tuples
accepted by the automaton, u belongs to R(A) iff there exists a sequence of states
S0s e € (VU {e}) x ... x (V3 U {e}) such that the following conditions hold:

(i) (si-poupsyeviori=1,2,..,4 .

(i) u=wuy...ue

(iii) s, = (e, e, ..., ).

* An equivalent theorem was also proved independently by J. Kral (On Multiple Grammars,
Kybernetika 5 (1969), 1, 60—85).



The sequence of states o, 5y, ..., 5 fulfils conditions (i), (ii) iff s;_, = u;s; for
i=1,2,..,1 therefore s, = (Sy,..., S,) =*u; ... u, = u. Thus u is in R(A) iffu
is in R%(G).

2. Let A in M, be an automaton over the alphabet %, 4 = (S, v, so, F). We con-
struct the n-ary grammar G = (£ x £... X £,S x ... X S, P, (So» ++-» So)) Where P is

—_—
n-times n-times n-times

chosen as follows:

(@) if (s, (vy, 03, ..., 1), 8} isin v, 5 5 &, then (s = v18', 5 = 0,8, ..., s > v,5') € P
and if in addition s’ € F then also (s = vy, 5 — 05, ..., 5, = v,)eP.

(ii) if (s, (v1, 03, ..., v,), ) € v then g & P where g = (41, ga, .-+, q,), 4; = 9 for
v; = e, g; = 5 - v;s for v; F e. If in addition s € F then also g’ € P, 9’ = (g3, g5, ...
..., qy) where g} = Oforv; = e, q; = s > v, for v; = e.

It is obvious that R(G) = R(4).
From Theorem 6 and the results in [3] it immediately follows:

Corollary 3. The class R 5, ;(=RS 5, ;) is closed under Kleene’s operations,
i.e. under union, concatenation and iteration. It is closed under intersection and
complementation.

Corollary 4. The class {dom R l R e R, 3} is the class of regular sets.

Note. Let us consider the class of relations a-generated by n-ary grammars in
G, ;... 5 satisfying the condition: if gis in P, ¢ = (41, 42 .., 4,) then either g; is of
the form A —» uBforalli = 1,2, ..., n(4, Bin Vi, uin V) or g, is of the form 4 —»u
forall i = 1,2,..., n(4, Bin Vi, u in Vi¥).It is not difficult to show that this class is
equal to the class R(S,) from [2].

Unlike the regular sets, we have the following result for context-free languages.

Theorem 7. The class of context-free languages (Lcg) is a proper subset of the
class {dom R | R in RS ,}.

Proof. Obviously Lgp = {dom R | R in R} ,}. The following example shows that
this inclusion is proper.

Let G = ({a, b} x {b}, {S,,B} x {S;}, {(S; - aSa, S, S,S,), (S; - B,
S, —b), (B—bB,S, > b), (B— b,5, > b)}, (51 S,))-

In the derivation of a pair in R%(G) the productions must obviously occur in the
following order and number:

1. n applications of the production (S, — aS,a, S, — S,S,), n = 1,2, ... gives
(a"S,a", S371);
2. One application of the production (S; ~ B, S, — b) gives (a"Ba", bS});
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3. n — 1applications of the production (B — bB, S, — b) gives (a"b"~'Ba", b"S,);

4. One application of the production (B — b, S, — b), gives (a"b"a", b"*'). The
symbols of the second word in the pair may be arbitrarily permutated after step 2 or
step 3, but it does not change the terminal result.

Thus {a"b"a" | n = 1,2, ...} isin {dom R | Rin R%,} but it is well known [4] that
{a"b"a" | n = 1.2, .. } is not in Leg.

Theorem 8. {dom R | R in R} ,} = L.

Proof. Obviously Leg = {dom R 1 R in Rf ,. To prove the reverse inclusion we
must show that for every binary grammar G in G, , G = (V}- x Vi Vi x V& P,
(S1. 8,)) the dom RP(G) is in Lcp. We construct the context-free grammar G’ such
that L(G) = dom R(G).

Let G' = (V3 Wy, P',(S1. S,)) where Wy =y {0)) x (Vo (0], P is de-
fined in the following way:

@) If (A1 = Uy, Ay = uy) is in P, u; = voBv\ B, ... Buo,, Uy = woCyw C, ..

.. Cyw, where Ay, By, ..., B, is inV}, Ay, Cy, Cy, ..., C, is in VE; 0o, 0y, «.ns Uy 15 i
Vs wo, Wy, ..., W, is in V¥ then P’ contains all productions of the form (A,, 4,) —
= vo(By, Dy) 03(B2. D3) ... (B D) 00 (9, Dyic1) (0, Dyyiy) ... (0, D,) where m <
SpEm+n, D;is in Vﬁu{@} for l £i<mandin Vi form+1=i<p;

and Dy, D,, ..., D,is a permutation of C,, C,....,C,, 0,9, ..., 0.
—_—
(p — n)-times

(ii) If (A; - uy, 0) is in P, u, = voB,vB, ... B,v, then (4,,0) - vo(B,.0) x
X 0;(B3,0)...(Byu 0) v, is in P'.

(iii) It (0, 4, » u,) is in P, uy = woCyw,Cy ... C,w, then (0, 4,) = (9, Cy).
0.C,)...(0.C)isin P for n 2 1, (D, 4,) > e is in P' for n = 0 (u, in V3¥).

We will prove now that L(G') = dom R¥(G). By & the derivation in grammar G
is understood in the following. A derivation in grammar G’ is denoted by L Let o
be a homomorphism from Wy into Vy defined as follows: u(e) = ¢, u((4, B)) =
= Aif A = 0, (0, B)) = ¢ for each 4 in Vy and Bin V. p(uv) = u(u) p(v) for each
u, vin W*,

1. We prove by induction on the length of the derivation u Ly that if u L*p
where u = (uy, u,), v = (vy, v3), uy in V'%, ”z m V¥ o, in V¥ v, in VT , then lhele
exists #, in Wy such that y(u,) = u, and i, A vy,

Suppose that the inductive hypothesis is true for all derivations of length n — 1
or less. Since u &* y then by definition of L% {here exist 5 — ¢ in P,xinVi x V2
such that u = ysz, v = yxz and ¢t L+ x. Because of the inductive assumption there
exists 7, such that p(f,) = 1y, s = (s, 52), ¢ = (¢, 13), x = (%, X5) and T, L x,.
According to the construction of G’ §, — #, is in P’ and letting y = (y;, y,), z =



= (zy, z,) we have y,§,z, & y,f,z,. Thus &, £ v, where i, = vi5,z, (1) = y5,74
and u = (;5,2y, ¥,5,2,). Thus R¥(G) = L(G').

2. We prove by induction on the length of derivation that for@; in Wy, v, in V5,
71, &% v, there exist u, in Wy and v, in V2 such that (uy, uy) Lx (vy, va) Where u, =
= u(i1,). For a derivation of length one there exists a production §; — x; in P’ such
that i, = y,5,z;, v, = y,%;z, and y,, z, are in V}. By ihe construction of P’ there
exists a production (s, 55) = (xy, x,) in P such that u(5,) = s,. Thus the inductive
hypothesis is true for n = 1. Suppose that it holds for all derivations of length n — 1
or less. Since i, S v, there exist x;, ¥y, 2; in Vi, 4, in Wy such that i, = y, 4,z,,
vy = ¥,%,2,, 4, = I, in P’ and §, Z# x,. By the inductive hypothesis there exist
1= (11, 1,), X = (x4, x,) such that p(i;) = t; and (¢, t,) =* (x,, x,). By the con-
struction of grammar G' there is a production (4,, 4,) — (ty, t;) in P such that
#(Ay) = Ay and p(i,) = t;. Thus u =* v where u = (y 4,2y, A,), v = (y1x,2,, X3)
and p(u,) = y,4,z,. Thus L(G") = R¥G).

Thecrems 7 and 8 give: :

Corollary 5. There exists a relation R, R is in R , but not in R'zzyl.

Example 6. Let R be in R}, then for n = 2 all n-tuples are not obtainable by
means of left-most derivations as in the case n = 1. For instance let G = ({4, b} x
X {(‘}, {Sl,A} X {Sz, B, C}, {(Sl — AA, S, - B), (A —a, B —» C), (A — b,
C — o)}, (Sy, S,)). Obviously RYG) = {(a, b, ¢), (b, a, ¢)}. Both pairs in R¥(G) are
derived using successively all productions of the grammar G (each once); the pair
(ab, c) as the left-most derivation, the pair (ba, ¢) as the right-most derivation.

For context-free n-ary grammars (G inG,
ation.

,) we introduce a third type of gener-

e k4 Py . . . -
Definition. Let =* be the minimal reflexive and transitive binary relation on

Vi* x V2 x ... x V"* closed under following procedure for getting new members:
if for o, win V'* x ... x V"* there exist 4; in Vi, u, in V', y; in V& and k; = 1 for

i=1,2,....nandslinV*fori = 1,2....,n;j = 1,2, ..., k; such that
v o= (0,05 50,5 W= {wy, Wy ., W)

v, = S1AsPA, L s A sk

2 w1 4 K
U, = SEASZA, L sk T A sk

nSn 4
— ol 2 S DA
Wy = Syi81Yy -5 NSt

12 Kn=1 kn .
Wy = SpVuSpVu o Sy VaSa" )

(4., 4, .‘.., A4,) - (ug, 1y, .. u,) in P
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and
(“11 Ugy eens 1.4") =T>* (}’1, Y25 -ens yn)
then v =% w.

The length of u % p is said to be the minimal necessary number of applications of
the given procedure when proving that u Z.# ¢ by definition.

Lemma 1. Let G be a contexi-free grammar, G = (V, Vy, P, S) (G in G,) then
x 2% v implies x % y,

Proof. We prove the lemma by the induction on the length n of x Lo y.Forn =1
the assertion of the lemma obviously holds, let us assume that it holds for r < n.

Let the length of x =* y be n. By the definition of y-derivation we can write

b4
x SF gy D y
and
x = s'As?A ... As*T1 Ak,
w=s'ts?4 ... tsF T s®

where z 2% t and 4 — z is in P. Both w &* yand z L+t are of lengths less than n
and therefore w5*y and z 2*f Thus x = s'As2d ... A" A5k S* slys?a .
o AsTIAS R g2 AF T A B B g2y g s Ly

Corollary 6. Let G be a context-free grammar (G in G,), then R¥(G) = R¥G)

(=R(6) = L(6)

Lemma 2. Let G = (V3 X V& X ... x Vi, Vy x Vi X ... x Vi, P. (S, S,)) be in
G, ... and for all q =(qy, qs, ..., q,) in P there does not exist q; of the form
A — w where w = w'Bw?Bw?®, w', w3, w® in V'*, A, B in V§.(On the right sides of
unary productions there are all different nonterminal symbols.) Then R¥G) =
= R'(G).

Proof is obvious.

Corollary 7. For G in G; 5
(= R;,z,...,z = M,,).

3R(G) = R¥(G) and therefore R} 5 = R, ,

Theorem 9. RS, , = R}, .

Proof. By Lemma 2 it is sufficient to show that for every n-ary grammar G there
exists a grammar G', with different non-terminals on the right sides of each unary
production such that RHG") = R#(G). The binary grammar G’ is constructed from
the grammar G as follows:

If any nonterminal symbol A occurs more than once in the right side of any unary
production g; (41, 425 .- 4,) € P) then we attach different subscripts to all occur-



rences of 4. These subscripted nonterminals are added to the set ¥y and for each
production (41, 92> ---» ) in Which the left side of any g, can be subscripted, the new
productions are added for all the combinations of subscripts in both the left and the
right sides of 4, 42, ..., 4, Obviously, R¥(G) = R¥(G").

Example 7. This is an example showing that even for the class G, (comext-free
grammars) the inclusion RY < R} is proper. Let G = ({a, b}, {S, 4}, {S — 44,
A - adb, A — ab}, 5). Obviously, RY(G) = {a"b"a"b" | n = 1,2,...} and it is a well-
known example of a language which is not confext-free.

MAPPINGS DESCRIBED BY GRAMMARS

A mapping from Z¥ into subsets of 2% is given by every binary relation R,R < ¥ x
x Z3. Thus by means of binary grammars a large class of mappings from ¥ into

~ subsets of X5 (e.g. transducions, translations [7]) can be described.

In the case that a binary grammar G has no productions of form (9, qz) and is of
such a type, that for its partial grammar G, there exists an effective syntactic analysis
procedure, then the mapping f given by the grammar G is given effectively. By the
following procedure for each x in X7 the set f(x), empty if x is not in the domain of f,
can be found: All derivations of x in the partial grammar G, are found. Then for
each unary derivation all such binary derivations are created, each of them using
binary productions whose nonempty left components are the productions used in the
common derivation. From the assumption that no productions in G has the form
(0, g,) follows that to each unary derivation, there are only a finite number of
corresponding binary derivations and the described procedure is actually effective.

Note. By the existence of an effective analysis procedure for partial grammar G,
we mean that for each word w in Z] there exist only finite number of derivations
in G, all of which can be found efTectively.

Definifion. Let f be a mapping from Z¥ into subsets of X3, then the binary grammar G
is said to &-induce (¢ in {«, B, y}) the mapping fif f(x} = {¥ | (x, y) in R(G)} for any
xin X7

The binary grammar G is said to &-realize (¢ in {«, B, y}) the mapping f if f(x) =
= {y | (=, ) in RY(G)} for x in Dy, where D, = {x | f(x) # 0} is the domain of map-
ping f.

Note the same terminology for multitape automata as in [2'] and the notions
“transduction” and “translation’ as in [7]. We will call translation the mapping
from a language L, into a language L, which preserves the meaning of all sentences.

Example 8. We write the binary grammar G $-inducing the translation of a simple
arithmetic expression from common notation into reverse Polish notation.
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G =({a,byc, +,4} x {a.b,c,],[, +, %} {P, TE} x {P,TE}, {{P~a,P~ a),
(P-b,P—> b),(P>c,P—c) (P> [E], P—E), (T— P, T— P),(T-> T#P, T— TPx),
(E->T,E>T),(E->E+ T, E— ET +)}, (E, E)). The use of p-induction in this
exampleisessential, for c.g. (E, E) = (E + T, ET+) = (T + T, TT+) = (T+P + T,
TTP*+) 5 (PxP + T, TPP%+) = (P*P + P, PPP++) = (aP + P, PaP* +) =
= (axb + P, baPx+) = (a*b + ¢, bacx+) and bacx+ is not the translation of
axb+c into reverse Polish notation.

LExample 9. We write the binary grammar G y-inducing the transiation of simplified
ALGOL-60 for statements into FORTRAN. The rules for writing numbers (N) and
variables (¥) in both languages are strongly simplified only for brevity of the example.

As the comma is a terminal symbol, the symbol | will be used instead of the
comma to separate different elements of sets and components of pairs. The symbol

indicates the end of a line in FORTRAN-programs.

G =V} x Vi, Vy x Vi, P, (Q, Q) where

V}:{A|B]Cl+[—|xlTI:=Ifor|step|uuti]]do[begin]end!;},
Vi={4|B|C|0|1]|+]|—]*|=|DO|CONTINUE|(])].|#]},
Vi={Q|V|E | E|Es | E|WIR|S|T|P|L|N},

Vi

it

and P consists of the productions

(Q —forV: = E, step E, until E; do W| Q — V,

{Q|V|E | E;|Es|E|W[R|S|T|P|L|V,|Vy|V5]|N}.

=L #Vo=E; #Vy =

= E, # DO(N)V =V, V,,V, # W # N CONTINUE)

w-S|w-S)

(W - begin R | W > R)
(R~ Send | R > S)
(R—S;R|R—>S#R)
(S->V:=E|S>V=E)
(E - PTE| E - PTE)
(T->+|T- +)
(T = [T -)

(T— x|T->%
(T—1[T=*)
(P-V|P=V)
(P->N|P->N)
(@|V1—>N)

(WIV2~>N)
@vs-N)

(Ey > E|E, > E)
(E, > E|E, > E)
(Es > E|E; - E)
(N—»]fN—»l)
(N ->0|N~0)
(N - NO| N -.NO)
(N - N1|N - N1)
V->L|Vv->1L)
(L—>A|L—’A)
(L »B|L- B)
(L—»C[L—»C)




Note. It is possible to show that well-translations of languages [1] and syntax-
dirccted translation [7] are a special case of the mappings f-induced by binary
grammars of type (2,2).

The complexity of a mapping can be classified by the type of a binary grammar in-
ducing (realizing) it.

Definition. Let a mapping f be &-induced (¢ in {«, f, y}) by a binary grammar of
type (i, j). Then f is said to be of type Ig‘j. Similarly the type of a grammar realizing
the mapping could be considered. For i, j = 3 there is no difference between types
with « or f and we will omit the Greek letter in this case. In the following we show the
types of some commonly known mappings and we give some examples.

Obviously, a homomorphism is of type I, ,, sequeniial mappings realized by
generalized sequential machine ([5]) will now be considered.

Theorem 10. Any sequential mapping f is both of type l, 5 and typel; 4.

Proof. Let the mapping f, having input alphabet X and output alphabet Y, be
realized by the generalized sequential machine (K, X, Y, 8, 4, p,), where K is a set
of states, & is a next-state function (from K x X into K), 2 is an output function
(from K x X into Y*) and p, is the initial state.

1. We construct the binary grammar G = (X x Y, {W} x K, P(W, p,)), where
W is an arbitrary symbol and the set of productions P is given as follows: for each a
in X and p; in K the productions (W — aW, p; » &(p;, a) Ap;, a)) and (W — a,
p; = Mp;, a)) are in P. Obviously, (x, y) is in R¥(G) iff y = f(x).

2. We construct the binary grammar G’ = (X x Y, K x {W}, P", (p,. W)). where
Wis a new symbol and the set of productions P’ is given as follows: for each a in X
and p; in K the productions (p; — a 8(p;, a), W XAp;, a) W) and (p; > A(p. a).
W~ a) are in P’. Obviously, (x, y) is in R(G) iff y = f(x).

Note. The sequential mappings are only a subclass of the mappings of type
I 5 (I3,4). For instance the inverse mappings of the sequential mappings are also of
type 1y 3 (I5.4)-

Note. By Theorem 6 a mapping is of type I, 5 iff there exists a transduction R [3]
such that f(x) = {y | (x, y) in R} for all x.

Example 10. The binary grammar G, from the proof of Theorem 7, a-induces
a mapping f, the domain of which “is more complex” than the mapping itself (by
interchanging the two partial grammars to give G', it follows trivially that G’ a-induces
a mapping the range of which “is more complex” than the mapping itseif). By
Theorem 8 it follows that the use of a-generation is essential in Example 10.

Example 11. The mapping f from Example 10 can be realized (but not induced) by
the binary grammar G in G 5.
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Let G = ({a, b} x {a, b}, {S.B.C} x {S,C}, {(S— aS, S—aS), (S - bB,
S - &C), (B - bB,9)(B - aC, C - aC), (C ~ aC, C - aC), (B > a,C > a),
(C—a,C > a),(S9S).

It is not difficult to see that
R¥G) = {(a™b"a®, a™ba?) [ m =0,1,...; n=1,2,...; p=1,2,..}
and thus fis a-realized by G.

Note. The complexity of the domain or/and the range of a mapping influences the
necessary complexity of the binary grammar only if we consider the mapping induced
(but not realized) by the grammar. It is trivial that the identical mapping of any
domain over X onto itself is realized (but not induced) by the binary grammar G in
Gy G="(Z x2{8} x {8}, (S—aS.S~aS), (S—a,5 > a), for all ain X,
(s.5).

We can also describe more gencral mappings by means of n-ary grammars (for
n > 2). We give the following example.

Example 12. In [2] the mapping f is realized by means of a multi-tape automaton.
The mapping f maps the pair of words over {a, b, c, ..., z, @, *} x {a, b, ¢, ..., a, ®}
into words over {a, b, c, ..., z}. We get the output for a pair of words when taking
the first word in the pair, omit the subwords between the (2k — 1)-th and 2k-th oc-
currences of the symbol * for k = 1, 2, ..., and replacing the subwords between the
(2k — 1)-th and 2k-th occurrences of the symbol @ by the subwords of the second
word of the pair between the (k — 1)-th and k-th occurrences of the symbol ®. (We
assume the zero occurrence of @ at the beginning of the second word.) In [2] the
mapping f is described formally by means of a multi-tape automaton. We now write
the ternary grammar G which f-induces f.

Let X ={a, b,c,....,z} then G=(({@,*}uX)x(Tui{®d}), {(S,- S:D,
S, = 85,83~ 8,D),(S; > 8; *C*, S, = 8,,8; - S3), (S, > S, ®P®,
S, = S,B®, S; > S3B), (C > C4,0.0), (A — & 0,0) for &in X,
(C>£0.0), (0 B BAB-—BA), (0,4~ ¢ A~ &) for £in X,
(0,B—>E,B~+e),(D—>DA,U,D%DA),(A—>§,0,A—>f),(D—»s,(D,D—»E),
(Sl - S, > 8S;— F)})
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VYTAH

n-arni gramatiky a popis zobrazeni jazykd

Karer CuLik I

Frdzové gramatiky byly doposud pouZivdny pro popis jazykd, tj. mnoZin slov nad
né&jakoun abecedou. Existuje fada jejich zobecuéni, ale v8echny jsou urdeny rovnéz
k popisu jazyki.. Zavddime zde jiné zobecunéni frazovych gramatik — n-drnf gramati-
ky, které generuji relace, tj. mnoZiny n-tic slov nad danymi abecedami. n-drni grama-
tika je systém n termindlnich abeced, n nontermindlnich abeced, mnoZiny pravidet
a vychozi n-tice nontermindlnich symboli. KaZdé pravidlo je n-tice obydejnych
pravidel nebo prdzdnych mist. Jsou zavedeny tfi rizné zplsoby generovdni relaci
n-drnimi gramatikami a jsou zkoumdny jejich vlastnosti a vzdjemné vztahy. Chom-
ského klasifikace je zobecn&na pro n-drni gramatiky a jsou vySetfovdny uzdvérové
a jiné vlastnosti razaych tf¥id. Bindrni gramatiky jsou pouZity k popisu zobrazeni
jazykil, zvldsté piekladu z jazyku do jazyku. Pfeklady, které lze popsat bindrnimi
gramatikami, zahrnuji dobrou pieloZitelnost [1] a syntakticky ¥izeny p¥eklad [7]
jako jednoduché ptipady. Je zavedena klasifikace zobrazeni jazykd podle typu gra-
matiky, kterd ho popisuje a je uvedeno nékolik pfikladi.
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