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K Y B E R N E T I K A Č Í S L O 2, R O Č N Í K 6/1970 

n-ary Grammars and the Description 
of Mapping of Languages* 

KAREL CULIK II 

The n-ary grammars generating relations (set of n-tuples of words) are introduced. Chomsky's 
classification is generalized for them and closure, projective and other properties of different 
classes of relations generated by n-ary grammars are studied. The «-ary grammars are used for 
describing mappings of languages (e.g. translation) and for the classification of their complexity. 

INTRODUCTION 

Up to now, the phrase-structure grammars have been used for describing languages, 
i.e. sets of words over some alphabet. There already exists a number of different 
generalisations of phrase structure grammars, we introduce another, namely the n-ary 
grammars which generate relations, i.e. sets of n-tuples of words over some alphabets. 
An n-ary grammar is a system of n terminal alphabets, n nonterminal alphabets, a set 
of productions and an initial n-tuple of nonterminals. Each production is an n-tuple 
of common productions or empty places. Three different types of generation of rela
tions by n-ary grammars are introduced and their properties and relations are inves
tigated. Chomsky's classification is generalized for n-ary grammars and closure, 
projective and other properties of different classes of relations are studied. 

The binary grammars are used to describe alphabetical mappings, particularly 
translations, from one language to another. The types fi or y of generation are par
ticularly convenient for this application. The translations definable by binary gram
mars include well-translation [1] or syntax-directed translation [7] as simple cases. 
The classification of complexity of mappings by the type of grammar defining them 
are introduced and several examples are given. 

* This research was partially supported by the National Research Council of Canada, grant 
A-4096. 



PRELIMINARIES 

For basic terminology and notation see S. Ginsburg [4] and C. C. Elgot, J. E. Mezei 
[3]. Here we consider them only briefly and with certain modifications: 

Let I be an alphabet, I* a set of all words over the alphabet including the empty 
word e; (E*)n is the set of all n-tuples of words over I. 

Concatenation of n-tuples: if u, v are in (I*)n, u = (u1, ..., w„), v = (vlt..., v„) 
then uv = (u1»1 , . . . , u„v„). 

Kleene's operations for relations (sets of n-tuples of words): 

if R <= (£*)", S cz (2r*)" then R u S is the common set union; 

if R c: (£*)", S c (2;*)" then concatenation RS = {uv \ u in R, v in S}; 

if R <= (2;*)" then iteration R* = R° u R u RR u RRR u ..., where 

R° = {e,e,...,s) 

The domain of a binary relation R is denoted by dom R, dom R = {x | (x, y) is 
i nR} . 

Let G = (Vr, VN, P, S) be a phrase structure grammar in the sense of [4], L(G) the 
language generated by the grammar G. Let V = VT u Vw. 

A general phrase structure grammar is said to be of the type 0. 
A grammar G = (VT, VN, P, S) is called context sensitive (type 1) if each produc

tion in P is of the form uAv -> uyv where A is in VN, u, v are in VN and y is in V* — {e}. 
A grammar G = (VT, VN, P, S) is called context-free (type 2) if each production 

in P is of the form A -> 1; where A is in V^ and v is in V*. 
A grammar G = (Vr, VN, P, S) is called finite state (type 3) if each production in P 

is of the form A -> vB or A -» u, where A, £ are in VN and t> is in VT. 
A finite state grammar G = (VT, {S}, P, S) (one nonterminal symbol) is said to be 

of type 4. 

rc-ARY GRAMMARS 

Definition. An n-ary grammar G is a system (VT x Vr x . . . x VT, Vw x VN x ... 
. . . x V£, P, (S l 5 S 2 , . . . , S„)), where VT n Vw = 0, i = 1, 2, ..., n, 

(i) VT, i = 1, 2 , . . . , n are alphabets (of terminal symbols); 
(ii) V'N, i = 1, 2 , . . . , n are alphabets (of nonterminal symbols); 

(iii) P is a finite nonempty set of n-ary productions. An n-ary production is an 
n-tuple (ejj, q2, •••, q„), where a; is either empty or a pair (x, y), where x is in V'N — 
— {e}, }' is in V'*. V denotes here and throughout the whole paper the union V'N u Vr. 



The pair (x, y) is a production in the usual way and is normally written in the form 101 

x-*y. 
(iv) (Su S2, ..., S„) is the initial n-tuple, St is in Vl

N for i ~ 1, 2 , . . . , n. 

Note. A n-ary production (qx, q2, ..., q„) will also be written in the form u -> v, 
where u = (u«, M2, . . . , «„), t> = (vt, v2,..., vn), u, -> D; = #; for a; + 0, M; = vt = e 
for a; = 0. 

Definition. Let G be an n-ary grammar. Let the n-tuples u, v be in V1* x V2* x 

x . . . x V*. We write u => v if there exist n-tuples x, y, z in V1* x V2* x .. . x V"*, 

w in V^* x VN* x . . . x VN*, such that M = ywz, v = yxz and w -> x is in P. 

Let relation =>* be the reflexive and transitive closure of =>. If u =>* v then there 

exists the sequence M0, u l 5 . . . , ur r ^ O such that M0 = u, ur = « and M0 => u1 => 

=> .. . => Mr. The sequence is called derivation of v (from u). 

Definition. Let =>* be the minimal reflexive and transitive binary relation on 
V1* x V2* x . . . x V* closed under the following procedure for obtaining new 
members from ones already admitted: 

if for u, v in V1* x . . . x V"* there exist y, z, t, s in V1* x .. . x V* and x in 

V\* x . . . x V* such that u = ysz, v = yxz, s -> r in P and t =>* x then u 4 * u. 

The length of u =>* u is said to be the minimal necessary number of applications 

of the given procedure when proving that u =>* v by definition. 

Example 1. G = ({a, c) x {b, d}, {S, A} x {S, £} , P, (S, S)) where P is the set 
of productions: 

(1) (S, S) -* (SA, SB) ; 

(2) (S, S) - (A, B); 

(3) (A, B) -* (a, b); 

(4) (A, B) -> (c, d) ; 

by the reflexivity of 4 * 

(5) (a, Ъ) 4 * (A, b) ; 

(6) (c ,d) 4* (c, d) ; 

from (3) and (5) 

(7) (A,B)£>*(a,b); 



W2 from (4) and (6) 

(8) (SA, SB) 4 * (Sc, Sd); 

from (2) and (7) 

(9) (Sc, Sd) 4 * (ac, bd) ; 

from (8) and (9) by transitivity 

(10) (SA, SB) 4 * (ac, bd) ; 

from (1) and (10) 

(11) - (S, S) 4 * (ac, bd). 

Obviously 4 is the minimal number of applications of the procedure for getting new 
members when proving ( l l ) , thus the length of (11) is 4. 

Definition. Let G = (VT x VT x . . . x VT, VN x VN x . . . x V"N, P, (S1 ; S2, . . . 
..., S„)), then the relation (set of n-tuples of words) 

{weVl* x V2
T* x ... x V*\ (Slt S2, ..., S„) 4 * w} 

({w eVT* xVT* x ...x V"T*\ (Su S2,..., S„) 4 * w}) 

is said to be oc-degenerated (/?-generated) by the n-ary grammar G and is denoted by 
R«(G)(R»(G)). 

Example 2. For binary grammar G from example 1 it is R"(G) = {(u, v)\ u e 
e {a, c} . {a, c}*, v e {b, d} . {b, d}*, the number of occurrences of a in u (c in M) is 
equal to the number of occurrences of b in v (d in v)}; 
RP(G) = {(x±x2 . . . xn, yty2 ... y„)\ n S; 1, xt e {a, c}, if xt = a then yt = b else 

y. = d, i = 1,2,..., n}. 

The ^-generation is of principal importance in the application of binary grammars 
to the description of the translation of languages, as will be shown later. We now show 
the relation between a-generation and /^-generation which will clarify the meaning 
of the latter. Let M0 4 ut 4 . . . 4 um be the derivation of um (from u0). Then there 
exists (for each i = 0, 1, 2, .... m — 1) yh z ; such that ut = j ix,z i , M ; + 1 = y-^fli and 
xt -» w; is in P. The occurrences of symbols in wt are said to be created in (i + l)-th 
step of the derivation of um. The occurrences of symbols in u0 are said to be created 
in the zero step of the derivation. The derivation of um is said to satisfy condition /? 
if any production used in the derivation does not replace nonterminal symbols 
created in different steps of the derivation, i.e. more precisely if in the above notation 



for each i = 1 , . . . , m — 1 there exist j h 0 < j t < i, at and bh such that wji = aixibi 103 

and yjflibtzJl =>* y,-,. 

Theorem 1. Le/ G be an n-ary grammar, G = (VJ- x VT x ... x VT, VN x VN x 
x .. . x Vn

N, P, (Su S2, ...,Sn)). Let u be in V1* x V2* x ... x V"*, v be in VN* x 
x VT* x . . . x VT*, then u =>* v iff there exists a derivation of v fron m satisfying 
condition p. 

Proof. 1. Let us assume that the derivation u0 => u1 =>...=> um satisfies condition 

p. We prove by induction on the length of the derivation that u0 =>* um. If the de

rivation is of length 1 then trivially M0 =>* uv Otherwise let the assertion hold for all 

derivations of length m. As w0 => u± then there exist x, z, win V1* x V2* x ... x V* 

and y in V^* x VN* x . . . x VN* such that u0 = xyz, ux = xwz and y -+ w is in P. 

The derivation ut => u2 => .. . => um satisfies condition P and thus by the induction 

assumption it follows that ut =>* um. From condition /? it follows further that there 

exist r, s, t in VT* x VT* x ... x VT* such that w,„ = rst and w =>* s. By the defi

nition of =>* it follows that u0 =>* «! and thus M0 =>* um. 

2. Let u be in V1* x V2* x .. . x V*, v be in VT* x VT* x ... x Vn*, u L*v. 

We prove by induction on the length of u =>* v that there exists the derivation of v 

from u satisfying the condition /?. If the length of u =>* v is one then u => v and con

dition P is obviously fulfilled. Otherwise, let the assertion hold when the length is 

m — 1. Let u =>* v be of length m. Then there exist s, t, y, z in V1* x V2* x ... x 

x V"*, x in VT* x VT* x ... x VT* such that u = ysz, w = jxz , s -* t in P and 

i =>* x, t =>* x and w =>* f are both of length less than m. By the inductive assump

tion there exist derivations satisfying condition /?: 

t = x0 => x1 => x2 =>...=> xp = x 

and 

w = p0 =>»!=> p2 -> . . .=> fs = c . 

Thus U = ysz => _yfz => yxjZ => yx2z =>...=> jxz => Uj => u2 =>...=> fg = v is the 
derivation of v from « satisfying condition /?. 

For the phrase structure (unary) grammars obviously => is the usual =>. In the 
case of a context-free grammar only one nonterminal symbol is substituted in each 
step of a derivation and therefore condition /? is always satisfied. We have the fol
lowing: 

Corollary 1. Let G be a context-free grammar, then R^(G) = R"(G) = Hp). 



104 Example 3. We give an example of a context-sensitive grammar G for which 
R'(G) * Ra(G). 

G = ({a, b, c, d} , {S, A, B, C} , {S -> AJ3C, AB -» aB, PC -^ bC, A -> J, 

C ->• c}, S) . 

Obviously, R*(G) = {abc, dbc}, Rt(G) = {dbc}. 

Definition. Let G be an n-ary grammar (VT x VT x ... x VT, VN x VN x ... x VN, 
P, (Sj, S 2 , . . . , S„)). Then the (unary) grammars G; = (VT, VN, Pt, S,) where P,- = 
= (?i | (<2i> i2> •••> #•> •••> in) e P> 1i + 0} f° r • = 1> 2, ..., n are said to be the 
partial grammars of the n-ary grammar G. 

Theorem 2. Lef G fee an arbitrary n-ary grammar then 

R\G)eR\G) c L(Gj) x L(G2) x . . . x L(G„), 

where G1; G2,...,G„ are 7he partial grammars of the n-ary grammar G. There 
exists a binary grammar for which both inclusions are proper. 

Proof. 1. Validity of the first inclusion follows immediately from the theorem 1. 

2. Let u1, u2,...,«' be a derivation of the n-tuple u' inRa(G). Let uk = (uk, uk
2,... 

..., uk) for k = 1, 2 , . . . , t (particularly u1 = (Sx, S2, ..., S„)). Then leaving out the 
repeating occurrences of the same members in the sequence u\, u2, ...,u\ we get the 
derivation of u\ in the grammar G;. Thus u\ is in L(G;) and the second inclusion is 
valid. 

3. We give an example of a binary grammar for which both inclusions are proper. 

Let G = ({a, b} x {a, b}, {Su A, B} x {S2, A}, {(S1 -* A, S2 -> A), (A -> aA, 
A -* aA), (A --> a, A -* a), (S. -» B, 0), (B -> b, S2 -> 6)}, (S„ S2)). 

It is obvious that P^G ) = {(a", a") | n = 1, 2, . . . } , 
Pa(G) = {(a", a") | n = 1, 2, . . .} u {(6, b)} , 
L(Gi) x L(G2) = {(am, a"), (amb), (6, a"), (6, b) | m, n = 1, 2, ...} . 

Definition. The n-ary grammar G is said to be of type (iu i2,..., i„) if its partial 
grammars Gj, G2, ..., G„ are of types iu i2,..., i„ respectively. The class of n-ary 
grammars of type (iu i2, ..., i„) is denoted by G.,,,2> -,,„. The class of relations a-
generated (/^-generated) by the n-ary grammars of type (it, i2, ..., i„) is denoted by 

^ii,i'2....,>» V^li,h >»)• 

Theorem 3. The classes R 2 2 2 and R\tU...yi are closed under union and con
catenation. 



Proof. Let Ru R2 be in R2>2 2 (in Ra,i,...,i), Ri = Ra(Gi), R2 = Ra(G2); 
Gu G2 in G2,2,...,2(G1,,,...ii); 

Gl = (V1 x V2 x . . . x n , V1 x V2 x . . . x Vn
N, P i , ( S l , S 2 , . . . , S ^ ) ) , 

G2 = (WT x W2 x . . . x Wn
T, WN x W2 x . . . x WN, P2, (S1, S2, ..., S"2)). 

Let V^, nWN = 9 and S ; not be in VN u W^ for i = 1, 2, ..., n. 

1. We construct the n-ary grammar G3, G3 = (VT <u WT x VT u WT x ... x 
xV"Tu WT, VN u WN u {S1} x V2 u W2 u {S2} x . . . x V£ u WN u {S"}, Px u 
u P2 u {(S1 -> S1, S2 -* S 2 , . . . , S" - SI), (S1 -> Si, S, -> S2, ..., S" -> S"2), (S1, 

s2,...,s-)). 
If Gi, G2 are in G 2 2 2 0 n Gi , i , , , , , i) t n e n G3 is in G2,2, ,2 (in G l l j ,,). It is 

obvious that R"(G3) = R1 u R2, thus both R2,2,...,2 and R'^ x are closed under 
union. 

2. We construct the n-ary grammar G4, G4 = (VT u WT x VT u WT x ... x 
xV"Tu Wn

T,VN u WN {S1} x V2 u WN u {S2} x ... x V£ u H ^ u ^ P , u P 2 u 
u { ( S 1 ^ S { S ^ , S 2-+S?S;t , . . .S , ,->SSS2)}, ( S \ S 2 , ..., S")). If GUG2 are in 

G 2 2 2 (in G1;1 !) then G4 is in G2,2,...>2 (in 6 ^ ! ,) . 

It is obvious that Ra(G4) = RiR2, and thus both R2>2>...>2 and R^,...,! are closed 
under concatenation. 

Theorem 4. The classes R2)2>...,2 and Rp
tl t are closed under union, concatena

tion and the class R22 2 under iteration. 

Proof. Let Ru R2 be in R£>2 2 (R?,i,...,i), # i = ^"(G,), R2 = RP(G2); Gu G2 

i n G 2 > 2 2 ( i n G l j l t); 

Gl =(VT x V2 x ... x VT, Vl
N x V2 x ... x VN, Pu (S\, S2

U..., Sn)), 

G2 = (WT x WT x ... x W"T, WN x WN x ... x W"N, P2, (S2, S\, ..., S2)) . 

Let VN nWN = <& and S"', Q' not be in V^ u Wj, for i = 1, 2 , . . . , n. 

1. We construct the grammars G3, G4 in the same way as in the proof of theorem 3. 
If the derivations of u in grammar Gx and v in G2 fulfil condition (l) then the de
rivations of u, v in G3 and of wy in G4 also fulfil condition (l) and therefore RP(G3) = 
= Rj. u R2, RP(G4) = RiR2- Thus the classes Rp

2a 2 and RP
1A x are closed 

under union and concatenation. 

2. For any R! we construct the n-ary grammar G5, 
G5 = (V1 x V2 x . . . x VT, (VN u {S1}) x (V2 u {S2}) x . . . x (V» u { S " } ) ^ u 

u {(S1 -> e, S2 -> e, ..., S" -> e), (S1 -> SiS1 , S2 --> S2S2,..., S" -* S"S")}, ( S \ S 2 , . . . 
..., S")). We shall show that R"(G5) = R?. Let (Sj, S2, ..., S"j be denoted by Sx and 
(Sl,S2,..., S") by S. 



106 a ) Let M be in R*, then there exists a sequence of n-tuples inV^* x VN* x ... xV* 

uu u2, ..., um (m _; 0) such that uk is in RP(G1) for k = 1, 2 , . . . , m and u = 

= uu u2, ..., um (in the case m = 0, u = e). Then Sj =>* uk and using it and the pro

duction S -• StS we have S 4 * Ul S =>* w ^ S =>*... =>* Uiu2 ... umSand finally 

using the production S -> (e, e, ..., g) we have S =>* MJMJ ... um = M. Thus R* c 

e R"(G5). 

b) Let M be in RI>(GS). Then there exists a derivation S =>* u, which fulfils condition 

(1). The fulfilling of condition (l) enables us to rearrange the derivation of u as 

S => S±S =>* MjS => MJSJS =>* u1u2 S => . . . => Z/1M2 . . . Mm S=> M,LU2... «m. The steps 

of the derivation show that Sx =̂>* Kfc for A; = 1,2, ..., m. Since they also fulfil con

dition (1) S1 =>* uk. Thus uk is in Rt and as u = utu2 ... uk, u is in R* and RP(G5) c 

c-R*. 

JVore. The question of whether the class R 2 J 2 J . . . ; 2 is closed under iteration is open. 

Definition. A binary grammar G is called linear if G is in G2 2 and both its partial 
grammars Glt G2 are linear (see [4]). 

Example 4. Let G be an arbitrary linear binary grammar. We construct the binary 
grammar G' such that (R*(G))* is in R 2 2 . The construction is not as simple as that 
for the ^-generation but nevertheless G' exists for any linear grammar. 

Let G = (VT x VT, VN x VN, P, (Su S2)). Assuming X, Y, Z is not in VN u VN 

we construct G' = (VT x V\, {VN u {X, Y, Z}) x (VN u {X, Y, Z}), P ' u {(Z -* 
-> SJ, Z -* S2Y), (Z-*s,Z-* e), (X -> e, Y -* Z), (y-* Z, Z -> e), (Z, Z)) where 
P ' is created from P in such a way that each unary production, involved in an /j-ary 
production in P, of the form A —> w, w e V^* (with terminal right side) is rewritten as 
A -* wX (nonterminal Z is added from the right); e.g. if (A -* aP, C -> a6) is in P 
then (/I -» « P C -* abX) is in P'. It is not difficult to show that R*(G') = (R"(G))*. 

Further, we shall formulate and prove some results only for binary grammars but 
their generalization for n-ary grammars is mostly only a formal matter. 

Theorem 5. If G is a linear binary grammar, then there exists a linear binary 
grammar G' such that RP(G') = Ra(G) and a linear binary grammar G" such that 
Ra(G") = RP(G). Moreover if G is in G3>3 then also both G', G" are in G 3 3 . 

Proof. Let G = (VT u VT, VN u VN, P, (S,, S2)). 

1. We construct the linear binary grammar G', G' = (VT x VT, VN x VN, P u P', 
(Su S2)), where the set P ' is created as follows: 

(i) if (qu 0) is in P and A is in V^ then (qu A ^ A) is in P'; 

(ii) if (0, a2) is in P and A is in VN then (A -> A, q2) is in P'. 



The productions from P' do not increase the a-generative power of G, thus 
R°,(G') = R*(G). However, substituting the productions from P' for some productions 
of the type (g1; 0) or (0, q2), each derivation (Su S2) =>* (w., w2) in the linear gram
mar G, (wx in V\, w2 in Vf) can obviously be rewritten in such a way that it fulfils con
dition /? and by 

Theorem 1 (S_, S2) 4 * (wu w2). Thus R"(G') c _J'(G'). By 

Theorem 2 R"(G') c R"(G') and thus _>«(G) = RP(G'). 

2. We construct the linear binary grammar G", G" = (V£ x V2., (V^ u Wj,) x 
x (V2 u Wl), P", (Sj, S2)), where W^ = {A' | A in V^}, ^ = A' | A in V2} (we 

assume tV^ n V j = 0 and W^ n 7 j = 0) and P" is created from P as follows: 

(i) each production in P of the form (A -» t1Pt2, 0) where A, B are in V^ and 
tu t2 are in V\*, is replaced by two productions (A -> t^B't2, 0)and(A ' -> tjP't2, 0); 

(ii) each production of the form (0, A -» ttBt2), where A, P are in V2,, f,, f2 in V2;* 
is replaced by two productions (0, A -» t1B't2), (0, A' -> t1B't2); 

(iii) for each production of the form (A -> f, 0), where A is in VN, f in V^* another 
production (A ' —> t, 0) is added; 

(iv) for each production of the form (0, A -» t), where A is in Vj2,, i in VJ* another 
production (0, A' -» f) is added. 

Obviously R\G") a R»(G). If (S1 : S2) 4 * (Wl, w2) in G then there exists a deriva
tion (Su S2) ss Uj => u2 => .. . => M„ = (vvj, vv2) satisfying condition />. It is possible 
only if for some r, l | r _ n the derivation Mj =>* ur uses only productions of the 
type (qu q2), q1 4= 0, g2 4= 0, and the derivation wr =>* M„ uses only productions of 
the type (qt, 0) or (0, q2). Let M be in VL x V2 then the pair obtained from u by re
placing all occurrences of each A in V^ u V^ by the corresponding A' in W^ u WJ, is 
denoted by „'. Then obviously Mr => Mr+1 => Mr + 2 => ... M,',_J => M„ and therefore 
Mj =>* M„ is a derivation in G" satisfying condition /?. Thus RP(G) c R"(G") and 
therefore RP(G) = RP(G"). Since no productions of the form (g1: q2), qt =f= 0, o2 4= 0 
contain a symbol from JV̂  u FV2,, no production of the type(aj, 0) or (0, q2) has a 
symbol from V}, u V2, on the right side and the grammar is linear (the number of non
terminals cannot increase), each derivation in G" fulfils condition /? and R\G") = 
= R"(G). Thus R%G") = RP(G). 

Corollary 2. R3,3 = K? i3. 

Example 5. For an individual grammar in G 3 3 the generated relations need not 
be equal. For instance, let G = ({a, c} x {b}, {S1; C} x {S2}, {(St -> a, S2 -> fe), 
(Sj -> cC, 0), (C -> cSx, 0)}, (S1 ; S2)). Obviously, P"(G) = {(c2V fr) j n = 1, 2 , . . . 
butP"(G) = {(a, b)}. 



In [3] the notation of transduction is introduced. Transductions are n-ary relations, 
which are definable by means of the n-tape finite automata (NDA in [3]). It is shown 
there that the class of transductions is equal to the class of regular relations, i.e. re
lations obtainable from finite relations by means of a finite number of the Kleene's 
operations. Now we show, that the class of transductions is equal to R3)3. 

Definition. Let Mn denote the class of »-tape automata over an alphabet (NDA in 
[3]). A in Mn is the system (S, v, s0> F), where S is a finite set (of states); v is a finite 
set v <r S x (_T*)n x S (multivalued next-state function); s0 in S is the initial state 
and F c S is a set of terminal states. The n-tuple of words u in (Z*)n is said to be ac
cepted by the automaton A if there exists a sequence of states s0, su ..., s, such that 

(i) (s;_ t , ut, st) e v for i = 1, 2, ..., t; 
(ii) « = utu2 ... ut; 

(hi) steF. 

Let the set of n-tuples of words (relations) accepted by the automaton A be denoted 
by R(A). The class of relations defined by automata in Mn is denoted by R(Mn); 
R(Mn) = {R(A) I A e M„}. In [3] such relations are called transductions. 

Theorem 6. R3>3 3 = R(Mn). * 

Proof. l .Le tGbe inG 3 > 3 3,G = (VT,VN x . . . x V$ x ... X V"N, P,(SU ..., S„)). 
We shall construct the automaton A in M„, such that R(A) = jRa(G). 

A = ((VN u {e}) x ... x (VN u {e}), v, (St,..., S„), (e, e,..., e)), where e is the 
empty symbol and v is defined as follows: 

Let A,-, _?, eVl
Nu {e}, vt e V1*, then ((A1; A2, ..., A„), (vu v2, ..., vn), (Bv B2,... 

..., _?„)) is in v if and only if there exists q in P such that q = (qt, q2, ..., qn) where 
one of the following conditions holds for all i = 1,2,...: 

(i) Af> £?! 6 VN, Ai -+ ViBi; 

(ii) A; e VN> £?( = e, A; -> t^; 

(iii) A,-, Bi e VN u {e}, A; = Bt, qt = 0. 

We need to prove that R(A) = R"(G). According to the definition of the n-tuples 
accepted by the automaton, u belongs to R(A) iff there exists a sequence of states 
s 0 , . . . , ste(VN u {e}) x . . . x (V,J u {e}) such that the following conditions hold: 

(i) (s ;_j, uh S;) e v for i = 1, 2 , . . . , t; 

(ii) u = u^u2...ut. 

(iii) s, = (e,e,...,e). 

* An equivalent theorem was also proved independently by J. Krai (On Multiple Grammars. 
Kybernetika 5 (1969), 1, 60-85). 



The sequence of states s0, s t , ..., s, fulfils conditions (i), (jj) iff S j l ^ , UjS. for 

i = 1, 2 , . . . , t, therefore s0 = (S., ..., S„) =>* M,. ... uf = K. Thus u is in P(A) iff u 

is in Pa(G). 

2. Let A in M, be an automaton over the alphabet I, A = (S, v, s0, F). We con
struct the n-ary grammar G = (I x £ . . . x I, S x . . . x S, p , (S o ; . . . . s0)) where P is 

n-times n-times n-times 
chosen as follows: 

(i) if (s, (»j, t>2, ..-, v„), s') is in v, s =f= s', then (s -» Ujs', s -> u2s', ..., s -> v„s')e P 
and if in addition s' e F then also (s -» vu s -* v2,..., sn -» v„) e P. 

(ii) if (s, ((jj, i>2, ..., v„), s) e v then q e P where a = (g,, g 2 , . . . , q„), q. = 0 for 
vi — e> ii ~ s -» f,s for I?J #= e. If in addition seF then also g' e P, q' = (gj, g2, . . . 
..., q'„) where g| = 0 for vt = e, g ; = s -> », for i;; 4= c. 

It is obvious that R*(G) = P(A). 

From Theorem 6 and the results in [3] it immediately follows: 

Corollary 3. The class R"33tt3(—Rl3 3) is closed under Kleene's operations, 
i.e. under union, concatenation and iteration. It is closed under intersection and 
complementation. 

Corollary 4. The class {dom R | R e R3;3} is the class of regular sets. 

Note. Let us consider the class of relations a-generated by n-ary grammars in 
G 3 3 3 satisfying the condition: if q is in P, q = (qx, q2,..., g„)then either qt is of 
the form A -» uB for all i = 1, 2, ..., n (A, B in V'N, u in V'N) or qt is of the form A ->w 
for all i = 1, 2 , . . . , n(A, P in F^, M in vi*). It is not difficult to show that this class is 
equal to the class R(S„) from [2]. 

Unlike the regular sets, we have the following result for context-free languages. 

Theorem 7. The class of context-free languages (LCF) is a proper subset of the 
class {dom R | R in R2>2}. 

Proof. Obviously LCF c {dom R | R in R2 ; 2}. The following example shows that 
this inclusion is proper. 

Let G = ({a, b} x {b}, {St, B} x {S2}, {(S, -> aSta, S2 -> S2S2), (S, -» B, 
S2 -» b), (B -> feB, S2 -» b), (B -> 6, S2 -> 6)}, (S„ S2)). 

In the derivation of a pair in R"(G) the productions must obviously occur in the 
following order and number: 

1. n applications of the production (Sx -> aS^a, S2 -* S2S2), n = 1,2,... gives 

(a"Sia\ S"2
+1); 

2. One application of the production (St -» B, S2 -> ft) gives (a"Ba", bS"2); 



3. n — 1 applications of the production (B -+ bB, S2 -> b) gives (a"fe" xBa", b"S2); 

4. One application of the production (B -» b, S2 -> b), gives (a"b"a", b" + 1). The 
symbols of the second word in the pair may be arbitrarily permutated after step 2 or 
step 3, but it does not change the terminal result. 

Thus {a"b"an | n = 1, 2, . . .} is in {dom R | R in R2i2} but it is well known [4] that 
[a"b"a" I n = 1, 2 , . . .} is not in LCF. 

Theorem 8. {dom R | R in R 2 2 } = LCF. 

Proof. Obviously LCF <= {dom R | R in R § 2 . To prove the reverse inclusion we 
must show that for every binary grammar G in G 2 2 G = (VT x VT, VN x V^, P, 
(S1 ; S2)) the dom R"(G) is in LCF. We construct the context-free grammar G' such 
that L(G') = dom R"(G). 

Let G' = ( 4 , iVw, P', (S l f S2)) where IV̂  = (VN u {0}) x (V2, u {0}), P' is de
fined in the following way: 

(i) If (Ay -» Mj, A2 -> uz) is in P, u< = i;0B1ylB2 ... Bmv„„ u2 = WoC^C^, ... 
... Cnwn where Al5 Bu ..., Bm is inVN, A2, C., C2, ..., C„ is in VN; v0, vv ..., vm is in 
VT*; w0, w., ..., w„ is in V2-* then P' contains all productions of the form (A,, A2) -• 
-> v0(Bt, Dt) vt(B2, D2)... (Bm, Dm) vm (0, Dm+1) (0, Dm + 2)... (0, Dp) where m ^ 
<; p <; m + n, Di is in V2, u {0} for 1 S i S m and in V2, for m + 1 ^ i g p; 
a n d l > , , £ 2 , ..., Dp is a permutation of C,, C2, ..., c,„ 0, 0, ..., 0. 

(p — «)-times 

(ii) If (A! -» «!, 0) is in P, u< = ^B.^E^, ... £,„i>m then (A,, 0) -* v0(Bu 0) x 

x Ui(iB2,0) ...(Bm,0)vm\s in P' . 
(iii) If (0, A2 -» u2) is in P, u2 = WociWjC. ... Cnw„ then (0, A,) -» (0, C.) . 

. (0, C2) ... (0, C„) is in P ' for n £ 1, (0, A2) -> e is in P' for n = 0 (u2 in V2*). 

We will prove now that L(G') = dom RP(G). By =>* the derivation in grammar G 
is understood in the following. A derivation in grammar G' is denoted by =>*. Let \i 
be a homomorphism from WN into VjJ defined as follows: JX(E) = e, n((A, B)) = 
= A if A = 0, /i((0, B)) = e for each A in V^ and Bin V^. /i(uv) = /^(u) j/(u) for each 
K, v in W*. 

1. We prove by induction on the length of the derivation u =>* v that if u =>* v, 

where u = (M., U2) , P = (vt, v2), ut in V1*, u2 in V2*, u< in Vj-*, y2 in V2.*, then there 

exists ut in WN such that ^(MX) = ut and w\ => r... 

Suppose that the inductive hypothesis is true for all derivations of length n — 1 

or less. Since u =>* v then by definition of =>* there exist s -> t in P, x in V\ x VT 

such that u = ysz, v ~ yxz and t =>* x. Because of the inductive assumption there 

exists ?! such that ^(iy) = tt, s = (s., s2), f = (tL, t2), x = (xu xz) and i t =>* x. . 

According to the construction of G' is. -* ?t is in P' and letting y = (y^ >'2), z = 



= (zj, z2) wehavej'jSjZ, => y{txzu Thus Uj => tfj where Mj = vvizi> (HJ) = yxsxzx 

and u = (^JSJZJ, y2s2z2). Thus R^G) c L(G'). 

2. We prove by induction on the length of derivation that forMj in WN, vx in V\, 

Mj =>* vx there exist M2 in WN and v2 in V£ such that («., M2) =>* (p., u2) where Mj = 
= /I(MJ). For a derivation of length one there exists a production sx -> x« in P' such 
that Mj = y^ jZj , pj = yxxxzx and >j, z. are in V\. By the construction of P ' there 
exists a production (Sj, s2) -> (x l s x2) in P such that /i(sj) = s t . Thus the inductive 
hypothesis is true for n = 1. Suppose that it holds for all derivations of length n — \ 

or less. Since ut =>* vx there exist Xj, yx, zx in V}-, Ax in WN such that u1 = yxAxzx, 
vi = >'i-xizi> ^1 ~* ti ' n P' a r ,d ii =s"* -Yi- By the inductive hypothesis there exist 
f = (fj, (2), x = (xj, x2) such that /i(fj) = fj and (tu t2) =>* (x l5 x2). By the con
struction of grammar G' there is a production (Ax, A2) -> (?x, t2) in P such that 
/i(Aj) = Aj and [i(tx) = tj. Thus u =>* u where w = (vjAjZj, A2), v = (yxxxzx, x2) 
and /i(ut) = ,'jA.z.. Thus L(G') <= K'(G). 

Theorems 7 and 8 give: 

Corollary 5. There exists a relation R, R is in R2 2 but not in R2>2. 

Example 6. Let R be in R2 2 then for n ^ 2 all n-tuples are not obtainable by 
means of left-most derivations as in the case n = 1. For instance let G = ({a, b] x 
x {c}, {Sj, A} x {S2, B, C}, {(Sj -> AA, S2 -> P), (A - a, B -> C), (A -> fc, 
C -> c)}, (Sj, S2)). Obviously R*(G) = {(a, b, c), (b, a, c)}. Both pairs in Pa(G) are 
derived using successively all productions of the grammar G (each once); the pair 
(ab, c) as the left-most derivation, the pair (ba, c) as the right-most derivation. 

For context-free n-ary grammars (Gin G 2 2 ) we introduce a third type of gener
ation. 

Definition. Let =>.* be the minimal reflexive and transitive binary relation on 
V1* x V2* x ... x V"* closed under following procedure for getting new members: 
if for v, w in V1* x ... x V"* there exist A; in V'N, M; in V', yt in Vlj and fc; =t 1 for 
i = 1, 2, ..., n andsf in V1* for j = 1, 2. ..., n ; ; = 1, 2, ..., fe; such that 

v = (»«, f2, ..., v„) ; w = (wj, w2, ..., w„) ; 

Uj = s}AjS2A, ... Sj '^ 'AjSj ' ; 

u„ = slAns2
nAn...sk^-lAnskr; 

Wj =s}>-1sjy1 . . . s W i ^ 1 ; 

y, =s],yns2y„...skr1y„skr, 

(Ai, A2, ..., A„) -> (MJ, M2, ..., u„) in P ; 
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(u . , « 2 . ...,«„)=>* (yj.ya, ...,y„) 

then u =>* w . 

The length of u =>* v is said to be the minimal necessary number of applications of 

the given procedure when proving that u =>* v by definition. 

Lemma 1. Let G be a context-free grammar, G = (VT, VN, P, S) (G in G2) then 

x =>* v implies x =>* y. 

Proof. We prove the lemma by the induction on the length n of x =>* y. For n = 1 

the assertion of the lemma obviously holds, let us assume that it holds for r < n. 

Let the length of x =>* y be n. By the definition of y-derivation we can write 

•X =>* w = > * y 

and 
x = slAs2A...Ask-1Ask, 

w = s1ts2A ... tsk~1tsk 

where z =>* t and A -> z is in P. Both w =>* >> and z =>* f are of lengths less than n 

and therefore w =>* y and z =>* r. Thus x = sLAs2A ... Ask~lAsk =>* s1ts2A ... 

... Ask~1Ask A* sWt... Ask~xAsk =>* ... 4 * slts2t... tsk~ltsk 4>* y . 

Corollary 6. Let G be a context-free grammar (G in G2), then Ry(G) <= R^G) 
(=JR«(G) = L(G)) 

Lemma 2. Let G = (F1 x V2 x ... x V"T, VN x V2 x ... x VN,P, (Su S2)) be in 

G2>2 2
 a nt! for a l l 9 — (€i' ?2» •••> 5n) iw I* there does not exist qt of the form 

A -> w where w = w1J3w2Bw3, w1, w2, w3 in V'*, A, B in V^.(on the right sides of 
unary productions there are all different nonterminal symbols.) Then RP(G) = 
= R\G). 

Proof is obvious. 

Corollary 7. For G in G3 3 3R
y(G) = R'(G) and therefore R3 3 3 = Rp

3 3 3 

( = R5.2 2 = M„). 

Theorems Rfi2(...,2 «= R2>2,...,2. 

Proof. By Lemma 2 it is sufficient to show that for every n-ary grammar G there 
exists a grammar G', with different non-terminals on the right sides of each unary 
production such that RP(G') = RP(G). The binary grammar G' is constructed from 
the grammar G as follows: 

If any nonterminal symbol A occurs more than once in the right side of any unary 
production qt ((qt, q2,..., q„) e P) then we attach different subscripts to all occur-



rences of A. These subscripted nonterminals are added to the set Vl
N and for each 

production (<ji, q2, • • •, ?„) in which the left side of any q{ can be subscripted, the new 
productions are added for all the combinations of subscripts in both the left and the 
right sides of qx, q2,..., q„. Obviously, R"(G) = R'(G'). 

Example 7. This is an example showing that even for the class G2 (context-free 
grammars) the inclusion R2 a Ry

2 is proper. Let G -= ({a, b}, {S, A], {S -> AA, 
A -> aAb, A -> ab}, S). Obviously, Ry(G) = {a"b"anbn | n = 1, 2, ...} and it is a well-
known example of a language which is not context-free. 

MAPPINGS DESCRIBED BY GRAMMARS 

A mapping from E* into subsets of E* is given by every binary relation R,R c E* x 
x E*. Thus by means of binary grammars a large class of mappings from E* into 
subsets of E* (e.g. transducions, translations [7]) can be described. 

In the case that a binary grammar G has no productions of form (0, q2) and is of 
such a type, that for its partial grammar Gx there exists an effective syntactic analysis 
procedure, then the mapping / given by the grammar G is given effectively. By the 
following procedure for each x in E* the set/(x), empty if x is not in the domain of / 
can be found: All derivations of x in the partial grammar G} are found. Then for 
each unary derivation all such binary derivations are created, each of them using 
binary productions whose nonempty left components are the productions used in the 
common derivation. From the assumption that no productions in G has the form 
(0, q2) follows that to each unary derivation, there are only a finite number of 
corresponding binary derivations and the described procedure is actually effective. 

Note. By the existence of an effective analysis procedure for partial grammar Gj, 
we mean that for each word w in E* there exist only finite number of derivations 
in Gt all of which can be found effectively. 

Definition. Le t /be a mapping from E* into subsets of E2, then the binary grammar G 
is said to ^-induce (£, in {a, /?, y}) the mapping/ i f / (x) = {y \ (x, y) in R^(G)} for any 
x in E*. 

The binary grammar G is said to ^-realize (£ in {a, /?, y}) the mapp ing / i f / (x ) = 
— {y | (x, y) in ^?(G)} for x in Df, where Df = {x \f(x) ¥= 0} is the domain of map
ping /• 

Note the same terminology for multitape automata as in [2] and the notions 
"transduction" and "translation" as in [7]. We will call translation the mapping 
from a language Lx into a language L2 which preserves the meaning of all sentences. 

Example 8. We write the binary grammar G ^-inducing the translation of a simple 
arithmetic expression from common notation into reverse Polish notation. 



G = ({a,b,c, +,*} x {a,b,c,],[,+,*},{P,T,E} x {P, T,E}, {(P-» a, P -* a), 

(P-*b,P-* b), (P->c,P^ c), (P -* [ £ ] , P -» £), (T-» P, T^ P), (T-> T*P, T^ TP*), 

(E -» T, £ -» T), (£ -> £ + T, £ -» £ T +)}, (E, £)). The use of ^-induction in this 

example is essential, for e.g. (E, £ ) - > ( £ + T , £ T + ) = - ( T + T, TT+) 4> (T*P + T 

TTP*+) 4 (P*P + T TPP*+) 4- (P*P + P, PPP* + ) => (a*P + P, PaP* + ) =• 

-> (a*6 + P, feaP* + ) 4-(a*i? + c, 6ac*+) and f>ac*+ is not the translation of 

a*b + c into reverse Polish notation. 

Example 9. We write the binary grammar G y-inducing the translation of simplified 
ALGOL-60 for statements into FORTRAN. The rules for writing numbers (N) and 
variables (V) in both languages are strongly simplified only for brevity of the example. 

As the comma is a terminal symbol, the symbol " | " will be used instead of the 
comma to separate different elements of sets and components of pairs. The symbol # 
indicates the end of a line in FORTRAN-programs. 

G = (VT x VT, Vl x Vl, P, (Q, Q)) where 

V\ = {A | B | c | + | - | x 111 : = | for | step | until | do | begin | end | ;} , 

Vl = {A | B | c | 0 | 1 | + | - | * | = | DO | CONTINUE | ( | ) | , | -- | } , 

Vi = { Q | V | £ , \E2 | £ 3 | £ | TV IR IS I T\P\L\N} , 

V2
N = {Q\V\E1\E2\E3\E\W\R\S\T\P\L\VI\V2\V3\N}. 

and P consists of the productions 

(Q -» for V: = Et step £ 2 until £ 3 do W\ Q -» Vx = £, ^ V2 = £ 3 ^ V3 = 

= £ 2 # DO(iV) V = Vx, V2, V3 ji W^ N CONTINUE) 

(W^S\W-*S) (Q\V2-+N) 

(JY^ begin P | W^R) (0 |V 3 -» iV) 

(R -» S end | R -» S) (Ex -» £ | Ex -> £) , 

(R -» S ; R | P -» S # P) (£2 - E | E2 -» £) 

(S - V:= E | S -> V= £) (E3 -» £ | £ 3 -» £) 

(£ -» PTE | £ -» PT£) (iv _» 1 | iV -» 1) 

(T-* + | T^ + ) (N ~ » 0 | i V - » 0 ) 

( T - » - | T - » - ) (N ^N0\N-*.N0) 

(T-» x | T - * ) (N - » i V l | J V - » M ) 

( T - » T | T - » * * ) ( V ^ L | V - + L ) 

(P^V\P^V) (L-*A\L^A) 

(P^N\P-*N) (L-*B\L^B) 

(9\Vt-*N) (L^c\L^C) 



Note. It is possible to show that well-translations of languages [1] and syntax-
directed translation [7] are a special case of the mappings /^-induced by binary 
grammars of type (2,2). 

The complexity of a mapping can be classified by the type of a binary grammar in
ducing (realizing) it. 

Definition. Let a mapping / be ^-induced (£, in {a, p\ y}) by a binary grammar of 
type (i, j). Then / is said to be of type i\,. Similarly the type of a grammar realizing 
the mapping could be considered. For i,j S: 3 there is no difference between types 
with aorjS and we will omit the Greek letter in this case. In the following we show the 
types of some commonly known mappings and we give some examples. 

Obviously, a homomorphism is of type / 4 4 , sequential mappings realized by 
generalized sequential machine ([5]) will now be considered. 

Theorem 10. Any sequential mapping f is both of type lA3 and type / 3 4 . 

Proof. Let the mapping/ , having input alphabet X and output alphabet Y be 
realized by the generalized sequential machine (K, X, Y <5, X, p,), where K is a set 
of states, <5 is a next-state function (from K x X into K), X is an output function 
(from K x X into Y*) and p, is the initial state. 

1. We construct the binary grammar G = (X x Y, [W] x K, P(W, p,)), where 
Wis an arbitrary symbol and the set of productions P is given as follows: for each a 
in X and p ; in K the productions (W-+ aW, p; -»<5(p;, a) X(pt, a)) and (W -» a, 
Pi ~* KPh a)) a r e in P- Obviously, (x, y) is in R"(G) iff y = f(x). 

2. We construct the binary grammar G' = (X x Y K x [W], P', (pu W)), where 
FY is a new symbol and the set of productions P' is given as follows: for each a in X 
and Pi in K the productions (p ; -» a <5(p;, a), W-* X(p{, a) W) and (p ; -» X(ph a), 
W-* a) are in P'. Obviously, (x, y) is in R«(G) iff v = f(x). 

Note. The sequential mappings are only a subclass of the mappings of type 

/ 4 3 (/3>4). For instance the inverse mappings of the sequential mappings are also of 

type '4 >3 ('3.4)-

Note. By Theorem 6 a mapping is of type / 3 3 iff there exists a transduction R [3] 
such that f(x) = {y \ (x, y) in R] for all x. 

Example 10. The binary grammar G, from the proof of Theorem 7, a-induces 
a mapping/, the domain of which "is more complex" than the mapping itself (by 
interchanging the two partial grammars to give G', it follows trivially that G' a-induces 
a mapping the range of which "is more complex" than the mapping itself). By 
Theorem 8 it follows that the use of a-generation is essential in Example 10. 

Example 11. The mapping/from Example 10 can be realized (but not induced) by 
the binary grammar G in G 3 3 . 



Let G = ({a, b} x {a, b}, {S, B, C} x {S, C}, {(S -* aS, S -+ aS), (S -> bB, 
S -> bC), (B -* bB, 0) (B -> aC,C -* aC), (C -> aC, C -> aC), (B -> a, C -> a), 
(C -> a, C -> a), (S, S)). 

It is not difficult to see that 

R'(G) = {(ambnap, ambap) | m = 0, 1 , . . . ; n = 1, 2 , . . . ; p = 1, 2 , . . .} 

and thus/ is a-realized by G. 

JVore. The complexity of the domain or/and the range of a mapping influences the 
necessary complexity of the binary grammar only if we consider the mapping induced 
(but not realized) by the grammar. It is trivial that the identical mapping of any 
domain over I, onto itself is realized (but not induced) by the binary grammar G in 
G4 4, G = (Z x I, {S} x {S}, (S -> aS,S -> aS), (S -> a, S -> a), for all a in I, 
(S,'S)). 

We can also describe more general mappings by means of n-ary grammars (for 
n > 2). We give the following example. 

Example 12. In [2] the mapping / is realized by means of a multi-tape automaton. 
The mapping/maps the pair of words over {a, b, c, ..., z, ©, *} x {a, b, c,..., a, ©} 
into words over {a, b, c, ..., z}. We get the output for a pair of words when taking 
the first word in the pair, omit the subwords between the (2k — l)-th and 2fc-th oc
currences of the symbol * for k = 1, 2 , . . . , and replacing the subwords between the 
(2k — l)-th and 2k-th occurrences of the symbol © by the subwords of the second 
word of the pair between the (k — l)-th and fc-th occurrences of the symbol ©. (We 
assume the zero occurrence of © at the beginning of the second word.) In [2] the 
mapping / is described formally by means of a multi-tape automaton. We now write 
the ternary grammar G which ^- induces/ 

Let I = {a, b,c,..., z} then G = (({©, *} u Z) x (I u {©}), {(S : -> StD, 
S2 -+ S2, S3 -> S3D), (S2 -> Sx *C*, S2 -> S2, S3 -^ S3), (St -> Sj © P © , 
S2 ~> S2B®, S3 -> S3B), (C -> CA, 0T 0), (A -> {, 0, 0) for £, in I, 
(C -> f, 0, 0), (0, B^BA,B-> BA), (0, A -> «J, A -> £) for { in I , 
(0, B -> e, P -> e), (D -> DA, 0, D -> DA), (A -> {, 0, A -> ^), (D -> e, 0, D -> s), 
(S1 - e, S2 -> £, S3 - £)}). 

Acknowledgement. The author is grateful to Derick Wood for his comments on an earlier draft 
of this paper. 
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n-ární gramatiky a popis zobrazení jazyků 

KAREL CULÍK II 

Frázové gramatiky byly doposud používány pro popis jazyků, tj. množin slov nad 
nějakou abecedou. Existuje řada jejich zobecnění, ale všechny jsou určeny rovněž 
k popisu jazyků. Zavádíme zde jiné zobecnění frázových gramatik — n-ární gramati
ky, které generují relace, tj. množiny n-tic slov nad danými abecedami, n-ární grama
tika je systém n terminálních abeced, n nonterminálních abeced, množiny pravidel 
a výchozí n-tice nonterminálních symbolů. Každé pravidlo je n-tice obyčejných 
pravidel nebo prázdných míst. Jsou zavedeny tři různé způsoby generování relací 
n-árními gramatikami a jsou zkoumány jejich vlastnosti a vzájemné vztahy. Chom-
ského klasifikace je zobecněna pro n-ární gramatiky a jsou vyšetřovány uzávěrové 
a jiné vlastnosti různých tříd. Binární gramatiky jsou použity k popisu zobrazení 
jazyků, zvláště překladu z jazyku do jazyku. Překlady, které lze popsat binárními 
gramatikami, zahrnují dobrou přeložitelnost [ l ] a syntakticky řízený překlad [7] 
jako jednoduché případy. Je zavedena klasifikace zobrazení jazyků podle typu gra
matiky, která ho popisuje a je uvedeno několik příkladů. 
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