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KYBERNETIKA- VOLUME 19 (1983), NUMBER 3 

ON DIFFERENCE EQUATIONS AND 
DISCRETE SYSTEMS 

PAVEL ZORN1G 

Discrete systems described by certain non-linear difference equations are studied in this paper. 
Such systems are represented by discrete Volterra-series. The paper recalls such notions as 
compositional, convolutional, time-invariant and stable systems and the paper defines the pro­
perty of V-analyticity which depends on Volterra-series. 

This paper deals with difference equations and discrete systems described by them. 
It is shown that under certain conditions it is possible to express such discrete systems 
by means of the so called discrete Volterra-series and denote them as V-analytical 
systems. This form of Volterra-series allows to represent the investigated system 
by a sequence of systems connected in parallel. Each one of the systems in the sequence 
has special properties which make it easy to analyse. The first system is a linear, 
the second one is of a quadratic nature, the third one is of a cubic nature etc. This 
representation of the non-linear system as a sequence of systems is suitable for the 
interpretation of the investigated system. 

The considered equations have the form 

Lny + eq> o y — x . 

The first term on the left-hand side of the equation is a linear difference operator 
with constant coefficients and the second one is a non-linear operator determined 
by a power series 

J = 2 

This paper is connected with the general work of B. Pondelicek [1] and, where 
possible, the same notation is used. 
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1. GENERAL REMARKS; DISCRETE VOLTERRA-SERIES 

Let 0t denote the set of all real numbers, <& denote the set of all integers, Jf is the 
set of all natural numbers and let, for i e Jf, <€' is the cartesian power of <€. By 3St 

we denote the set of all bounded sequences of real numbers, defined on <€', for 
which the following condition holds: 

( l e f . o (h(ku k2,..., fcf) em, k,e (fc1; k2,..., fcf}, 

fc, <l 0=>h(kuk2,..., fcf) = 0 ) . 

For all x e 0t we define the following function F : 0t -* Jf: 

F( ) = / ° for x < ° 
^ ! \ n for x e <n — 1, n). 

This function is non-decreasing, right-continuous and piecewise constant. 
According to the definition of the function F we express summations using the 

integrals of Stieltjes. Le t j : & -> M be uniquely defined forx = neJf and such that 

I [A»)|<», 
then 

(1) f / ( x ) d r ( x ) = ! / ( « ) , a . f o e ^ . 
J . -=»<* 

The convolution h * x of sequences /i e £#,, x e f j can then be written in the form: 
for fc e <g 

[h * x] (fc) = £ fc(fc - T) X(T) « * £ h(k - T) X(T) = 
T = 0 T = 0 

= f /i(fc - T) X(T) dF(r) = ^ h(k - T) X(T) dF(x), 

because the following implication holds: 

T ^ fc => h(k - T) = 0 . 

When x e » ] we denote for i e Jf x*'(kv fc2, ..., fcf) = x(fcj) x(fc2)... x(fc;), 
then x*' e 91 x. If for each ( = 1,2,... the sequences /if e @$x and x e 0SV we define 
for ke<6 the generalized convolution /if * x*' e J? t 

(2) [h£*x*'](fc) = 
*:— i fc— I fc-i 

= X Z - - - Z M f e - T i ' f c - t 2 ) . . . , f c - t i )x( t 1 )*(T 2 ) . . .x( t , ) = 

T , = O T 2 = 0 TJ = 0 

= f " f" . .. f ht(k - tlt k - T2, . .., fc - T.) n *(**) (LF(T») • 
J o j o Jo »=l 

Every sequence hf e ^ f determines a mapping / / , : ̂  -* ^ ^ //,x = hf * x*'. 
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Definition 1. Let /?, 6 38 h kj e 38j, xe@v For mappings //,, Kj we define the follow­
ing operations: 

1) for t i E « a//,x = a/?; * x* ' , 
2) for i =j , Hpc + __,x = (H, + __,•) x = (/?,- + k) * x* ; , 
3) for UJeJT, 

(_/,x) . ( J i » = ( # ; . Xj) x = (/?,-. kj) *x*i+J. 

Note. The operations 2 and 3 are evidently commutative. 

Definition 2. Let for all members of the family /.., /?2, ..., /?;, ... hold / i , e ^ ; , 
let for x e l , every /?; determine the mapping // , :3$l ~* 38 v by the expression 

H(x = hi* x*'. The series £ _7,x, which isdetermined by the family /?,, /i2, ..., /i;, ... 
; = o 

is called a discrete Volterra-series. 

2. LINEAR EQUATION 

For w e / we denote yw e_ 38 ±, the linear subspace of all sequences ae38t 

for which a(u) = 0 if u < w. Let Z„ be a linear difference operator Ln: 38 i -» £?., 
for _ve J1! defined as follows: 

(3) L„j = ;>(/c + n) + />„_ j y(/c + n - 1) + ... + b0 y(k) , 

&„_!, 6„_4, ..., b0e3? . 

If x e 3S1 then the relation L„y = x is a linear difference equation of order n. 

Theorem 1. Let he38u h(i) = h(2) = ... = h(n - l) = 0, h(n) = 1 satisfy the 
equation Lny = 0. Then the sequence u e y„ determined by the rule u = h * x 
solves the initial-value problem Lny = x, y s y„. 

Proof. 1) w = h * x ^> u e y„. 

2) Substituting for u in the equation we get 

u = h * x => L„u = x . 

3) Since such an initial-value problem has exactly one solution, the theorem is proved. 

D 
Corollary 1. The discrete system <P : 38l -» "Vn described by the difference equa­

tion Lny = x, y e -f~n, x e 3ft v is linear, convolutional, causal and time-invariant. 

Furthermore if ]T \K^)\ < °°' * *s s t a r j l e -
*= I 

Proof. The first part of the assertion follows from Theorem 2.4 of [ l ] . 

Because sup V|h(fc — T)| = Vj \h(k)\ < <x>, <P is stable according to Theorem 3.1 
k v k=l 

of [1]. D 
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Corolarry 2. The discrete system from Corollary 1 is expressed in the form of the 
discrete Volterra-series determined by the family of sequences ht = h, h; = 0 if 
i ^ 2. 

3. NON-LINEAR EQUATION 

Let cij e M for j — 2, 3 , . . . and let a real function of a real variable 

(4) ?oo = i > y 

be given as a power-series with the radius of convergence Q > 0. The function 

H=) = j - <p{z) = b^j 

az j=2 

as a power-series has the same radius of convergence. 
For a e 3)1 we shall use the norm ||a|| = sup |a(fc)|- The symbol f o g means the 

composition of functions f and g. kejr 

In the next section we shall consider a non-linear difference equation 

(5) L„y + eq> 0 y = x , 

i e i , , y e i'"n, e is a real constant. 
Let h be the sequence from Theorem J. On applying the convolution to both sides 
of the equation (5) we obtain 

/; * (Lny + e<p o y) = h * x . 

From the linearity of a convolution and from the properties of h, we have 

(6) y = h * x — sh * (p o y . 

It can be easily shown that a sequence y e ~fn satisfies (5) if and only if it satisfies (6). 

4. CONTRACTJVITY OF THE MAPPING; CONDITIONS FOR THE 
UNIQUE SOLUTION 

For a fixed x e 3Sl we denote A the mapping from ir
n to ir

n 

(7) Ay = h * x — eh * cp o y . 

The initial-value problem y = Ay, y e Y~n will be solved by using the Banach prin­
ciple. 

For a real R, 0 rS R < Q we define the function 

A(R) = sup \\il/ o y\\ . 
M S * 
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Lemma 1. The function X: <0, Q) -> R is non-decreasing, continuous and X(0) = 0. 

Proof. It is easy to show that A(0) = 0 and X is non-decreasing. Furthermore 
let sd and 38 be the sets defined as follows: 

s4 = {xeM\ x = \Uy(k))h keJr, \\y\ < R} , 

0& = {xe$\x = |tA(z)|, |z| < R} . 

Evidently stf = 3). Since SB is a bounded and closed interval, sup 'M exists and 

sup M = sup |>A(z)| = sup |i/» o v|| = X-(R) • 
|z|§R |bl|gR 

If |z| < R < Q, \\i is a continuous function on < — R, R). The continuity of X is then 
a consequence of the uniform continuity of y>. • 

Lemma 2. Let >•,, v2 be any pair of sequences from SSU such that ||_v,j| <, R, 

\y2\ <_ R. Then 
(8) hoyi-<Poy2\\<X(R)\\y1-y2\\. 

Proof. It holds for the function cp : if z e ( — Q, g)then (discontinuous and diffe ren­
table. Let z., z2 e (-R, R) c ( - g , Q); it follows from the Mean Value Theorem 
that 

\<p(zi) ~ <p(zi)\ ^ sup — cp(z) |z, - z2| . 
It-is* |dz 

Consider the pair yt, y2 from Lemma 2. For k eJ/~, we denote Vi(/c) = z, k, y2(k) = 
= z2k. Clearly |~i.k |, | z 2 k | ^ R. Therefore 

\<p(zi,k) - <P(z2,k)\ ^ sup |i//(z)| . \zuk - z2jk| 
| z | §R 

for every ke Jir. 

This can be rewritten as 

kO'.(fc)) - cp(y2(k))\ < sup |*(z)| . \yi(k) - y2(k)\ < 
l*IS* 

^ sup |V/(z)| . sup \y,(k) - )U(k)\ = A(R) \yx - y2\ 
| z | g R | z |SR 

according to the definition of X. 
Hence 

(9) ||<P°}>, - «Poj;2|| <X(R)\\yi - v 2 | . D 

We denote ]T |/J(/C)| = //; suppose H < ao. Then for \\h * x||, /i e $ , , x E 9SX we have 
*: = 0 

III' * * | = II 1 Kk - T) X(T)|| < 1 i \h(k - T)| |X(T)||| < 
r = 0 T = 0 

(10) < !| I |/7(/c - T)| sup |X(T)||| = | x | sup f \h(k - T)| = 
T = 0 re„r l s . r t = 0 

= ||*| 11*(*)| = 1*11 H . 
k = 0 
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For any pair yu >'2 6 @t such that fly.fl < R, \\y2\\ < R we obtain 

\Ayx — A>2|| = J A * x — eft * <p o yi — h*x + eh*<po >2|| = 

(11) = |«| \\h * (<p o >2 - q> o > ! ) | < |e| / % o >2 - <p o >! I < 

^ H i / ^ R ) ! ^ - ^ ! . 
by using (8), (9) and (10). 

Consequently the following theorem holds: 

Theorem 2. Let R0 > 0 be a real constant such that 

K*o)<TTZ-

r\ 
Then the mapping A : ir

H -> "f„ (7) is a contraction on the sphere 
^o = {y e ^ 1 IMI < *o) 

with the constant of contractivity K = |s| A(R0) H. 

Proof. The proof follows from the formula (11). • 

We shall use the Banach principle in this form: 

Theorem 3. (Banach) Let 0> be a Banach space, let a mapping A : SP -* 0* be a con­
traction with a constant K e (0, l) on a set °U c 3P, with % non-empty. Let the 
closed sphere 

02) ^ 0 = | > e ^ | | | > - > 1 | | < - r ^ | | > 1 - > 0 | 

determined by points >0 e $? and > t = A>0 satisfy £f 0 c <#r. Then the mapping A 
has in Sf0 exactly one fixed point > such that y = Ay. The point > is the limit point 
of the sequence of iterations >„ + 1 = Ayn, n = 0, 1, 2, .... 

Theorem 4. Let the mapping A defined by the relation (7) Ay = h * x — Eh * <p 0 > 
be a contraction with a constant X e (0, 1) on a nonempty sphere 

W0 = {> 6 IT, | | > | ^ R} . 

Then for every j e ^ satisfying the condition 

(13) \\4^1-~£« 

the equation > = A> has exactly one solution > 6 $T0. 

Proof. If >0 = (0, 0, . . . , 0,...) e @lt then yx = Ay0 = h * x. According to (10) 
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we have ||j 'j | | < | x | H. Substituting (13) into this relation we obtain 

(14) \\yi\\<(l-K)R, 

hence yt e %0. As in Theorem 3 let 

^o = ^^n\\\y-yi\\^~.lyl-yoiy 

Consider any v e £f0; then 

\\v~yi\\ = 7 z ^ l ^ - * > ! • 

Therefore 

It'll = It' - )'i + .Vif < \\v - yt\\ + I ^ J I < 

, K 

1 - K 

As y0 = 0 e J1! we have 

Lľi - >'o + Ы • 

HI -{Y^K + O"3'1" and'usins (M)' 
l | y | | < ( r A ^ + 1 ) 0 ~ K ) K = i'' 

hence u e <^0. 
Now it follows that £f'0 c ^ 0 , the mapping A is a contraction on £f0 and, in 

accordance with Theorem 3, there exists exactly one j e * 0 such that y = Ay. • 

Note. If x e l , is bounded by the condition |x|| <, ((1 - K)\H)R , then the 
equation L„y + s<p o _y = x has a solution y for which |_y|| = R under all conditions 
contained in the text. 

5. PROPERTIES OF THE ITERATIONS 

In the same way as in Section 4, let x e ®y, y e "Tn, let ipbea power-series (4), h 
be from Theorem 1 and let A : "Vn -» ir„ be the mapping defined by the formula 

Ay = h * x — sh * cp o y . 

We shall investigate the sequence of iterations y0 = O e ^ j , yn+l = Ayn, for n = 
= 0, 1, 2, ..., which converges to the solution of the equation y = Ay under the 
conditions of Section 4. 

Lemma 3. If y0 = 0 e J „ then yt = Ay0 and yz = A)\ are discrete Voiterra-
series. 
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Proof. When y0 = 0 e J , then yt = h * x. We denote h = h[X) e ®x, h[X) = 
= OeMk for k = 2, 3, .. •• So we obtain the discrete Volterra-series for the first itera­
tion r, = H[X)x. 

For y2 we have 

y2 = h * x - eh * cp o yt = h * x — eh * £ a/Zij 'V)7 ' . 
J = 2 

By Definition 1 we have 

y2 = h*x-eh*f a,[(/;(
1'

))J' * x*y] . 
j = 2 

For a fixed j ^ 2 we get 

- ea, f h(fe - r ) ~ r T . . . f h(T - T.) h(t - T2) ... 
Jo LJoJo Jo 

...h(T-T,)nX(T,.)dE(T,.)Jdr(T). 

The integrals express summation by Section 1. After a reordering of the finite sum 
in the last formula we obtain 

Ff'"[o[~mjfoh{k ~ T)/'(T ~ Tl)'" h{T ~ ^ ^ H fl *(*') dffr)-
We note /i1,2' = /;, and for; = 2, 3, ... 

h(.2)(fc - T1; k-x2,...,k- zj) = 

= - e a , j h(fc - T) h(x - - ,) ... h(x - T,) AF(X) . 

Then the family of sequences h[2), h2
2), h(

3
2),... determines the discrete Volterra-

series of the second iteration. Q 

Lemma 4. If y„ is a discrete Volterra-series determined by the family of sequences 
h[n), h2

n), /;3
n), ..., h(

i"
) e £#,-, the next iteration y„ + l = Aj>„ is a discrete Volterra-series 

too, with the determining family h(i"+1), h2"
+1), h3"

+1), .... 

Proof. Suppose y„ = £ flJB)x, x e # 1 ; then 
i = l 

v„+1 = h * x - e h * { f c / f £T<">jcy}. 
y = 2 i = i 

After reordering the sum enclosed in the braces according to degrees of the terms 
it may be shown that 

(15) y„ + 1 ~h*x-eh* {a2(Hiy + f {a^)' + 
i = i 

+ EV.["~cr°W-^ 
«=i P = i P 
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with the conditions for the summation 

P 5= (1 < rj < r2 < ... < ra), (vx + v2 + ... + vx = p), 

(r1v1 + r2v2 + ... + rava = I + p) 
and 

Ck _ (k \ (k ~ Vl\ / f c - V. - V2 - . . . - V , _ . 

We put 

(16) h(
1"

+1> = h<1"> = /1 . 

For the second degree we rewritte for fee Jf 

[-Bh*a2(H^fx\(k) = 

and we reorder the integration 

J" K'< - ~V\^\ h (T - T0 K- ~ *i) *(*,) X(X2) dF(x1) dF(x2)~ dF(x), 

order the integration 

- M - r r [ [ " *<* - T) /T(T - T>) ̂  - -j d / , w ] X(T<) ̂  d/r(T') dF(^) • 

+ ')(fe - T„ fc - T2) = -£a 2 f" /l(fe - T) A(t - T.) h(T - T2) dF(x) 

Put 

Similarly for i ^ 3 the ith term has the form 

- eh*({ai(hy + Zai.ir
(li"\hy-1-". 

i=i P=\ 

• » W ? ) n - ( « " C *]}•*")• 
p 

If we reorder the summation in the last expression, we can denote 
h^+1\k - tu fe- X2,...,k- T.) = 

(l?) = ~6 r h(fe - T) { « - , ( * ) ' + i v r f ' W " ' " ' • 
Jo i = 1 P = 1 

• n^T'Wfr-ra^c;-:, J W ) 
p 

P == (1 < rj < r2 < .. . < r j , (vx + v2 + ... + va = p ) , 

(r^Vj + r2v2 + ... + rxvx = I + p) . 

The independent variables (T — T,, T — T2, ..-, T — T,) are omitted in the braces. 
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We have found the family hl
1
+1), h2

n+1), h3
n+i),... which determines the discrete 

Volterra-series of the (n + 1) th iteration. • 

From Lemmas 3 and 4 it follows 

Theorem 5. Let for a given i e l , there exist exactly one y e i/~„ satisfying the 
equation y = Ay. Let us set y0 = 0 e 331 and define yk+1 = Ayk for k = 0, 1,2,.... 
Then y„ is a discrete Volterra-series for all natural n. 

A property of members of the family hf, hf, hf,..., determining the discrete 
Volterra-series is described by the following 

Theorem 6. Let hf, hf, hf, .... hf,... and hf + c), h2
n + c),..., hf + c), ..., hf, 

hf+c) e 33; for i = 1, 2, 3, ..., be the family determining the discrete Volterra-series 
of the nth and the (n + c)th iteration respectively. Then for all natural n and c = 
= 1 ,2 ,3 , . . . it holds 

hf = hin+c) . 

Proof. According to (16) hf = h for all natural n. Let for n ^ 2 

(is) j ^ r . " = /i<r,1+c) for c = 1,2,3, . . . . 

Using (17) we obtain 
(19) hin+c)(k-T1,k-T2,...,k-T„) = 

= - e r h(k -1) {a„(hr+Y^r°f 'W-'-p • 
Jo 

. iw+'-vy («rc"1))vj. - . (A2+c-a)r- c"r,'2 vj} dF(x) 
p 

with the conditions 

P = (1 < r. < r2 < .. . < r„), (v, + v2 + ... + va = p), 

(rlVl + r2v2 + ... + rava = / + p) . 

We shall find the greatest value the indices r1, r2, ...,ra can reach. 

Let 1 < /0 = n — 2. From the summation conditions P we obtain v1 + v2 + ••• 
... + vx = p0, r1v1 + r2v2 + + ... + rxva = l0 + p0. At least one number 
vi> v2> v3> •••> va is non-zero; let v1 + 0. Then 

ri = — (lo + Po - r2v2 - r3v3 - ... - rava). 
v i 

Because r, ^ 2 and vt ^ 0 for i = 1,2, ...,a, the number rx reaches its greatest 
value for v, = 1 ano v2 = v3 = ... = v̂  = 0. Then p0 = 1 and rt = /0 + p0 = 

= lo + 1-
Furthermore we put the greatest possible value of /0 (l0 ^ n - 2), hence ^ = 
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— n — 2 + l = »— 1. In compliance with the last result hri can occur with i\ g 
_S n — 1 in the product 

(ft(n + c - l ) )v , ^ ( . + c - D ) v 2 ; . . . ; (/,<» + - D ) v . . 

It follows that rf g « — 1 for every / = 1, 2, ..., a. According to the assumption 
(18) we have 

hn
n+ri] = /i„"-"1

1), 
therefore 

/^-n = „(»->> for / = 1;2, .... 
Putting this result into (19) we obtain 

hn
n + c) = /.;,"> for all natural n and c = 1,2, .... 

Definition 3. A discrete system <t> is called V-analytical on a set ^t c 3X if there 
exists a family of sequences ht, h2, ..., ht,..., h, e 0St, determining a discrete Volterra-
series such that for every xe% 

<P(x) = flfix 

with H{x = hi * x*'. 

6. CONCLUSION 

Let a discrete system 0: &x -> 3St be described by a non-linear difference equation 

L„y + £(/. o y = x , 

£„ is a linear difference operator defined by (3), ip is a power-series from (4), x e _#,, 
_V e T̂ "„, £ is a real constant. 

Let k f „ _ , c: ^ . be the sequence from Theorem 1. Let K e (0, 1) be the constant 
of contractivity of the mapping A : Yn -» f,, from (7), R0 be the constant from 

Theorem 2, H = £ |h(A:)|. Then the discrete system <£ is V-analytical on the set 
ft—o 

<2r = IxeJ , | |[x|| < i—-£«, 

(Received June 1, 1982.) 
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