
Kybernetika

Ivan M. Havel
The concept of indirectness in artificial intelligence

Kybernetika, Vol. 8 (1972), No. 2, (154)--164

Persistent URL: http://dml.cz/dmlcz/124936

Terms of use:
© Institute of Information Theory and Automation AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124936
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 2

The Concept of Indirectness in Artificial
Intelligence

IVAN M. HAVEL

The concept of indirectness (using of tools) in automatic problem solving is investigated, and
a formal approach is suggested within the framework of the Situation Calculus. The "Robot
and Box" problem serves as an illustrative example throughout the paper.

1. INTRODUCTION

Typical activity in the field of Artificial Intelligence consists in writing computer
programs and/or constructing sophisticated devices performing various particular
tasks usually demanding human intelligence and reasoning. In 1969 a robot, built
by the Artificial Intelligence Group at Stanford Research Institute, succeeded in
performing a relatively complicated task requiring an auxiliary action which may
be without exaggeration qualified as "using a tool". (This task, known as the "Robot
and Box" problem, will be described later.) The class of problems characterized by
some amount of indirectness appears to be of great importance in formulating
and understanding the principles of artificial reasoning.

Informally, by indirectness in a solution of some problem we mean the requirement
for an auxiliary device, tool, or action not obviously needed at the start of the prob-
blem. In a natural way we will talk about indirectness of the problem itself in the case
when every solution of the problem appears to be indirect. Even if such a concept of
indirectness is intuitively quite clear and obvious, there is no known straightforward
way of characterizing it in a more formal manner. An attempt is made in this paper to
suggest a formalization of this concept in the framework of the first-order state-space
problem-solving method sometimes called the Situation Calculus ([3], [1]).

Our investigation leads us to conclude that while the concept of indirectness admits
formalization in principle, its particular form (e.g., the position of a borderline re
gion between the direct and the indirect) is dependent not only on the environment
and the problem itself, but also on the observer's evaluation of the situation. (The

author believes that such a conclusion is in agreement with our "nonartificial" 155
concept of indirect behavior, which is in every particular case influenced by long-time
individual experience and by a degree of familiarity with our environment.)

2. THE SITUATION CALCULUS

We will present a very brief outline of the Situation Calculus and the way it is used
in problem solving. The unsatisfied reader is referred to the following sources: [4]
for general introductory material; [4], Ch. 7 and [2] for application of the predicate
calculus in state-space problem solving; [3] for the concept of the Situation Calculus
and general ideas behind it; and [l] , Appendix I, for a brief description of the Situa-
ation Calculus in the form we use it here.

For better understanding and illustration we use as an example the "Robot and
Box" problem [1]. Our formulation of the corresponding Situation Calculus is slightly
different from that presented in [1], and both of them are probably much simpler than
the formulation needed in the real experiment. The "Robot and Box" problem is an
analogical adaptation of the well-known "Monkey and Banana" problem (cf. [4]).
It is formulated as follows:

The robot is in a room in which a box is resting on the top of a platform (Fig. 1(a))*
Tke robot's problem is to push the box off the platform and onto the floor. The
robot is on wheels and cannot reach the box directly. However, there is a ramp in the
room, which the robot can move to a location adjoining the platform and then roll
up the ramp onto the platform and finish the task (Fig. 1(b), (c), (d)).

Such a problem can be formalized using the state-space approach: every situation
(mutual position of all objects) characterizes a state. The task can be expressed as
a search for a transformation from some initial state s0 (e.g., Fig. 1(a)) to a final state s
(e.g.. Fig. 1(d)) using a sequence of state-transforming functions (actions from the
robot's repertoire). In the Situation Calculus various states are characterized by
truth values of certain predicates. Properties of these predicates as well as properties
of the state-transforming functions are expressed by means of a set of axioms. A so
lution can then be obtained by application of standard theorem-proving techniques.

Formally* the Situation Calculus (SC) is a sixtuple

se = <.-/,», &, S, s0, ay

where Q is the universe of discourse; in our example it is the set of objects

Q = (robot, floor, box, platform, ramp} .

In general, objects may be of various kinds (e.g., numerical coordinates).

* A completely formal presentation would require some additional constructions (e.g. distin
guishing the syntax and semantics of Sf),

(Ь)

(c)

(d)

Fig. 1. The robot and the box. The sequence from (a) to (d) shows the robot using the ramp
as a tool to climb up on the platform and push the box off the platform. (Photo courtesy S. L.
Coles, SRI.)

158 @> is the set of predicate symbols. The corresponding predicates are defined for
objects and states (by convention, the last argument is always reserved for the
state) and characterize the properties of states. In our example we have

0> = {ON, AT}

with the following interpretation:

ON(x, y, s) means that object x is on object y in state s;
AT(x, y, s) means that object x is at a location adjoining object y in state s.

An additional predicate ' = ' means equality of objects in the usual way.
!F is the set of function symbols. Functions are defined for some objects and states

(again the last argument stands for state) with values in the set of states. In our example
we have

,-F = {GOTO, PUSH, MOVE, ROLLUP}

with the following interpretation:

GOTO(x, y, s) maps s into a new state in which the object x (the agent) has
arrived at object y (departing 'in' state s; cf. Ax. 10);

PUSH(x, y, s) maps s into a new state in which agent x has pushed object y (cf. Ax.

11);

MOVE(x, v, 2, s) maps s into a new state in which agent x has moved object
y to a location adjoining object z (cf. Ax. 12);

ROLLUP(x, y, s) maps s into a new state in which agent x has rolled up ob
ject y (Ax. 13).

S is the set of states. It can be understood as a collection of various mutual con
figurations of objects in Q in terms of predicates corresponding to symbols of SP and
obeying the axioms. (In our example, predicates are binary over Q and \Q\ = 5,
therefore S always has less than 252 . 252 = 25 0 states.)

s0 e S is the initial state which satisfies some initial axioms (cf. Ax. 1 —4).

sd is the set of axioms. Every axiom is a first-order formula containing, besides
logical connectives, variables ranging over Q and S and constants from Q, # ' , 0>.
Below is the list of axioms for the "Robot and Box" problem. There are four groups
of them; the meanings of individual axioms is intuitively clear (for instance, Ax. 12
means: "If, in state s, the robot is 'at' the ramp and the ramp is 'at' some another
object x, then the situation can be changed to a new state s' in which the robot is 'on'
object x. The new state can be obtained by the robot's rolling up the ramp.")

Axioms for initial state:

Ax. 1 ON(robot, floor, s0)
Ax. 2 ON(box, platform, s0)

Ax. 3 ON(p1atform, floor, s0)
Ax. 4 ON(ramp, floor, s0)

General properties of predicates ON and AT:

Ax. 5 (Vx, s) [n O N (x , x, s)]
Ax. 6 (Vx, y, z, s) [ON(x, y, s) & ON(x, z, s) => y = z]
Ax. 7 (Vx, s) [AT(x, x, s)]
Ax. 8 (Vx, y, s) [AT(x, y, s) => AT(y, x, s)]
Ax. 9 (Vx, y, z,\s) [AT(x, y, s) => [ON(x, z, s) <=- ON(y, z, s)]]

(Axioms 6 and 8 are included for completeness, they are not necessary for the so
lution of the problem.)

Properties of robot's actions:

Ax. 10 (Vx, y, s) [ON(robot, x, s) & ON(y, x, s) => AT(robot, y, GOTO(robot, y, s))]
Ax. 11 (Vx, y, z, s) [AT(robot, x, s) & ON(x, y, s) & ON(y, z, s) => ON(x, z.

PUSH(robot, x, s))]
Ax. 12 (Vx, s) [AT(robot, ramp, s) & AT(ramp, x, s) & ~](x = robot) =>

=> ON(robot, x, ROLLUP(robot, ramp, s))]
Ax. 13 (Vx, y, z, s) [ON(y, z, s) & ON(x, z, s) & AT(robot, x, s) =>

=> AT(x, y, MOVE(robot, x, y, s))]

Frame axioms:

Ax. 14 (Vx, y, z, s) [ON(x, y, s) => ON(x, y, GOTO(robot, z, s))]
Ax. 15 (Vx, y, z, s) [ON(x, y, s) => ON(x, y, MOVE(robot, x, z, s))]
Ax. 16 (Vx, y, s) [AT(robot, x) => AT(robot, x, MOVE(robot, x, y, s))]
Ax. 17 (Vx, y, s) [ON(x, y, s)& ~l(x = robot) => ON(x, y, ROLLUP(robot, ramp, s))]

(Frame axioms express what does not get changed by the functions. We include only
those which are necessary for the solution.)

Now the realizability of the task

"Push the box that is on the platform onto the floor"

can be expressed by the existential formula

(*) (3s) [ON(box, floor, s)] .

To represent the task itself, we use the following notation

(**) (! s) [ON(box, floor, s)]

(as a matter of fact the above verbal formulation is more accurately represented by the
following formula:

(! s) [ON(box, floor, PUSHfrobot, box, s))]) •

It is not our purpose to describe how the solution is obtained. Let us only point
out that formula (*) is fed as an input (together with the axioms) to a theorem-
proving program extended by an answer-extraction routine. Such a program not only
proves formula (*) — in the case it is provable, i. e., when s is 'reachable' from s0 —
but also outputs a description of the final state s in terms of state-transforming func
tions. For our robot the answer would be

(***) s „ puSH(robot, box, GOTOfrobot, box, ROLLUP(robot, ramp,
MOVE(robot, ramp, platform, GOTO(robot, ramp, s0))))) .

Note that our example suffers from a lack of generality in some respects. For
instance, there is only one active agent (the robot), the universe consists of a finite and
fixed number of objects, the predicates are everywhere defined, and the solution is off
line in the sense that the final answer (***) must be determined before it can be
executed by the robot (in fact the functions are generated by the theorem prover in
reverse order). Since our aim is to investigate the concept of indirectness and not to
create a general and comprehensive theory, we are not overly constrained by
the above restrictions.

3. THE CONCEPT OF INDIRECT TASKS

Everyone would probably agree that the above example of the "Robot and Box"
problem to some extent contains an indirect element. The statement of the problem
(either verbal or formal) and the most relevant environment would appear iden
tical even if there were no ramp arailable. However, in that case the problem would
not have a solution. Therefore, a first suggestion might be: qualify as indirect a task
requiring, in any answer, some object or action that is not mentioned in the formula
tion (cf. the informal definition of indirectness in introduction). In particular, there
is no doubt that objects like the box or robot itself (the robot can be thought of as
implicitly included in its task) should not be considered as tools.* However, the above
suggestion does not appear completely adequate; consider the following task for our
robot:

"Move the ramp to the platform"
or, formally,

(! s) [AT(ramp, platform, s)] .

We do not expect any indirectness in this task; however, the answer to it would be

s = MOVE(robot, ramp, platform, GOTO(robot, ramp, s0))

where the (otherwise quite obvious) action 'GOTO' would qualify itself as an indirect

* We do not wish to get into the question of whether the robot is a tool of its computer or of
the experimentor himself.

one. We can imagine another point of view, indeed, where the 'GOTO' action would
be highly indirect. We come to the following observation: In whatever way the in
directness is defined, it should include some additional 'parameter' which would make
the borderline between 'direct' and 'indirect' to some extent adjustable.

Now, if the ramp in our example is qualified as an indirect object, what about the
action 'ROLLUP' which has no use without the ramp. It seems that some objects
and/or actions are closely related in the sense that the directness or indirectness of
one implies the same property for the other. This is our second observation.

Finally, we observe that indirectness can be sometimes associated with objects
(elements of Q) and sometimes with functions (elements of #"). Given a definition of
indirectness, we will call indirect objects tools and indirect functions tricks. Thus,
walking around obstacles may be called a trick (with respect an appropriate defi
nition of indirectness). In our example the function ROLLUP is a trick with the
ramp as a tool. In our following formulation tools can be uderstood as a special case
of tricks in the same way and for the same reason as individual constants are special
cases of functions (namely 0-ary ones).

Now we will formalize our concept of indirectness in the framework of the SC.
Let

9 = <^/, 0>, &, S, s0, Q}
and

9' = <j / ' , _?',#•', S', s0, Q'>

be two SC's. We shall call 9" a subcalculus of 9 (9' g 9) iff the following holds:

(1) Q' <= Q ;

(2) i^ ' £ & ;

(3) 0>' = 0> ;

(4) Let s40 be a set of axioms obtained from s/ by

(i) replacing symbol s0 by symbol s0;
(ii) replacing all subformulas of the form 'x = a' where x is a variable and

a e Q — Q', by 'false'.

Then stf' contains exactly those axioms of J / 0 in which there is no occurrence of
symbols from Q — Q' or from J5" - J5"'.

(5) S' = Sjx (partition of S under «)

where x is an equivalence relation defined as follows:

Si x s2 iff for every n, every n-ary predicate P in 9 and every xlt ..., x„_i e Q'
we have

P(xu ..., x„_,, s1)<_>P(x1, ..., X„_i, s 2) .

162 Intuitivelly, st « s2 when st and s2 are indistinquishable when 'observing' objects
only from Q'. In other words, S' is obtained from S by 'removing', or better to say
losing interest in' objects from Q — Q'.

(6) s0 = [s0] „ (the equivalence class of s0) .

The careful reader can easily fill in various formal details, e.g., the properties of
functions and predicates corresponding to symbols in &' and 2F.

Consider our example of the SC Sf = (s/, 0>, 3F, S, s0, Q} for the "Robot and
Box" problem. Let 9 = (si', 0>', &', S', s0, Q') be another SC where

Q' = Q — {ramp} = {robot, floor, box, platform} ,

.&' = & - {ROLLUP} = {GOTO, MOVE, PUSH} ,
and

Furthermore let si' consist of Ax. 1 -3 , 5 — 11, and 13-16 and let S' be
obtained from S by making equivalent all the states of S that differ only in a position
of the ramp.

It can be easily verified that then 9" <, 9.
Let us now return to our main problem, the concept of indirectness. Let 9 =

= (s/, 0, F, S, s0, Q} be a SC and let 9" = (si', SP', &', S', s0, Q') be its sub-
calculus such that Q' 4= Q or 3F' 4= $F (in such a case we say that 9" is a proper
subcalculus of 9, 9' < 9).

Let
{\s)@

be a task in 9 such that all individual objects and functions occurring in S8 are con
tained in Q' and SF' resp. Then 3$ is also a formula in 9". We say that (! s) Si is an
indirect task in SF with respect to 9" iff the formula (3s) J1 is provable in SF but
not in 9". In accordance with our previous comments we call Q — Q! the set of
tools in 9 with resepct to 9' and $F — 2F' the set of tricks in 9 with respect to 9'.

Thus for instance the task (**) is indirect with respect to the subcalculus of the
"Robot and Box" problem as defined above. For, while (*) is provable in 91 (cf. (***)),
it is not provable in 9"; the robot needs some trick or tool to get onto the platform.
Note that in our formulation there is no subcalculus of the "Robot and Box" problem
which would contain the ROLLUP function but not the ramp.

Selection of an appropriate subcalculus can, in general, be accomplished in many
different ways (though not as many as one would think at the first sight, since
'removing' of one thing may force us to remove some other things too — as we have
just seen). This ambiquity makes the concept of indirectness strongly dependent on
the observer's choice.

4. CONCLUDING REMARKS 163

Once we have a more or less adequate concept of indirectness, we can try to in
vestigate tasks with multiple level of indirectness. To show that such a generalization
might be of some interest let us quote a passage from [1]:

" . . . any computer system capable of solving this class of problems characterized
by one level of indirectness, which also contains a logically complete deductive com
ponent, could in principle handle problems having an arbitrary number of levels of
indirectness required for their solution, subject to the constraints of computer
memory and response time. It should be noted in passing that problems possessing
merely a half-dozen levels of indirectness more than challenge human inqenuity."

This passage is, a however, a very informal comment and cannot be verified without
an appropriate formalization of the concept of level of indirectness.

One approach to this problem within our formalization might be to specify se
ries of subcalcuii of the form

^ 0 < yt < ... < £?„ = &? .

Unfortunately, not every such series would be intuitively acceptable as a formalization
of the level-structure of problems, since it might not express mutual dependences or
independences of various indirect actions. For example we would not consider the
use of a tool A and later for a different purpose another tool B, as indirectness of
level two. On the other hand, using some tool A in order to acquire another tool B
would be a nice example of two-level indirectness. Both cases could possibly yield
the same series.

Apparently the right way would be to introduce the concept of subtasks and to
study their (in)directness. For instance

(! s) [AT(ramp, platform, s)]

would be considered as a direct subtask of our indirect task

(! s) [ON(box, floor, s)] .

Since solution of the subtask removes the indirectness of the task, it is concievable
that if the subtask were indirect as well (e.g., the ramp would have to be assembled
from pieces using various additional tools), we would be justified in regarding the
complete task as indirect of higher level.

Acknowledgement. The author is grateful to Dr. L. Stephen Coles for careful reading and de
tailed comments on the manuscript. The paper was written during the author's stay at the Uni
versity of California at Berkeley (Department of Computer Science).

(Received October 27, 1971.)

REFERENCES

[1] L. S. Coles: An experiment in Robot Tool Using. SRI Artificial Intelligence Group, Tech.
Note41, Oct. 1970.

[2] C. C. Green: Application of Theorem Proving to Problem Solving. Proc. l s l Int. Joint Conf.
on Artificial Intelligence, May 1969.

[3] J. McCarthy and P. Hayes: Some Philosophical Problems from the Standpoint of Artificial
Intelligence. In: Machine Intelligence 4, 1969.

[4] N. J. Nilsson: Problem-Solving Methods in Artifical Intelligence. McGraw-HilI, 1971.

Pojem nepřímé akce v umělé inteligenci

IVAN M. HAVEL

Práce se zabývá pojmem „nepřímé akce" — např. použití nástroje či jiné zprostřed

kované chování — při mechanickém řešení problémů. Je navržen formální přístup

k definici tohoto pojmu v rámci tzv. situačního kalkulu. K přiblížení výkladu je

použit jako příklad experiment s robotem a krabicí, který byl úspěšně realizován

ve Stanfordském výzkumném ústavu v USA.

Ing. Ivan M. Havel, Ústav pro využití výpočetní techniky v řízení (Inst. Appl. Comp. Tech.),
Loretánské nám. 3, Praha 1.

		webmaster@dml.cz
	2012-06-04T21:59:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

