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K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 5 

On the Pseudoinverse of a Sum of Symmetric 
Matrices with Applications to Estimation 

PAVEL KOVANIC 

A new formula for the pseudoinverse of a sum of symmetric matrices is presented, valid for 
arbitrary symmetric matrices without any restrictions relating to their column — or row — 
spaces. As an application of this formula a generalized version of the estimate minimizing the 
penalty is developed. This makes it possible to show that in a general case of estimation the prob
lem is decomposed into two independent problems. One of them is related to data belonging 
to a subspace containing signal components but no noise components. This part of the problem 
can be easily solved, the result of estimation performed on this part of data being error-free. 

INTRODUCTION 

An important role in linear estimation theory is played by a symmetric matrix 

(1) K = XXT + V 

which is the covariance matrix of an observation vector 

(2) y = yx + ye, 

where the two vectors yK and ye represent random signal and noise, respectively. 
The noise covariance matrix V often contains the signal covariance matrix XXT 

in its row-space (as well as in its column-space, they both are symmetrical). If V is 
nonsingular, this condition is fulfilled automatically. Then a "best" linear estimate 
of different functions of the yx from observations y may be obtained by different 
generalizations of Gauss-Markov Theorem [ l ] , [2], [3]. But also a more general 
situation deserves attention. For the model 

(3) yx = Xc, 

where c is a nonrandom vector of parameters, Zyskind [4] showed that constraints 
on parameters lead to the problem of singular covariance matrix. As shown by Hal-



342 Jum, Lewis and Boullion [5], for such a model a minimum variance estimate of the 
c, with c restricted by linear restrictions and with the covariance matrix of ye having 
an arbitrary rank, may be calculated directly without the need of a linear transforma
tion used by other authors to obtain a linear model of smaller dimensions with a full 
rank covariance matrix. It is the purpose of this paper to show that mentioned 
result as well as a more general result can be obtained using an extension of a theorem 
on pseudo-inverse of a sum of symmetrical matrices. 

PSEUDO-INVERSE OF A SUM OF SYMMETRICAL MATRICES 

The "pseudo-inverse" or the "Moore-Penrose inverse" is a (unique) matrix A + 

satisfying four conditions 

(4) AA + A = A , 

(5) A + AA+ = A+ , 

(6) (AA + )T = AA+ , 

(7) (A+A)T = A + A. 

The following theorem is presented in literature on generalized inverse of matrices 

Theorem. If X is an n x q matrix contained in the column-space of an n x n 
symmetrical matrix V then 

(8) (V+ XXT)+ = V+ - V + A-(/ + XTV+X)~1XTV+ . 

"To be in the column-space" means here the same as 

(9) W+X = X . 

In a more general case the matrix (7 — VV+) Zdoes not equal to the zero matrix. 
For such a case the following extension holds: 

Theorem. If Vis an n x n symmetrical matrix and if X is an arbitrary n x q real 
matrix, then 

(io) (V+ xxT)+ = V+ - v+x(i + xTv+xy1 XTV+ + (X+)TX+ , 

where 

(11) X± = ( / - VV+)X. 



Proof. It can be easily verified by substitution into (4)-(7) that if 

(12) ATB = O 

and 

(13) BTA = 0 , 

then 

(14) (A + B)+ = A+ + B + 

for any matrices A and B having appropriate dimensions. Using relations 

(15) VV+XXTW+ = XXTW+ = VV+*A'T 

resulting from the symmetry of the matrix XXT, one may write 

(16) V + XXT = V + VV+XXT + (/ - VV + ) XXr = 

= V+ W+XXrVV+ + W+XXT(J - VV+) + 

+ (I - W+)XXrW+ + (1 - VV+)XXT(/ - VV+) = 

(V+ VV+A'A-TVV+) + ((/ - W+)XXT(1 - W+)). 

The first bracketed term is orthogonal to the last one because of the property (6) 
of the pseudoinverse V+ and because of the symmetry of the V. Therefore 

(17) (v + xxT)+ = (v + w+xxrw+y + ((I - W+)XXT(I - W+))+ . 

The matrix VV+ZZTVV+ is in the column-space of the matrix V, therefore (8) 
may be applied: 

(18) (V+ W+XXrW+)+ = 

= V+ - V+(VV+*)(/ + (VV+j*i:)T v+(vv+x)yl (w+x)T v+ = 
= V+ - v+x(i + xrv+xyi XTV+ . 

The second right-hand term of (17) may be rewritten as 

(19) (xxx
r
±y =(xiyxt 

using (11) and a known property of the pseudo-inverse. The proof is complete. 

STATISTICAL APPLICATIONS 

A. The Minimum Penalty Estimate 

As shown in [2], [3], a generalized estimator called the minimum penalty estimator 
(MPE) exists from which a large class of different known linear estimators can be 



344 obtained as particular cases. This estimator has been developed under assumption 
"there are no observed signals not corrupted by noise". Using the formula (10) 
for the same generalized problem as in [3], we can come to an MPE not restricted 
by such an assumption: 

Observed data are n x p random matrices 

(20) Y = Yx + Ye, 

where Yx represents random signals and Ye is given by random error components 
and by noise. Requirements relating to results of estimation are characterized 
by a t x p matrix 

(21) Zx = TX{YX} 

for a case when noise disappears, and by a matrix 

(22) Z 0 = T0{YX, Ye} 

for the case with a non-zero noise. Symbols TX and Te denote some given operators. 
To solve the problem we need only correlations of required results of estimation 
with data. 

The estimator will have a general linear form 

(23) Z = WY+ C, 

where W and C are some constant matrices having dimensions t x n and t x p, 
respectively. We proceed in the same way as in [3]. To evaluate the quality of the 
estimate we introduce the norm ||E|| of an error matrix E in the following manner: 

(24) \\E\\=tv{(EQE^Y'2 

where Q is a given positive definite weighting matrix, the brackets <•> denote the 
averaging, and tr{ •} states for the trace of a matrix. The error of the first type 

(25) Ex = WYX + C - Zx 

relates to ideal situations with no noise while the error of the second type 

(26) £ 0 = JY(YX + Y) + G - Z0 

is influenced by actual noise components. To take into account both errors one uses 
the penalty 

(27) P = p0||E0]l2 + px||£x||2 

with a positive weight p0 and with a weight px satisfying a condition 

(28) p 0 + Px > 0 . 



It can be shown like in [3] that the constant matrix C in (23) vanishes after an appro- 345 
priate centralization of variables. We assume below such a centralization as having 
been performed according to the formulae given in [3]. Then the penalty (27) is 
minimized if the equation 

(29) WM = Po<Z0QYT> + px<ZxQYT> 

holds. Here the M states for a weighted sum of covariance matrices 

(30) M = Po<YQYT> + px<YxgYT> . 

It follows from this definition that there are no observed vectors outside the range-
space of the M, therefore one may take 

(31) WMM+ = W. 

Then 

(32) W = (Po<Z0QYT> + px<ZxQY\» M + 

is the minimum penalty estimator. In [3] a pseudo-inverse of M has been obtained 
using (8) but we are able now to discuss a more general situation by means of the 
extended formula (10). 
Denoting 

(33) B0 = <YeQYr>, 

(34) B = B0 + <YQYT> + <YeQYT> , 

and using a square-root matrix .Y determined by a decomposition 

(35) XXT=<YXQY\>, 

one has 

(36) M = p0B + (Po + px)XXT. 

Denote M(A) the range space and A^(A) the zero space of an n x m matrix A, 

(37) @(A) ={ye®n:y = Ax,xe 0T) , 

(38) JT(A) = { x e r : 0 = Ax} . 

The range space 9l(XXT) is a "signal space" while the range space M(B0) is a "noise 
space". Consider four subspaces of the n-dimensional vector space ^?": 

5^j = iM(XXT) n &(B0) (containing both signal and noise), 

£f2 = 3t(XXT) n Jf(B0) (containing signals but no noise) , 

<f3 = jr(xxT) n ^?(B0) (containing noise but no signal), 

^ 4 = ^V(XXT) n Jf(B0) (containing no signal and no noise). 



346 In a general case, only the subspace &\ is empty (for a nonregular matrix M). Formula 
(10) may be applied to obtain 

(39) M+ = ( l / p 0 )B + ( / - Xx{sxl + X\B+X,Y> X\B + ) = l/(p0 + p*)X + TX+
2 , 

where 

(40) s, = pol(po + pt), 

(41) X, = BB+X , 

and 

(42) X2=(I - BB + )X . 

As above in (18) there is no necessity to distinguish the AT, from the X when sub
stituted into the first term of (39). 

After substitution of M+ into (29) one has the minimum penalty estimate valid 
for the general case under consideration. 

B. Noise-Free Estimation 

An interesting aspect is worth to be analyzed in more details. Let 

(43) <Z0QYT> = <ZXQYI> = LyX\ + L2X\ 

with the same X, and X2 as above. 

Then 

(44) W=WX + W2, 

where 

(45) Wx = L,(s,/ + XlB+X,)" 1 XTB + 

and 

(46) W2 = L2Xt • 

Both components of the estimator If have the same structure. To see this write (-) + 

instead of ( ' ) - 1 and represent W2 in the form 

(47) W2 = L2(s2l + XTBtX2)
+ XT

2B
+ 

with s2 = 0 and B2 = I, a trivial covariance matrix. We have two estimators having 
two mutually orthogonal domains, 01(B) and 

(48) m(X2) = M((l - BB + )X) = Jf(B). 



An arbitrary observed data matrix may be written as 347 

(49) Y = BB+ Y + (I - BB+) Y = Y + Y2 . 

The result of estimation is therefore 

(50) Z m WXYX + W2Y2 = Z, + Z2 . 

This means that our estimating problem is decomposed into two independent 
problems. Moreover, if noise is uncorrelated with random components of signals, 

(51) <YtQYT
x} = 0, 

then 

(52) (/ - B0B
 + ) Ye = 0. 

The projection Y2 of observed data matrix onto the subspace JV(B0) is therefore 

(53) (/ - B0B
+) Yx = (/ - B0B

 + ) XA2 = X2A2 , 

where A2 is a certain matrix. We have thus 

(54) Z2 = L2X
+X2A2 . 

For a matrix X2 having a full rank 

(55) X+X2 = I , 

and we obtain 

(56) Z2 = L 2A 2 . 

But this is exactly what we wanted to obtain as a result of estimation performed 
on data occupying the subspace JV(B0). Actually, 

(57) <Z2QYr
2} = L2<A2AI> XT

2 = L2X\ 

because of the definition (35) of the matrix X. 

We are comming to the conclusion that the estimation performed on data belonging 
to a noise-free subspace J/~(B0) is completely error-free as has been stated intuitively 
in [3], 

(Received December 8, 1978.) 
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