Kybernetika

Bořivoj Melichar

Formal translation directed by $L R$ parsing

Kybernetika, Vol. 28 (1992), No. 1, 50--61
Persistent URL: http://dml.cz/dmlcz/124971

Terms of use:

© Institute of Information Theory and Automation AS CR, 1992
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

FORMAL TRANSLATION DIRECTED BY $L R$ PARSING

Bořivoj Melichar

The notion of the syntax-directed translation was a highly influential idea in theory of the formal translation. Models for the description of the formal translations are syntax-directed translation schemes. The special case of syntax-directed translation schemes are simple syntax-directed translation schemes, which can be written in the form of translation grammars. It is possible for an arbitrary translation described by a translation grammar with $L L(k)$ input grammar to create one-pass translation algorithm by a simple extension of the algorithm of a syntax analysis for $L L(k)$ grammars. Similar approach for an $L R(k)$ grammar led to the result that it is possible to perform an one-pass formal translation during $L R(k)$ analysis only in that case when the translation grammar has a postfix property. In this paper the construction of the algorithm is studied, which can, for a particular class of translation grammars (called $L R(k) R$-translation grammars), perform one pass formal translation. The basic idea discussed in this paper is the following: It is possible to make an extension of the algorithm of the syntax analysis for $L R(k)$ grammars in such a way, that the output of output symbols can be performed not only as a part of the operation reduction but also as a part of the operation shift.

1. INTRODUCTION

The notion of the syntax-directed translation introduced by Irons ([5], [6]) was a highly influential idea in theory of the formal translation. Mathematical models of the syntaxdirected translation have been developed and studied in [1], [2], [4], [8], [10] and [12]. Models for the description of the formal translations are syntax-directed translation schemes. The special case of syntax-directed translation schemes are simple syntaxdirected translation schemes, which can be written in the form of translation grammars.

Parallel to the development of methods of the formal description of the translation, principles for implementation of algorithms of the syntax-directed translation were researched. Already in 1968, Lewis and Stearns [8] have shown that it is possible for an arbitrary translation described by a translation grammar with $L L(k)$ input grammar to create one-pass translation algorithm by a simple extension of the algorithm of a syntax analysis for $L L(k)$ grammars.
Similar approach for an $L R(k)$ grammar led to the result that it is possible to perform an one-pass formal translation during $L R(k)$ analysis only in that case when the translation grammar has a postfix property, which means that output symbols are placed only at the ends of the right-hand sides of the grammar rules. It means that the output of
output symbols is made only if the end of the rule is discovered. This means, from the point of view of the syntax analyzer, that the output is performed as a part of the operation reduction of the syntax analyzer. The restriction of the translation grammar rules mentioned has led to a development of various transformations of translation grammars into grammars having postfix property (cf. [8], [9] and [12]) and to a creation of the four pass model of the formal translator (cf. [1]). Others (cf. [7]) remarked that almost all bottom up syntax analyzers contain elements of the top down methods, which can be used in the process of extension of the syntax analyzer to the algorithm of the formal translation.

In this paper the construction of the algorithm is studied, which can, for a particular class of translation grammars (called $L R(k) R$-translation grammars), perform one pass formal translation. The class of $L R(k) R$-translation grammars is a superset of $L R(k)$ postfix translation grammars.

The basic idea discussed in this paper is the following: It is possible to make an extension of the algorithm of the syntax analysis for $L R(k)$ grammars in such way that the output of output symbols can be performed not only as a part of the operation reduction but also as a part of the operation shift.

2. NOTATION

Alphabet is a finite nonempty set of symbols. The set of strings of symbols from the alphabet A including empty string (e) is denoted by A^{*}. A formal language L over an alphabet A is a subset of $A^{*}, L \subset A^{*}$.

A context-free grammar is a quadruple $G=(N, T, P, S)$, where N is a finite set of nonterminal symbols, T is a finite set of terminal symbols, $T \cap N=\emptyset, S$ is the start symbol, P is a finite set of rules of the form $A \rightarrow \alpha, A \in N, \alpha \in(N \cup T)^{*}$. The symbol \Rightarrow is used for the derivation relation. For any $\alpha, \beta \in(N \cup \dot{T})^{*}, \alpha \Rightarrow \beta$ if $\alpha=\gamma_{1} A \gamma_{2}, \beta=$ $=\gamma_{1} \gamma_{0} \gamma_{2}$ and $A \rightarrow \gamma_{0} \in P$, where $A \in N$ and $\gamma_{0}, \gamma_{1}, \gamma_{2} \in(N \cup T)^{*}$. Symbols $\Rightarrow^{k}, \Rightarrow^{+}$, \Rightarrow^{*} are used for k-power, transitive, transitive and reflexive closure of \Rightarrow, respectively. The symbol $\Rightarrow_{r m}$ is reserved for the rightmost derivation, e.g. $\gamma_{1} A \gamma_{2} \Rightarrow_{r m} \gamma_{1} \alpha \gamma_{2}$ if $\gamma_{2} \in T^{*}$. The sentential form α is a string which can be derived from $S, S \Rightarrow^{*} \alpha$. The sentential form α for $S \Rightarrow_{r m}^{*} \alpha$ is called the right sentential form. The formal language generated by the grammar $G=(N, T, P, S)$ is the set of strings $L(G)=\left\{w: S \Rightarrow^{*} w\right.$, $\left.w \in T^{*}\right\}$.

A derivation tree may be viewed as a graphical representation for a derivation. Each interior node of it is labeled by some nonterminal symbol A and the children of the node are labeled, from left to right, by the symbols in the right hand side of the rule by which this A was replaced in the derivation. The leaves of the derivation tree are labeled by empty strings or terminal symbols and, if read from left to right, they constitute a string derived by the grammar. The derivation tree will be treated as an expression of the syntactic structure of the derived string.

By $T^{* k}$ we shall denote the set $T^{* k}=\left\{x: x \in T^{*},|x| \leq k, k>0\right\}$, where the length of string $x \in T^{*}$ is denoted by $|x|$. We define the sets $\operatorname{FIRST}_{k}(\alpha)$ for $\alpha \in(N \cup T)^{*}$ and $\mathrm{FOLLOW}_{k}(A)$ for $A \in N$, as follows.
$\operatorname{FIRST}_{k}(\alpha)=\left\{x \in T^{*}: \alpha \Rightarrow^{*} x \beta\right.$ and $|x|=k$, or $\alpha \Rightarrow^{*} x$ and $\left.|x|<k\right\}$,
$\operatorname{FOLLOW}_{k}(A)==\left\{x \in T^{*}: S \Rightarrow{ }_{r m}^{*} \alpha A \beta\right.$ and $\left.x \in \operatorname{FIRST}_{k}(\beta)\right\}$.

3. TRANSLATION GRAMMARS

A formal translation Z is a relation $Z \in A \times B$, where A and B are sets of strings. A and B are sets of input and output strings, respectively.

A context-free translation grammar is a context-free grammar, in which the set of the terminal symbols is divided into two disjoint subsets, the set of input symbols and the set of output symbols.

Definition 1. A context-free translation grammar is a 5 -tuple $T G=(N, T, D, R, S)$, where
N is the set of nonterminal symbols, T is the set of input symbols,
D is the set of output symbols,
R is the set of rules of the form $A \rightarrow \alpha$, where $A \in N, \alpha \in(N \cup T \cup D)^{*}$, S is the starting symbol.
The input homomorphism $h_{i}^{T G}$ and the output homomorphism $h_{o}^{T G}$ from ($\left.N \cup T \cup D\right)^{*}$ to ($N \cup T \cup D)^{*}$ are defined in the following way:

$$
h_{i}^{T G}(a)=\left\{\begin{array}{ll}
a & \text { for } a \in T \cup N \\
e & \text { for } a \in D
\end{array} \quad h_{0}^{T G}(a)= \begin{cases}a & \text { for } a \in T \\
e & \text { for } a \in D \cup N\end{cases}\right.
$$

The derivation in the translation grammar $T G$ is denoted by \Rightarrow and called the translation derivation. The formal translation defined by the translation grammar $T G$ is the set $Z(T G)=\left\{\left(h_{i}^{T G}(w), h_{o}^{T G}(w)\right): S \Rightarrow^{*} w, w \in(T \cup D)^{*}\right\}$.

The input grammar of the translation grammar $T G$ is the context-free grammar $G=$ $=\left(N, T, R_{i}, S\right)$, where $R_{i}=\left\{A \rightarrow h_{i}^{T G}(\alpha): A \rightarrow \alpha \in R\right\}$.

Note. The upper index $T G$ is omitted if no confusion arises.

4. R-TRANSLATION GRAMMARS

As stated above, it is possible to extend the $L R$ parser to perform an output of a symbol as a part of the operation reduce. The basic idea described below is a possibility to extend the $L R$ parser in order to perform the output of symbols as a part of the operation shift as well. Let us consider a simple case when a rule of the translation grammar has the
form $A \rightarrow \alpha x a \beta$, where x is the string of output symbols, a is the input symbol, α, β are strings of input, output and nonterminal symbols.

In such a case, it is possible to add the string x to the output string during the shift of the symbol a.

Definition 2. A translation grammar $T G$ is called R-translation grammar if the strings of output symbols appear at the ends of the right-hand sides of the rules and/or immediately in front of input symbols.

5. $L R(k) R$-TRANSLATION GRAMMARS

Now we can demonstrate that an extended $L R$ parser can perform the translation, if it is possible for every shift operation to determine unambiguously the string of output symbols, which may be added to the output string.

Definition 3. A translation $L R(k)$ item for the translation grammar $T G=(N, T, D, R, S)$ is the object of the form $[A \rightarrow \alpha \cdot \beta, x, w]$ where $A \rightarrow \alpha \beta$ is a rule of the input grammar for the translation grammar $T G, x \in D^{*}, w \in T^{* k}, k \geq 0$.
For $k=0$ an $L R(0)$ translation item will be written in the form $[A \rightarrow \alpha \bullet \beta, x]$.
The following algorithm constructs the collection of sets of the translation $L R(k)$ items for given trauslation grammar $T G$.

Algorithm 1. Construction of the collection of sets of $L R(k)$ translation items.
Input: R-translation grammar $T G=(N, T, D, R, S), k \geq 0$.
Output: Collection P of sets of $L R(k)$ translation items for the translation grammar $T G$.

Method:

Step 1. Construct an augmented grammar $T G^{\prime}=\left(N \cup\left\{S^{\prime}\right\}, T, D, R \cup\left\{S^{\prime} \rightarrow S\right\}, S^{\prime}\right)$.
Step 2. Construct the initial set of $L R(k)$ translation items in the following way:
(a) $\#:=\left\{\left[S^{\prime} \rightarrow . S, e, e\right]\right\}$.
(b) If $[A \rightarrow, B \beta, e, u] \in \#, B \in N$ and $B \rightarrow \gamma \in R$, then $\#:=\# \cup\left\{\left[B \rightarrow . h_{i}(\gamma), y, v\right]: y \in D^{*}\right.$ is the longest prefix of γ containing output symbols only, $\left.v \in \operatorname{FIRST}_{k}\left(h_{i}(\beta) u\right)\right\}$.
(c) Repeat the step (b) while new items can be inserted into the set \#.
(d) $P:=\{\#\}, \#$ is the initial set.

Step 3. If the set M_{i} of $L R(k)$ translation items has been constructed, construct for each symbol $X \in(N \cup T)$, which is in some $L R(k)$ item in M_{i} just behind the dot, a new set of $L R(k)$ translation items X_{j}, where $j=\max (k)+1$ for $X_{k} \in P$ or $j=1$ for $X_{k} \notin P$, in the following way:
(a) $X_{j}:=\left\{[A \rightarrow \alpha X \cdot \beta, y, u]:[A \rightarrow \alpha \cdot X \beta, x, u] \in M_{i}, y \in D^{*}\right.$ is the string of output symbols from the right hand side of the translation grammar rule corresponding to the rule $A \rightarrow \alpha X \beta$ between symbol X and string β.\},
(b) If $[A \rightarrow \alpha \cdot B \beta, e, u] \in X_{j}, B \in N$ and $B \rightarrow \gamma \in R$, then $X_{j}:=X_{j} \cup\left\{\left[B \rightarrow\right.\right.$. $\left.h_{i}(\gamma), y, v\right], y \in D^{*}$ is the longest prefix of γ containing only output symbols, $\left.v \in \operatorname{FIRST}_{k}\left(h_{i}(\beta) u\right)\right\}$.
(c) Repeat the step (b) while new items can be inserted into the set X_{j}.
(d) $P:=P \cup\left\{X_{j}\right\}$.

Step 4. Repeat Step 3 for all sets M_{i}, while new sets can be added into the collection P.

This algorithm constructs the collection of sets of $L R(k)$ translation items for a given translation grammar. This collection differs from the collection of sets of $L R(k)$ items for the input grammar. Each of its items contains a string of output symbols.

There is a string of output symbols y in the item with the dot at the end of the right hand side of the rule. The string y is a string of output symbols from the end of the rule in question. Such a situation means that the operation reduce will be performed during the translation and the string y will be added to the output string.

There is also a string x of output symbols in the item with the dot just in front of an input symbol. In this case the string x is the string of output symbols from the rule in question placed in front of the input symbol behind the dot. This means that for the rule of the translation grammar of the form $A \rightarrow \alpha x a \beta$ the constructed item for some $u \in T^{* k}$ is $\left[A \rightarrow h_{i}(\alpha) \cdot a h_{i}(\beta), x, u\right]$ where $x \in D^{*}, a \in T, \alpha, \beta \in(N \cup T \cup D)^{*}$ and α does not end with the output symbol.

The existence of such an item in some set of $L R(k)$ translation items means that the operation shift will be performed during the translation and the string x will be added to the output string. In order to select the output string x unambiguously, there must not be, in the same set of $L R(k)$ translation items, two different items with different output strings, with the same input symbol behind the dot, and with the same lookahead strings from $\operatorname{FIRST}_{k}\left(a h_{i}(\beta) u\right)$.

Definition 4. We say that in the collection P of $L R(k)$ translation items there is a translation conflict, if in some set of P two items are of the form

$$
\begin{aligned}
& {[A \rightarrow \alpha \cdot a \beta, x, u]} \\
& {[B \rightarrow \gamma \cdot b \delta, y, v]}
\end{aligned}
$$

for $x \neq y$ and $\operatorname{FIRST}_{k}(a \beta u) \cap \operatorname{FIRST}_{k}(b \delta v) \neq \emptyset$.
Definition 5. An R-translation grammar $T G$ is called an $L R(k) R$-translation grammar, if the input grammar of $T G$ is an $L R(k)$ grammar and there is no translation conflict in any set of $L R(k)$ translation items of the collection P for $T G$.

6. ALGORITHM OF THE FORMAL TRANSLATION

For the $L R(k) R$-translation grammar translation can be performed using the algorithm, which is obtained by the following modification of the $L R$ parser.
Step 1. During the operation reduce, add the string of output symbols to output string from the $L R(k)$ item corresponding to the reduce operation performed.
Step 2. During the operation shift, add the string of output symbols to output string from the $L R(k)$ item corresponding to the shift operation performed.

Strings of output symbols can be inserted into the corresponding items of the action table of the $L R$ parser. The resulting table will be called the translation table.

Algorithm 2. Construction of the translation table for a $L R(k) R$-translation grammar.

Input: $L R(k) R$-translation grammar $T G=(N, T, D, R, S)$ and a collection P of sets of $L R(k)$ translation items for $L R(k) R$-translation grammar $T G$.
Output: Translation table p for the translation grammar $T G$.
Method: Translation table has rows denoted by the sets of items from P, columns are denoted by the elements of the set $T^{* k}$.

Step 1. $p\left(M_{i}, u\right)=\operatorname{shift}(x)$, if $[A \rightarrow \alpha \cdot \beta, x, v] \in M_{i}, \beta \in T(N \cup T)^{*}$, $u \in \operatorname{FIRST}_{k}(\beta v), x \in D^{*}$,
Step 2. $p\left(M_{i}, u\right)=$ reduce $j(x)$, if $j \geq 1$ and $\left[A \rightarrow h_{i}(\alpha) \cdot, x, u\right] \in M_{i}, A \rightarrow \alpha$ is j th rule in R, $u \in T^{* k}, x \in D^{*}$,
Step 3. $p\left(M_{i}, e\right)=a c c e p t$, if $\left[S^{\prime} \rightarrow S \cdot, e, e\right] \in M_{i}$,
Step 4. $p\left(M_{i}, u\right)=$ error in all other cases.
Note. The goto table may be constructed in the same way as the one for the $L R$ parser (see [3]).

Algorithm 3. Formal translation for $L R(k) R$-translation grammar.
Input: The translation table p and the goto table g for the translation grammar $T G=$ $=(N, T, D, R, S)$, input string $x \in T^{*}, k \geq 0$.

Output: Output string y in case that for $x \in L\left(G_{i}\right),(x, y) \in Z(T G)$, otherwise error signalisation.

Method: The symbol \# is an initial symbol in the pushdown store. Repeat Steps 1, 2 and 3 until accept or error appears. Symbol Y is on the top of the pushdown store.

Step 1. Fix the string of first k symbols from the unused part of the input string and denote it by u.
Step 2. (a) If $p(X, u)=\operatorname{shift}(x)$, read one input symbol, add the string x to the output string and go to Step 3.
(b) If $p(X, u)=$ reduce $i(x)$, pop from the pushdown store the same number of symbols as is the number of input and nonterminal symbols at the right-hand side of the i th rule $(i) A \rightarrow \alpha$ and add string x to the output string. Go to Step 3.
(c) If $p(X, u)=a c c e p t$, finish the translation; then the output string is the translation of the input string, provided that the input string is read completely, otherwise finish the translation by an error signalisation.
(d) If $p(X, u)=$ error, finish the translation by an error signalisation.

Step 3. If W is a symbol which may be pushed to the pushdown store (the read symbol in 2(a) or the left hand side of the rule used for the reduction in 2(b)) and Y is the symbol at the top of the pushdown store, then:
(a) If $g(Y, W)=M$, then push M at the top of the pushdown store and repeat the algorithm from the step 1 .
(b) If $g(Y, W)=$ error, finish the translation by an error signalisation.

The configuration of the algorithm is the triple (α, x, y), where α is the content of the pushdown store,
x is the unused part of the input string, y is the part of the output string already created.
The initial configuration is a triple $(\#, x, e)$, the accepting configuration is a triple (\# M_{i}, ϵ, y), where M_{i} is the symbol at the top of the pushdown store, and it holds for M_{i} that $p\left(M_{i}, e\right)=$ accept.

Example. Let us have translation grammar
$T G=(\{A, B\},\{a, b\},\{x, y\}, R, A)$, where R contains the rules:
(1) $A \rightarrow a A y$
(2) $\quad A \rightarrow B$
(3) $\quad B \rightarrow x b B$
$B \rightarrow x$

This grammar describes the translation $Z(T G)=\left\{\left(a^{i} b^{j} \cdot x^{j+1} y^{i}\right): i, j \geq 0\right\}$. Let us construct the collection of sets of $L R(1)$ translation items for the grammar $T G$.
$\#=\left\{\left[A^{\prime} \rightarrow \cdot A, \epsilon, \epsilon\right],[A \rightarrow \cdot a A, e, e],[A \rightarrow \cdot B, e, e],[B \rightarrow . b B, x, e],[B \rightarrow \cdot, x, e]\right\}$
$A_{1}=\left\{\left[A^{\prime} \rightarrow A \cdot, e, e\right]\right\}$
$a_{1}=\{[A \rightarrow a \cdot A, \varepsilon, e],[A \rightarrow \bullet a A, e, e],[A \rightarrow \cdot B, e, e],[B \rightarrow \cdot B, x, e],[B \rightarrow \bullet, x, e]\}$
$B_{1}=\{[A \rightarrow B \cdot, e, e]\}$
$b_{1}=\{[B \rightarrow b \cdot B, e, e],[B \rightarrow \cdot b B, x, e],[B \rightarrow \cdot, x, e]\}$
$A_{2}=\{[A \rightarrow a A \cdot, y, e]\}$
$B_{2}=\{[B \rightarrow b B \cdot, e, e]\}$

The following table is the translation and goto table. Symbols S and A stand for operations shift and accept, respectively. The reduction by the rule number (i) is denoted by R_{i}.

	a	b	e	A	B	a	b
$\#$	S	$S(x)$	$R_{4}(x)$	A_{1}	B_{1}	a_{1}	b_{1}
A_{1}			A				
a_{1}	S	$S(x)$	$R_{4}(x)$	A_{2}	B_{1}	a_{1}	b_{1}
B_{1}			R_{2}				
b_{1}		$S(x)$	$R_{4}(x)$		B_{2}		b_{1}
A_{2}			$R_{1}(y)$				
B_{2}			R_{3}				

Algorithm 3 performs the translation of the input string $a a b$ in the following way:

$$
\begin{array}{rll}
(\#, a a b, e) & \vdash\left(\# a_{1},\right. & a b, e) \\
& \vdash\left(\# a_{1} a_{1},\right. & b, e) \\
& \vdash\left(\# a_{1} a_{1} b_{1},\right. & e, x) \\
& \vdash\left(\# a_{1} a_{1} b_{1} B_{2},\right. & e, x x) \\
& \vdash\left(\# a_{1} a_{1} B_{1},\right. & e, x x) \\
& \vdash\left(\# a_{1} a_{1} A_{2},\right. & e, x x) \\
& \vdash\left(\# a_{1} A_{2},\right. & e, x x y) \\
& \vdash\left(\# A_{1},\right. & e, x x y y)
\end{array}
$$

Main theorem. Algorithm 3 of the formal translation for $L R(k) R$-translation grammar $T G$ creates, for each input string $x \in L\left(G_{i}\right)$, where G_{i} is the input grammar of translation grammar $T G$, an output string y such that $(x, y) \in Z(T G)$.

Proof. Algorithm 3 is an extension of an $L R$ parser, which means that it constructs the reverse of the rightmost derivation of the input string x and, if this derivation does not exist, it produces an error signalisation. Therefore we have to prove the fact, that for an input string $x \in L\left(G_{i}\right)$ the output string y is produced such that $(x, y) \in Z(T G)$.
The proof will be made by the induction on the length of the rightmost derivation of the input string.

First the following claim has to be proved:
(\star) If for some $A \in N$ a derivation $A \Rightarrow^{n} w$ exists in $T G$ such that $x=h_{i}(w), y=h_{o}(w)$, then Algorithm 3 performs the sequence of moves $(\alpha, x, \beta) \vdash^{*}\left(\alpha A^{\prime}, e, \beta y\right)$ for some string α of pushdown symbols, $\beta \in D^{*}$, where A^{\prime} is the pushdown symbol corresponding to A.

1. For $n=1$ the derivation has the form $A \Rightarrow w$ and in R there is the rule $A \rightarrow$ $y_{1} a_{1} y_{2} a_{2} \cdots y_{k} a_{k} y_{k+1}$, where $k \geq 0, y_{1}, y_{2}, \cdots, y_{k}, y_{k+1} \in D^{*}, a_{1}, a_{2}, \cdots, a_{k} \in T, h_{i}(w)=$ $a_{1} a_{2} \cdots a_{k}, h_{o}(w)=y_{1} y_{2} \cdots y_{k} y_{k+1}$. In this case the collection P of the sets of translation
$L R(k)$ items contains sets $b, a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{k}^{\prime}$ and these sets contain the following items:

$$
\begin{aligned}
& {\left[A \rightarrow \cdot a_{1} a_{2} \cdots a_{k}, y_{1}, u\right] \in b} \\
& {\left[A \rightarrow a_{1} \cdot a_{2} \cdots a_{k}, y_{2}, u\right] \in a_{1}^{\prime}} \\
& \cdots \\
& {\left[A \rightarrow a_{1} a_{2} \cdots \cdot a_{k}, y_{k}, u\right] \in a_{k-1}^{\prime}} \\
& {\left[A \rightarrow a_{1} a_{2} \cdots a_{k} \cdot, y_{k+1}, u\right] \in a_{k}^{\prime}}
\end{aligned}
$$

for some lookahead string $u \in T^{* k}$.
Algorithm 3 performs for some string of pushdown symbols α the following sequence of moves

$$
\begin{aligned}
\left(\alpha, a_{1} a_{2} \ldots a_{k}, \beta\right) & \vdash\left(\alpha a_{1}^{\prime}, a_{2} \ldots a_{k}, \beta y_{1}\right) \\
& \vdash\left(\alpha a_{1}^{\prime} a_{2}^{\prime}, a_{3} \ldots a_{k}, \beta y_{1} y_{2}\right) \\
& \vdash \ldots \\
& \vdash\left(\alpha a_{1}^{\prime} a_{2}^{\prime} \ldots a_{k}^{\prime}, e, \beta y_{1} y_{2} \ldots y_{k}\right) \\
& \vdash\left(\alpha A^{\prime}, e, \beta y_{1} y_{2} \ldots y_{k} y_{k+1}\right)
\end{aligned}
$$

Therefore the claim (\star) is true for $n=1$.
2. Suppose that the claim (\star) is true for all $m<n$. The rightmost derivation of the length n has the form

$$
\begin{aligned}
& A \quad \Rightarrow z_{1,1} a_{1,1} z_{1,2} a_{1,2} \cdots z_{1, i_{1}} a_{1, i_{1}} B_{1} z_{2,1} a_{2,1} z_{2,2} a_{2,2} \cdots z_{2, i_{2}} a_{2, i_{2}} B_{2} \cdots \\
& \cdots B_{k} z_{k+1,1} a_{k+1,1} z_{k+1,2} a_{k+1,2} \cdots z_{k+1, i_{k+1}} a_{k+1, i_{k+1}} v \\
& \Rightarrow{ }^{m_{k}} z_{1,1} a_{1,1} z_{1,2} a_{1,2} \cdots z_{1, i_{1}} a_{1, i_{1}} B_{1} z_{2,1} a_{2,1} z_{2,2} a_{2,2} \cdots z_{2, i_{2}} a_{2, i_{2}} B_{2} \cdots \\
& \cdots w_{k} z_{k+1,1} a_{k+1,1} z_{k+1,2} a_{k+1,2} \cdots z_{k+1, i_{k+1}} a_{k+1, i_{k+1}} v \\
& \Rightarrow^{m_{k-1}} \cdots \\
& \Rightarrow^{m_{2}} z_{1,1} a_{1,1} z_{1,2} a_{1,2} \cdots z_{1, i_{1}} a_{1, i_{1}} B_{1} z_{2,1} a_{2,1} z_{2,2} a_{2,2} \cdots z_{2, i_{2}} a_{2, i_{2}} w_{2} \cdots \\
& \cdots w_{k} z_{k+1,1} a_{k+1,1} z_{k+1,2} a_{k+1,2} \cdots z_{k+1, i_{k+1}} a_{k+1, i_{k+1}} v \\
& \Rightarrow \Rightarrow^{m_{1}} z_{1,1} a_{1,1} z_{1,2} a_{1,2} \cdots z_{1, i_{1}} a_{1, i_{1}} w_{1} z_{2,1} a_{2,1} z_{2,2} a_{2,2} \cdots z_{2, i_{2}} a_{2, i_{2}} w_{2} \cdots \\
& \cdots w_{k} z_{k+1,1} a_{k+1,1} z_{k+1,2} a_{k+1,2} \cdots z_{k+1, i_{k+1}} a_{k+1, i_{k+1}} v
\end{aligned}
$$

where $v, z_{j, l} \in D^{*}, a_{j, l} \in T, x_{j}=h_{i}\left(w_{j}\right), y_{j}=h_{o}\left(w_{j}\right), i_{k} \geq 0$ for $j=1,2, \cdots, k+1$, $l=1,2, \cdots, i_{j}, k \geq 0$.
In this case the collection P of sets of $L R(k)$ translation items contains sets

$$
b, a_{1,1}^{\prime}, a_{1,2}^{\prime}, \cdots, a_{1, i_{1}}^{\prime}, B_{1}^{\prime}, a_{2,1}^{\prime}, a_{2,2}^{\prime}, \cdots, a_{2, i_{2}}^{\prime}, B_{2}^{\prime}, \cdots, B_{k}^{\prime}, a_{k+1,1}^{\prime}, a_{k+1,2}^{\prime}, \cdots, a_{k+1, i_{k+1}}^{\prime}
$$

and these sets contain the following items:

$$
\begin{aligned}
& {\left[A \rightarrow . a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \ldots a_{k+1, i_{k+1}}, z_{1,1}, u\right] \in b} \\
& {\left[A \rightarrow a_{1,1} \bullet a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \cdots a_{k+1, i_{k+1}}, z_{1,2}, u\right] \in a_{1,1}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}}, B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \ldots a_{k+1, i_{k+1}}, e, u\right] \in a_{1, i_{1}}^{\prime},} \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} \cdot a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \ldots a_{k+1, i_{k+1}}, z_{2,1}, u\right] \in B_{1}^{\prime},} \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} \cdot a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \ldots a_{k+1, i_{k+1}}, z_{2,2}, u\right] \in a_{2,1}^{\prime},} \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} \cdot B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \cdots a_{k+1, i_{k+1}}, e, u\right] \in a_{2, i_{2}}^{\prime},} \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots a_{k, i_{k}} . B_{k} a_{k+1,1} a_{k+1,2} \ldots a_{k+1, i_{k+1}}, e, u\right] \in a_{k, i_{k}}^{\prime},} \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} \cdot a_{k+1,1} a_{k+1,2} \ldots a_{k+1, i_{k+1},}, z_{k+1,1}, u\right] \in B_{k}^{\prime},} \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} \cdot a_{k+1,2} \ldots a_{k+1, i_{k+1}}, z_{k+1,2}, u\right] \in a_{k+1,1}^{\prime},} \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \cdots\right.} \\
& \left.\ldots . a_{k+1, i_{k+1}}, z_{k+1, i_{k+1}}, u\right] \in a_{k+1, i_{k+1}-1}^{\prime}, \\
& {\left[A \rightarrow a_{1,1} a_{1,2} \cdots a_{1, i_{1}} B_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} B_{2} \cdots B_{k} a_{k+1,1} a_{k+1,2} \ldots a_{k+1, i_{k+1}} \cdot, v, u\right] \in a_{k+1, i_{k+1}^{\prime}}^{\prime} \prime}
\end{aligned}
$$

for some lookahead string $u \in T^{* k}$.
Algorithm 3 performs for some string of pushdown symbols α the following sequence of moves:

$$
\begin{aligned}
& \left(\alpha, a_{1,1} a_{1,2} \cdots a_{1, i_{1}} x_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} x_{2} \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots a_{k+1, i_{k+1}}, \beta\right) \\
& \vdash\left(\alpha a_{1,1}^{\prime}, a_{1,2} \cdots a_{1, i_{1}} x_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} x_{2} \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots a_{k+1, i_{k+1}}, \beta z_{1,1}\right) \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime}, \cdots a_{1, i_{1}} x_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} x_{2} \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2}\right) \\
& \vdash \cdots \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime}, x_{1} a_{2,1} a_{2,2} \cdots a_{2, i_{2}} x_{2} \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}}\right) \\
& \vdash^{m_{1}}\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime}, a_{2,1} a_{2,2} \cdots a_{2, i_{2}} x_{2} \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1}\right) \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime}, a_{2,2} \cdots a_{2, i_{2}} x_{2} \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots\right. \\
& \left.\ldots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1} z_{2,1}\right) \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime} a_{2,2}^{\prime} \cdots a_{2, i_{2}} x_{2} \cdots x_{k} a_{k+1,2} a_{k+1,2} \cdots\right. \\
& \left.\ldots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i} y_{1} z_{2,1} z_{2,2}\right) \\
& \vdash \cdots \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1,1_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime} a_{2,2}^{\prime} \cdots a_{2, i_{2}}^{\prime}, x_{2} \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots\right. \\
& \left.\ldots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1} z_{2,1} z_{2,2} \ldots z_{2, i_{2}}\right) \\
& \vdash^{m{ }_{2}}\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime} a_{2,2}^{\prime} \cdots a_{2, i_{2}}^{\prime} B_{2}^{\prime}, \cdots x_{k} a_{k+1,1} a_{k+1,2} \cdots\right. \\
& \left.\ldots a_{k+1, i_{k=1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1} z_{2,1} z_{2,2} \ldots z_{2, i_{2}} y_{2}\right) \\
& \vdash \cdots \\
& \vdash^{m_{k}}\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime} a_{2,2}^{\prime} \cdots a_{2, i_{2}}^{\prime} B_{2}^{\prime} \cdots B_{k}^{\prime}, a_{k+1,1} a_{k+1,2} \cdots\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\ldots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1} z_{2,1} z_{2,2} \ldots z_{2, i_{2}} y_{2} \cdots y_{k}\right) \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime} a_{2,2}^{\prime} \cdots a_{2, i_{2}}^{\prime} B_{2}^{\prime} \cdots B_{k}^{\prime} a_{k+1,1}^{\prime}, a_{k+1,2} \cdots\right. \\
& \left.\ldots a_{k+1, i_{k+1}}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1} z_{2,1} z_{2,2} \ldots z_{2, i_{2}} y_{2} \cdots y_{k} z_{k+1,1}\right) \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime} a_{2,2}^{\prime} \cdots a_{2, i_{2}}^{\prime} B_{2}^{\prime} \cdots B_{k}^{\prime} a_{k+1,1}^{\prime} a_{k+1,2}^{\prime}, \cdots\right. \\
& \left.\ldots, a_{k+1, i_{k+1}}^{\prime}, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1} z_{2,1} z_{2,2} \ldots z_{2, i_{2}} y_{2} \cdots y_{k} z_{k+1,1} z_{k+1,2}\right) \\
& \text { ト... } \\
& \vdash\left(\alpha a_{1,1}^{\prime} a_{1,2}^{\prime} \cdots a_{1, i_{1}}^{\prime} B_{1}^{\prime} a_{2,1}^{\prime} a_{2,2}^{\prime} \cdots a_{2, i_{2}}^{\prime} B_{2}^{\prime} \cdots B_{k}^{\prime} a_{k+1,1}^{\prime} a_{k+1,2}^{\prime} a_{k+1, i_{k+1}}^{\prime}, e, \beta z_{1,1} z_{1,2} \cdots\right. \\
& \left.\ldots z_{1, i_{1}} y_{1} z_{2,1} z_{2,2} \ldots z_{2, i_{2}} y_{2} \cdots y_{k} z_{k+1,1} z_{k+1,2} \cdots z_{k+1, i_{k+1}}\right) \\
& \vdash\left(\alpha A^{\prime}, e, \beta z_{1,1} z_{1,2} \cdots z_{1, i_{1}} y_{1} z_{2,1} z_{2,2} \ldots z_{2, i_{2}} y_{2} \cdots y_{k} z_{k+1,1} z_{k+1,2} \cdots z_{k+1, i_{k+1}} v\right)
\end{aligned}
$$

Since $m_{j}<n$, for $j=1,2, \cdots, k$ the claim (\star) is true for all $n>0$.
Thus, we have proved the claim ($*$) for an arbitrary rightmost derivation and it holds therefore:
For the rightmost derivation $S \Rightarrow^{*} w$ in the translation grammar $T G$, where $x=h_{i}(w)$, $y=h_{o}(w)$, Algorithm 3 performs the sequence of moves $(\#, x, e) \vdash^{*}\left(\# S^{\prime}, e, y\right)$ and therefore $(x, y) \in Z(T G)$.

7. CONCLUSION

A similar approach as for $L R(k) R$-translation grammars may be used for the definition of $S L R(k)$ and $L A L R(k) R$-translation grammars. The class of $L R(k) R$-translation grammars does not contain all translation grammars with the $L R(k)$ input grammar. E.g. no translation grammar with output symbols in front of nonterminal symbols belongs to this class.

> (Received November 3, 1989.)

REFERENCES

[1] A. V. Aho and J. D. Ullman: Properties of syntax directed translations. J. Comput. Systern Sci. 9 (1969), 3, 319-334.
[2] A. V. Aho and J. D. Ullman: Translation on a context-free grammar. Inform. and Control 19 (1971), 5, 439-475.
[3] A. V. Aho and J. D. Ullman: The Theory of Parsing, Translation and Compiling. Vol. 1. Parsing, Vol. 2. Compiling. Prentice-Hall, New York 1971, 1972.
[4] K. Čulik: Well-translatable grammars and Algol-like languages. In: Formal Language Description Languages for Computer Programming (T. B. Steel, ed.), North-Holland, Amsterdam 1966, pp. 76 -85 .
[5] E.T. Irons: A syntax directed compiler for Algol 60. Comm. ACM 4 (1961), 1, 51-55.
[6] E.T. Irons: The structure and use of the syntax-directed compiler. In: Annual Review in Automatic Programming 3 (R. Goodman, ed.), Pergamon Press, New York - London 1963, pp. 207-227.
[7] J. Král and J. Demner: Parsing as a subtask of compiling. In: Mathematical Foundation of Computer Science 1975 (J. Bečváŕ, ed., Lecture Notes in Computer Science 32), Springer-Verlag, Berlin - Heidelberg - New York 1975.
[8] P. M. Lewis and R. E. Stearns: Syntax directed transductions. J. Assoc. Comput. Mach. 15 (1968), 3, 465-488
[9] P. M. Lewis, D. J. Rozenkrantz and R. E. Stearns: Compiler Design Theory. Addison-Wesley, London 1976.
[10] L. Petrone: Syntactic mappings of context-free languages. Proc. IFIP Congress 1965, Part 2, pp 590-591.
[11] P. Purdom and C. A. Brown: Semantic routines and $L R(k)$ parsers. Acta Inform. 14 (1980), 4, 229 - 315 .
[12] S. Vere: Translation equation. Comm. ACM 13 (1970), 2, 83-89.

Doc. Ing. Bořivoj Melichar, CSc., katedra počítačủ elektrotechnické fakulty ČVUT (Department of Computers, Faculty of Electrical Engineering - Czech Technical University), Karlovo náměstí 19, 121 35 Praha 2. Czechoslovakia.

