Kybernetika

Botivoj Melichar
Formal translation directed by LR parsing

Kybernetika, Vol. 28 (1992), No. 1, 50--61

Persistent URL: http://dml.cz/dmlcz/124971

Terms of use:

© Institute of Information Theory and Automation AS CR, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124971
http://project.dml.cz

KYBERNETIKA — VOLUME 28 (1992), NUMBER 1, PAGES 50 - 61

FORMAL TRANSLATION DIRECTED BY LR PARSING

BORIVOJ MELICHAR

The notion of the syntax-directed translation was a highly influential idea in theory of the for-
mal translation. Models for the description of the formal translations are syntax-directed translation
schemes. The special case of syntax-directed translation schemes are simple syntax-directed translation
schemes, which can be written in the form of translation grammars. It is possible for an arbitrary
translation described by a translation grammar with LL(k) input grammar to create one-pass transla-
tion algorithm by a siinple extension of the algorithm of a syntax analysis for LL(k) grammars. Similar
approach for an LR(k) grammar led to the result that it is possible to perform an one-pass formal trans-
lation during LR(k) analysis only in that case when the translation grammar has a postfix property. In
this paper the construction of the algorithm is studied, which can, for a particular class of translation
grammars (called LR(k) R-translation grammars), perform one pass formal translation. The basic idea
discussed in this paper is the following: It is possible to make an extension of the algorithm of the syntax
analysis for LR(k) grammars in such a way, that the output of output symbols can be performed not
only as a part of the operation reduction but also as a part of the operation shift.)

1. INTRODUCTION

The notion of the syntax-directed translation introduced by Irons ({5], [6]) was a highly
influential idea in theory of the formal translation. Mathematical models of the syntax-
directed translation have been developed and studied in {1], [2], [4], [8], [10] and [12].
Models for the description of the formal translations are syntax-directed translation
schemes. The special case of syntax-directed translation schemes are simple syntax-
directed translation schemes, which can be written in the form of translation grammars.

Parallel to the development of methods of the formal description of the translation,
principles for implementation of algorithms of the syntax-directed translation were re-
searched. Already in 1968, Lewis and Stearns [8] have shown that it is possible-for an
arbitrary translation described by a translation grammar with LL(E) input grammar to
create one-pass translation algorithm by a simple extension of the algorithm of a syntax
analysis for LL(k) grammars.

Stmilar approach for an LR(k) grammar led to the result that it is possible to perform
an one-pass formal translation during LR(k) analysis only in that case when the transla-
tion grammar has a postfix property, which means that output symbols are placed only
at the ends of the right-hand sides of the grammar rules. It means that the output of

Formal Translation Directed by LR Parsing 51

output symbols is made only if the end of the rule is discovered. This means, from the
point of view of the syntax analyzer, that the output is performed as a part of the oper-
ation reduction of the syntax analyzer. The restriction of the translation grammar rules
mentioned has led to a development of various transformations of translation grammars
into grammars having postfix property (cf. [8], [9] and [12]) and to a creation of the four
pass model of the formal translator (cf. [1]). Others (cf. [7]) remarked that almost all
bottom up syntax analyzers contain elements of the top down methods, which can be
used in the process of extension of the syntax analyzer to the algorithm of the formal
translation.

In this paper the construction of the algorithm is studied, which can, for a particular
class of translation grammars (called LR(k) R-translation grammmars), perform one pass
formal translation. The class of LR(k) R-translation grammars is a superset of LR(k)
postfix translation grammars.

The basic idea discussed in this paper is the following: It is possible to make an
extension of the algorithm of the syntax analysis for LR(k) grammars in such way that
the output of output symbols can be performed not only as a part of the operation
reduction but also as a part of the operation shift.

2. NOTATION

Alphabet is a finite nonempty set of symbols. The set of strings of symbols from the
alphabet A including empty string () is denoted by A*. A formal language L over an
alphabet A is a subset of A, L C A*.

A context-free grammar is a quadruple G = (N,T, P, S), where N is a finite set of
nonterminal symbols, T is a finite set of terminal symbols, TN N = 0, S is the start
symbol, P is a finite set of rules of the form A — o, A€ N, a € (N UT)*. The symbol
= is used for the derivation relation. For any o, € (NUT)*, a = Bif a = 147, 8 =
= mvoy: and A — v5 € P, where A € N and v0,71,72 € (N UT)*. Symbols =¥, =+,
=* are used for k-power, transitive, transitive and reflexive closure of =, respectively.
The symbol =,,, is reserved for the rightmost derivation, e.g. v Ay, =rm y1a72 if
v2 € T™. The sentential form « is a string which can be derived from 5, S =~ a. The
sentential form o for S =7, « is called the right sentential form. The formal language
generated by the grammar G = (N, T, P,.S) is the set of strings L(G) = {w : § =" w,
we T}

A derivation tree may be viewed as a graphical representation for a derivation. Each
interior node of it is labeled by some nonterminal symbol A and the children of the node
are labeled, from left to right, by the symbols in the right hand side of the rule by which
this A was replaced in the derivation. The leaves of the derivation tree are labeled by
empty strings or terminal symbols and, if read from left to right, they constitute a string
derived by the grammar. The derivation tree will be treated as an expression of the
syntactic structure of the derived string.

59 B. MELICHAR

By T** we shall denote the set 7%k = {z : z € T", |z| < k, k > 0}, where the length
of string z € T™ is denoted by |z|. We define the sets FIRSTx(a) for & € (N UT)* and
FOLLOW(A) for A € N, as follows.

FIRSTi(a) = {z € T*: & =* 2ff and |z| = k, or « =" z and |z| <k},
FOLLOW,(A) = = {z € T*: § =, aAP and = € FIRSTL(#)}.

3. TRANSLATION GRAMMARS

A formal translation Z is a relation Z € A x B, where A and B are sets of strings. A
and B are sets of input and output strings, respectively.

A context-free translation grammar is a context-free grammar, in which the set of the
terminal symbols is divided into two disjoint subsets, the set of input symbols and the
set of output symbols.

Definition 1. A context-free translation grammar is a 5-tuple TG = (N, T, D, R, 5),
where
N is the set of nonterminal symbols,
T is the set of input symbols,
D is the set of output symbols,
R is the set of rules of the form A — «, where A€ N,a € (NUT U D)*,
S is the starting symbol.

The input homomorphism AT% and the output homomorphism AZ¢ from (NUTU D)*
to (NUT U D) are defined in the following way:

a forae TUN a foraeT
o = (oo - (

e fora€e D e forae DUN

The derivation in the translation grammar T'G is denoted by = and called the trans-
lation derivation. The formal translation defined by the translation grammar TG is the
set Z(TG) = {(hT%(w), KT (w)) : § =* w, w € (T U D)*}.

The input grammar of the translation grammar T'G is the context-free grammar G =
= (N,T, R, S), where R; = {A — hT%) : A — a € R}.

Note. The upper index T'G is omitted if no confusion arises.

4. R-TRANSLATION GRAMMARS

As stated above, it is possible to extend the LR parser to perform an output of a symbol
as a part of the operation reduce. The basic idea described below is a possibility to extend
the LR parser in order to perforin the output of symbols as a part of the operation shift
as well. Let us consider a simple case when a rule of the translation grammar has the

Formal Translation Directed by LR Parsing 53

form A — azaf}, where z is the string of output symbols, a is the input symbol, a, B are
strings of input, output and nonterminal symbols.

In such a case, it is possible to add the string @ to the output string during the shift
of the symbol a.

Definition 2. A trauslation grammar TG is called R-translation grammar if the
strings of output symbols appear at the ends of the right-hand sides of the rules and/or
immediately in front of input symbols.

5. LR(k) R~-TRANSLATION GRAMMARS

Now we can demonstrate that an extended LR parser can perform the translation, if
it is possible for every shift operation to determine unambiguously the string of output
symbols, which may be added to the output string.

Definition 3. A translation LR(k) item for the translation grammar
TG = (N,T,D,R,S) is the object of the form [A — a8, z,w] where A — aff is a rule
of the input grammar for the translation grammar TG, z € D*, w € T**, k > 0.
For k =0 an LR(0) translation item will be written in the form {A — a. 8,z].

The following algorithm constructs the collection of sets of the translation LR(k) items
for given translation grammar T'G.

Algorithm 1. Construction of the collection of sets of LR(k) translation items.

Input: R-translation grammar TG = (N,T,D, R, S), k > 0.

Output: Collection P of sets of LR(k) translation items for the translation grammar
TG.

Method:

Step [. Construct an augmented grammar
TG = (NU{S'},T,D,RU{S" — 5},5).
Step 2. Construct the initial set of LR(k) translation items in the following way:
(a) #:={["— +S,e,¢€]}.
(b) If [A— .Bf,e,u] € #, BE N and B — v € R, then
= #U{[B - «hi(7),y,v] : y € D" is the longest prefix of y containing
output symbols only, v € FIRSTk(h;(8)u)}.
(c¢) Repeat the step (b) while new items can be inserted into the set #.
(d) P := {#]}, # is the initial set.

Step 3. If the set M; of LR(k) translation items has been constructed, construct
for each symbol X € (NUT), which is in some LR(k) item in M; just behind
the dot, a new set of LR(k) translation items X;, where j = max(k) + 1 for
X, € Porj=1for X; € P, in the following way: ’

54 B. MELICHAR

(a) X; :={[A—-aX . f,y,u]:[A— a.XB z,u] € M, y € D*is the string
of output symbols from the right hand side of the translation grammar
rule corresponding to the rule A — X g between symbol X and string
B},

(b) f[A > avBB,e,ul€ X;, BE Nand B— y€ R,
then X; := X; U{[B — «hi(y),y,v], y € D" is the longest prefix of v
containing only output symbols, v € FIRST,(hi(B8)u)}.

(c) Repeat the step (b) while new items can be inserted into the set Xj.

(d) P:=PU{X;}.

Step 4. Repeat Step 3 for all sets M;, while new sets can be added into the collec-

tion P.

This algorithm constructs the collection of sets of LR(k) translation items for a given
translation grammar. This collection differs from the collection of sets of LR(k) items
for the input grammar. Each of its items contains a string of output symbols.

There is a string of output symbols y in the item with the dot at the end of the right
hand side of the rule. The string y is a string of output symbols from the end of the rule
in question. Such a situation means that the operation reduce will be performed during
the translation and the string y will be added to the output string.

There is also a string @ of output symbols in the item with the dot just in front of an
input symbol. In this case the string z is the string of output symbols from the rule in
question placed in front of the input symbol behind the dot. This means that for the
rule of the translation grammar of the form A — azaf the constructed item for some
u € T is [A — hi(a).ahi(B),z,u] where v € D", a € T, o, € (NUT U D)* and «
does not end with the output symbol.

The existence of such an item in some set of LR(k) translation items means that the
operation shift will be performed during the translation and the string « will be added to
the output string. In order to select the output string unambiguously, there must not
be, in the same set of LR(k) translation items, two different items with different output
strings, with the same input symbol behind the dot, and with the same lookahead strings
from FIRSTi(ah;(f)u).

Definition 4. We say that in the collection P of LR(k) translation items there is a
translation conflict, if in some set of P two items are of the form '

(Ao avaBz]
B — . b8,y,v)
for z # y and FIRST(aBu)NFIRST(bsv) # 0.
Definition 5. An R-translation grammar T'G is called an LR(%) R-translation gram- -

mar, if the input grammar of T'G is an L R(k) grammar and there is no translation conflict
in any set of LR(k) translation items of the collection P for TG.

Formal Translation Directed by LR Parsing 55

6. ALGORITHM OF THE FORMAL TRANSLATION

" For the LR(k) R-translation grammar translation can be performed using the algorithm,
which is obtained by the following modification of the LR parser.
Step 1. During the operation reduce, add the string of output symbols to output string

from the LR(k) item corresponding to the reduce operation performed.

Step 2. During the operation shift, add the string of output symbols to output string
from the LR(k) item corresponding to the shift operation performed.

Strings of output symbols can be inserted into the corresponding items of the action
table of the LR parser. The resulting table will be called the translation table.

Algorithm 2. Construction of the translation table for a LR(k) R-translation gram-
mar.
Input: LR(k) R-translation grammar TG = (N, T, D, R, S) and a collection P of sets
of LR(k) translation items for LR(k) R-translation grammar T'G.

Qutput: Translation table p for the translation grammar T'G.

Method: Translation table has rows denoted by the sets of items from P, columns are
denoted by the elements of the set T*.
Step 1. p(M;,u) = shifi(z),if [A - a.f,z,0)€ M;, e T(NUT)",
u € FIRSTx(Bv), z € D,
Step 2. p(M;,u) = reduce j(z),if 7 > 1 and
[A > hi(a)s,z,u] € Mi, A— «is jth rulein R,
ueT* ¢ e D"
Step 3. p(M;,e) = accept, il [S' — S e, ¢l € M,
Step 4. p(M;,u) = error in all other cases.

Note. The goto table may be constructed in the same way as the one for the LR parser
(see [3])-

Algorithm 3. Formal translation for LR(k) R-translation grammar.

Input: The translation table p and the goto table g for the translation grammar TG =
= (N,T,D,R,S), input string z € T*, k > 0.
Qutput: Qutput string y in case that for z € L(G.-), (z,y) € Z(T@), otherwise error

signalisation.

Method: The symbol # is an initial symbol in the pushdown store. Repeat Steps 1, 2
and 3 until accept or error appears. Symbol Y is on the top of the pushdown store.

56 B. MELICHAR

Step 1. Fix the string of first & symbols from the unused part of the input string and
denote it by u.

Step 2. (a) If p(X,u) = shift(z), read one input symbol, add the string = to the
output string and go to Step 3.

If p(X,u) = reduce i(z), pop from the pushdown store the same number
of symbols as is the number of input and nonterminal symbols at the
right-hand side of the ith rule ()4 — « and add string = to the output
string. Go to Step 3.

If p(X,u) = accept, finish the translation; then the output string is the
translation of the input string, provided that the input string is read

(b

=

(c

completely, otherwise finish the translation by an error signalisation.
(d) If p(X,u) = error, finish the translation by an error signalisation.
Step 3. If W is a symbol which may be pushed to the pushdown store (the read symbol
in 2(a) or the left hand side of the rule used for the reduction in 2(b)) and Y’
is the symbol at the top of the pushdown store, then:
(a) If g(Y,W) = M, then push M at the top of the pushdown store and
repeat the algorithm from the step 1.
(b) If (Y, W) = error, finish the translation by an error signalisation.
The configuration of the algorithm is the triple (a,z,y), where
a is the content of the pushdown store,
x is the unused part of the input string,
y is the part of the output string already created. .
The initial configuration is a triple (#,z,e), the accepting configuration is a triple
(#M;,e,y), where M; is the symbol at the top of the pushdown store, and it holds
for M; that p(M;, e) = accept.

Example. Let us have translation grammar
TG = ({4, B}, {a,b}, {z,y}, R, A), where R contains the rules:
(1) A > aAy (2) A— B
(3) B — zbB (4) B—x

This grammar describes the translation Z(TG) = {(«'V/. 27 y") 14,5 > 0}. Let us
construct the collection of sets of LR(1) translation items for the grammar T'G.
{[A'= A e, e],[A— vad, e, ¢, [A— B e, e],[B— 0B, x, e, [B— oz, e}
A = {[A— A e ¢}

{[A=a.A e, el,[A— caA, e, e ,[A— «B.e e],[B— B, z,¢e],[B— .,z ¢}

1t

ap =
B = {[A—B., e €}

by = {[B=b.B,e e, [B— B, z, e, [B— ., z €}
A =

{[A —aA., y, e]}
By = {[B—0B., e, ¢}

Formal Translation Directed by LR Parsing 57

The following table is the translation and goto table. Symbols S and A stand for opera-
tions shift and accept, respectively. The reduction by the rule number (7) is denoted by
R;.

a b e Al B [alb
15| S(x)| Ralx) | A | By | ay | by
Ay A
a; | S| S(@)| Ri(z) | Ay | By |aa | by
B, R,
by S(z) | Ra(x) B, by
Ay Rn(y)
By Rs

Algorithm 3 performs the translation of the input string aab in the following way:

(#,aab,e) + (#ay, ab,e)
F (#a1aq, b,e)
F (#ar1a1 by, e,)
b (#ara1 b Bs, e, zz)
F (#aa By, e, zx)
b (#aya1 As, e, 1)
F (#a1 As, €,TTY)
F (#A1, e, TTYY)

Main theorem. Algorithm 3 of the formal translation for LR(k) R-translation
grammar T'G creates, for each input string z € L(G), where G; is the input gram-
mar of translation grammar T'G, an output string y such that (z,y) € Z(T'G).

Proof. Algorithm 3 is an extension of an LR parser, which means that it constructs
the reverse of the rightmost derivation of the input string « and, if this derivation does
not exist, it produces an error signalisation. Therefore we have to prove the fact, that
for an input string « € L((G;) the output string y is produced such that (z,y) € Z(TG).

The proof will be made by the induction on the length of the rightmost derivation of
the input string.

First the following claim has to be proved:

(x) If for some A € N a derivation A =" w exists in TG such that ¢ = k;(w), y = h,(w),

then Algorithm 3 performs the sequence of moves (a,z,) F* (aA’, €, By) for some string
a of pushdown symbols, # € D*, where A’ is the pushdown symbol corresponding to A.

1. For n = 1 the derivation has the form A = w and in R there is the rule 4 —
Yra1y202 - Ye@ryrsr, where k 2 0, g1, 92, Yoy Y1 € D%, @y, 02,05 € T, hy(w) =
araz - g, ho{W) = Y1y2 - ykyk4r. In this case the collection P of the sets of translation

58 B. MELICHAR

LR(k) items contains sets b, aj,aj,-- -, a}, and these sets contain the following items:

[A = cayaz - ag,y,u] €5,
[A = ayeaz - ag,y2,u) € af,

[A = aiaz - cag,yr,u] € ¢y,
[A = aqag- ape,yryr,u] € @)
for some lookahead string u € T,
Algorithm 3 performs for some string of pushdown symbols a the following sequence of
moves -
(ady, az ... ax, Byn)

(aajay, as. .. ak, Byry2)

(v, aq102. .. ag, B)

'_
-
.
b (cdidh...ak e Byiya. .. yk)
F (“A',Cyﬁylyzn-ykykﬂ)

Therefore the claim (x) is true for n = 1.

2. Suppose that the claim (%) is true for all m < n. The rightinost derivation of the
length n has the form

A = 21,101,121,201,2° " 214,015 Biza,102,1220000 - Zz,z,az,z,Bz T
o Brzian 10k41,1 2041 2004127 Zh41 kg1 P15 U
m
="k 21,101,121 28,2 " 2Lu“1,uBlzz.laz,llz,wz,z s 22,{2112,:'232 st
U WEZk41,10k41,1 264 1,20641,2 " Zha ik Gk Lig, U
= k-1
m:
=" 21111212012 " Zl,ndu,Bl 22,102122,202,2° " * 225,42 i, W " - -
T WEZE41,10k4+1,12541,20841,2 7" Zh4 ik Gkl igg U
m
=" 21,101,121,201,2 " * * 21,4, 01,i, W1 22103,122,202,2 * * * 22,i, 42,5, Wa " * *
U WEZh1 1 Qk1,1 24 1,20k41,2 * 0 2k i Gk kg U
where v, 20 € D, aji € T, z; = hi(w;),y; = ho(w;), i 2 0 for j = 1,2,k +1,
l=12,---,i;, k>0
In this case the collection P of sets of LR(k) translation items contains sets
U 1 1 / ’ 1 1 ! 3 ’ ’ ’
b,y 1, a5, Sy Brayg, ahy, ey, By 3 Bl G110 @gr 2 2 Ykt igyy

and these sets contain the following items:

[A — w0111 g Bragaazs a2, By Broky110k41,2 - Gkt iy z,,l,u] €b

’
[A = dy1eGi2cc (lx,nBlﬂz,laz,z b ’fl'z,ng-z o Bragparie - cOkt1,ikg1y Zl,z,"] €ay,

Formal Translation Directed by LR Parsing 59

/
[A = a1,1012 - a1y » Brazaazz @2, By Brks1,10k412 - - Gk iggr € “] S
/
[A — ay101,27 01 Breagiazy - a2, B0 - Brapi110k41,2 < - Gkt iy, 22,1 ”] € B,
'
[A—= ainap - arq Biasgeazs a2, By Bresn 10k41,2 - Gkt g 2,20 4] € €43,

’
[A = ariarz 014 Bragiacz aa, e Be o Brlk110k41,2 - - Gkttiggsr € U] € Ayys

'

[A— ayiarz- - ar Brasass - a2, By -+ Griy » Broks110k1,2 -+ - Qg iy € 4] € ahs,
’
[A= a2 - a1, Biaziaas - 25, Ba -+ B oGrgr 1@tz - - Qg Zhi11, 4] € By,
N 7
[A = aipar2- a1, Biaanaaz a2, By Brllkgrn « 0k12 -+ Gkt iy 26412, U] € By 1
[A = aipay3- a1, Bragiagg- - a3, By - - Bragyraak41,2- - -
’
. 'aanankH.iHn“} € Cpi1ipyy-1r

/)
[A — 1812 “11,113102‘1112,2 s az,isz e Bkak+1,1ak+l.2 e Qk4ligyy ¢9 Uy “] € Bt igg
for some lookahead string u € T**.

Algorithm 3 performs for some string of pushdown symbols « the following sequence
of moves:
(111 a1,101,2 " Q1,i; T102,102,2 " Q2,,T2 " ThQh41,10k41,2 """ Bkt ipyys ﬂ)
F (O‘all,x« G127 01,;T1621822° " 02, €2 * "~ TkOk41,10k41,2 " * Thktl,iq10 ﬁzl,x)
- (““’1,1“’1,2, S 01,4, T102,102,2 " 02,82 TkGk41,1Qk41,2 7 ak+‘l,ik+nﬂzl,lzl,2)
[
F (Oa;,xa;,z T ﬂ;,i,\zlamaz,z T 02,0, T2 TGy, 10k41,2 - - - ak+1,z‘k+,,ﬂ21,111,2 T 21,5,)
F ((Ya’mal]; toe a;_,', B; ;02,102,225 T2 - ThQh1,10k4+1,2 - - Tkt iy 511,121;2 T Zl,i.?ll)
F (‘m;,ﬁllm o 'G;,i,B;alzJ, 227 A2, T2 " TRAk41,10k+1,2 7"
e 'lk+1,1k+171321,121.2 e Zl,ilylzl,l)
= (ouz’”a'L2 oeah Biagjah g, Qg Tyt TkGk11Gke1,2
BERY 7 R ﬂll,lzl,z crt 2 y122,121,2)
[
- (O‘a;.ld’m -ah it B;“/z,xﬂrz,z T ‘1’2,";» Tyt Th@Qk+1,10k41,2° "
RS KRR ﬂzmlm frr 214 Y122,122,2 - - Zz,-;)
B2 (aa) 0] g0 ayy, Biay 1 ay -y, By, o wrkir 1k
oo ak+l,ik;1 5 ,321,121,2 T 21,i,N22122.2 - - Zz,i;yz)
o

Mk ! ! ’ T ! ! ’ / .
= (0“11,1‘11,2 soayy Blayah g ay By s By, Grg1 10k41,2

60

! ’
F (O‘al.t“\,z"'

1 ’
F (a“n“lz”‘

ERER LS RS 521,151,2 .

! 1 i ’ '
ay;, Biagah, a5, By
kg, Bz

’ 1) I 1 ’
a1, Biag a0y, @y, By oo

!
@y, PR g

2L Y1z23222. - 22,520

o
UA-“A».Hm Qk41,2° "
Z1,nYZ21%2,2 - -

! I
Bkak+1,1ak+1,2: T

22,442 7 -

"2, 1221222 -« Z2,0Y2 0

B. MELICHAR

'yk)
: ykzk+l,l)

. yk2k+1,1zk+1,2)

(R :

’ 7 .I i’ ’ .'.I /_‘_ /1 ’ : . -5 e
F (aal,lul,z AU N 31“2,\‘7'2,2 ‘12,;232 Bkak+1,1ak+1,2“k+l,zk+, se, Bz

CeeZy i Y1R20%2,2 - - Z20Y2 7 Yk ZR410%k+1,2 0 Zk+1,ik+1)

’
F (ad'je, 531,131,2 B Y172,122,2 - 22,502 T YkZRAL1ZR41,2 7 Bk ‘U)
+

Since m; < mn, for j = 1,2,---, k the claim (%) is true for all n > 0.

Thus, we have proved the claim (%) for an arbitrary rightmost derivation and it holds
therefore:
For the rightmost derivation S =* w in the translation grammar TG, where = = h;(w),
y = ho(w), Algorithm 3 performs the sequence of moves (#,z,e) F* (#5',¢,y) and

therefore (z,y) € Z(T'G). a

7. CONCLUSION

A similar approach as for LR(k) R-translation grammars may be used for the definition
of SLR(k) and LALR(k) R-translation grammars. The class of LR(k) R-translation
grammars does not contain all translation grammars with the LR(k) input grammar.
E.g.

belongs to this class.

no translation grammar with output symbols in front of nonterminal symbols

(Received November 3, 1989.)

REFERENCES

1] A.V. Aho and J. D. Ullman: Properties of syntax directed translations. J. Comput. Systern Sci. 3
(1969), 3, 319 - 334.

[2] A.V. Aho and J.D. Ullman: Translation on a context-free grammar. Inform. and Control 19 (1971),

5, 439 - 475.

A.V. Aho and J.D. Ullman: The Theory of Parsing, Translation and Compiling. Vol. 1. Parsing,

Vol. 2. Compiling. Prentice-Hall, New York 1971, 1972. ‘

K. Culik: Well-translatable grammars and Algol-like languages. In: Formal Language Description

Languages for Computer Programmiing (T. B. Steel, ed.), North-Holland, Amsterdam 1966, pp. 76

- 85.

E.T. Irons: A syntax directed compiler for Algol 60. Comm. ACM 4 (1961), 1, 51 — 55.

E.T. Irons: The structure and use of the syntax-directed compiler. In: Annual Review in Automatic

Programming 3 (R. Goodman, ed.), Pergamon Press, New York — London 1963, pp. 207 - 227.

J. Kral and J. Demner: Parsing as a subtask of compiling. In: Mathematical Foundation of Com-

puter Science 1975 (J. BeévéF, ed., Lecture Notes in Computer Science 32), Springer-Verlag, Berlin

- Heidelberg — New York 1975. ’

(3]

Formal Translation Directed by LR Parsing 61

[8] P.M. Lewis and R.E. Stearns: Syntax directed transductions. J. Assoc. Comput. Mach. 15 (1968),
3, 465 — 488.

{9] P.M. Lewis, D.J. Rozenkrantz and R.E. Stearns: Compiler Design Theory. Addison-Wesley, Lon-
don 1976.

{10] L. Petrone: Syntactic mappings of context-free languages. Proc. IFIP Congress 1965, Part 2, pp.
590 - 591.

{11] P. Purdom and C. A. Brown: Semantic routines and LR(k) parsers. Acta Inform. 14 (1980), 4, 229
- 315.

{12] S. Vere: Translation equation. Comm. ACM 13 (1970), 2, 83 - 89.

Doc. Ing. Bofivoj Melichar, CSc., katedra poéitaci elekirotechnické fakulty CVUT (Department of

Compulers, Faculty of Electrical Engineering - Czech Technical University), Karlovo ndmésti 13,
121 35 Praha 2. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T23:42:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

