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K Y B E R N E T I K A - V O L U M E 29 ( 1 9 9 3 ) , N U M B E R 6, P A G E S 6 1 7 - 6 2 7 

ON THE DERIVATION OF A STATE-SPACE MODEL 
OF A PERIODIC PROCESS 
DESCRIBED BY RECURRENT EQUATIONS' 

OSVALDO MARIA GRASSELLI, SAURO LONGHI AND ANTONIO TORNAMBE 

Here the problem is considered of obtaining a periodic description in state-space form 
of a linear process which can be modelled by linear recurrent equations with periodic 
coefficients. A polynomial time-invariant description of such a model is used, in order to 
characterize the order of the model and to introduce an equivalence relation between two 
models. 

1. INTRODUCTION 

For processes which can be modelled by linear recurrent (or differential) equations 
with constant coefficients, Rosenbrock [1] introduced the polynomial matrix descrip
tion in form of the following pair of vector equations 

T{S)i = U(6)u, (1.1) 

y=V(6)Z + W(6)u, (1.2) 

where T(6), U(6), V(6) and W(6) are polynomial matrices in the indeterminate 6, 

which for recurrent equations can have the meaning of the one-step forward-shift 

operator. He showed that under the polynomial transformations on (1.1), (1.2) that 

he called strict system equivalence, if T(6) is square, detT(6) ^ 0 (and has a degree 

equal to the dimension of T(6)) and the input-output transfer matrix corresponding 

to (1.1), (1.2) is proper, then it is possible to obtain a description of the same process 

in state-space form, i.e., in the case of recurrent equations, of the type 

x(k+\) = Ax(k) + Bu(k), (1.3) 

y(k) = Cx(k) + Du(k). (1.4) 

Since then, several authors studied the polynomial matrix description (1.1), (1.2) 

and the procedures for the computation of a state-space realization (1.3), (1.4) strict 

system equivalent to (1.1), (1.2) (see, e.g. [2]-[8]). 

'This work has been supported by funds of Ministero dell'Universita e della Ricerca Scientifica 
e Tecnologica e Ministero della Pubblica Istruzione. 
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In this paper the same kind of problem is faced for processes which can be modeled 
by linear recurrent equations with periodic coefficients (whose period will be denoted 
by w) of the following form: 

£r.(*K(fc + i) = J2Ui(k)u(k + i), (i.5) 
t=0 t"=0 

y(k) = J2 K"(*K(fc + «) + E ^(*)-(- + 0. (L6) 
t=0 > = 0 

for some integer r > 0, where the matrices Ti(k), Ui(k), Vi(k) and Wi(k) (i = 
0 , . . . , r ) are real periodic matrices with period w (briefly w-periodic), and T,(fc) 
(i = 0 , . . . , r) are possibly square. That is, the problem considered here is that of 
obtaining a description of such a process in state-space form. The case r = 0 is 
not considered, in order to rule out the case when (1.5), (1.6) are not recurrent 
equations. 

For the sake of brevity, all the proofs are omitted. 

2. PRELIMINARIES AND NOTATIONS 

For a given matrix F, its element of position (i, j) will be denoted by (F)ij, its ith 
row (column) by [F]1 ([F]i). The identity matrix of dimension v will be denoted 
either by Iv, or simply by / if confusion does not arise. 

Hereafter 5 will denote the one-step forward-shift operator, 6~l its inverse, A := 
6W the w-steps forward-shift operator, and A - 1 its inverse. Let RV(A), with v £ Z + , 
denote the operator represented by the following (uv) x (uv) matrix: 

*(-)-U. V]- ( 2» 
Let a vector function z(t) £ R" be given, with t £ Z. Then, for any k £ Z, 

the w-stacA'ed form of z(t) at (the initial) time k is defined as the following (u> v)-
dimensional vector function: 

Ч(h) :--

z(k + hw) 
z(k + hш + ï) 

.z(k + hш +ш - 1). 

, V/iЄZ. (2.2) 

The vector z>.(h) can be considered a function either of k or of h. In the following, 
the operator A will have the meaning of an w-steps forward-shift in the k variable, 
whenever the operator .ff„(A) will be applied to Zk(h). 

Let an w-periodic matrix F(t) £ R"*^ be given, with t £ Z. Let the vector 
functions z(t) £ R", and w(t) £ R^ be related by the linear map represented by 
F(t), i.e. z(t) - F(t)w(t), Vt £ Z. Then, for any k £ Z, the w-staciced (or, simply, 
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stacked) form of F(t) at (the initial) time k, which is defined as the following matrix 
of dimension (w u) x (w /.): 

Tk-= 

F(k) 0 ••• 0 
0 F(k + \) ••• o 

. 0 0 ••• F(k + ш-\). 

represents the induced linear map between the w-stacked forms at time k of the 
vector functions z(t) and w(t), i.e. zk(h) = Tkwk(h), V/i G Z. 

Lemma 1. [9, 10] For any vector function z(t) G R" and w-periodic matrix F(t) G 
R " x " (t G Z), and for any k G Z, the following identities hold for all i, j G Z: 

R^+i(A) zk(h) = zk+jw+i(h) = zk+i(h + j), (2.3) 

R^+i(A) TkR-^+i\A) = Tk+iu+i = Tk+i. (2.4) 

Corollary 1. [10] If in (2.1) the operator A is substituted by a scalar complex 
variable .s, then identity (2.4) still holds with A replaced by s. 

Notice that, by (2.3), we have 

rTv(A) zk(h) = zk+w(h) = zk(h + 1) = Azk(h), (2.5) 

in accordance with the identity R"(A) = AI. 

3. A TIME-INVARIANT CHARACTERIZATION OF w-PERIODIC SYSTEMS 
AND MODELS 

Consider a linear w-periodic system described by: 

x(k+\) = A(k)x(k) + B(k)u(k), (3.1) 

y(k) = C(k)x(k) + D(k)u(k), (3.2) 

where k G Z,x(k) G R" = : X is the state, u(k) G R p = : U is the input, y(k) G 
R ' =; y is the output, and A(-), B(), C(-), D(), are real w-periodic matrices. 
When u) — 1, equations (3.1), (3.2) reduce to the state-space model (1.3), (1.4) of a 
linear time-invariant system. 

It is convenient to consider also the more general way of describing a periodic 
physical process, by means of (1.5), (1.6), since, if the equations of the periodic pro
cess are written down, they may not initially be in the state-space form (34), (3.2). 
In (1.5), (1.6), where Tt(k), Ui(k), Vt(k) and Wi(k) (i = 0 , . . . , r) are w-periodic real 
matrices, u and y have the same meaning as in (3.1), (3.2), while £(k + i) G R m =: S 
is the vector of the internal variables needed for writing the equations describing the 
behaviour of the physical process in the form (1.5), (1.6). Vector £ is termed the 
pseudo-state, while equations (1.5), (1-6) are termed the model of the physical pro
cess under consideration. Equations (3.1), (3.2) are called the state-space model of 
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the corresponding physical process, or, briefly, the system describing such a process. 
When u> — 1, model (1.5), (1.6) reduces to the polynomial matrix description (1.1), 
(1.2), with the positions: T(6) := £ [ _ 0 T{6

{,U(6) := J%=0 U(6
{, V(6) := YZ-o Vi6\ 

and W(6) := £, r
=0 w^'". 

For any fc0 € Z, model (1.5), (1.6) can be rewritten for k = fc0 + hu + 1 , /t G Z, 
£ = 0 , . . . , w — 1, as follows: 

53 T'(*° + 0 *(*o + hu + e+i) = 
i=0 

£ l / . ( f c 0 +£)u ( fc 0 + /iw + £ + f), £ = 0 , . . . , w - l , (3.3) 
i=0 

j/(fc0 + liw + £) = 5 3 K(*o + £) ̂ (^o + /«- + £ + 0+ 
i=0 

5 3 ^i(*o + £) u(k0 +hw + e + i),e = 0,...,w~L (3.4) 
i=0 

By introducing the w-stacked forms at time fc0 of vectors £(k), u(k), y(k) and 
those of matrices T.(fc), Ut(k), Vi(k), Wt(k), i = 0 , . . . , r, equations (3.3), (3.4) can 
be rewritten in the following compact form: 

J2Ti.^o+i(h) = J2^,^k0+i(h), (3-5) 
i=0 i=0 

r r 

yk„(h) = 5 3 V^-o6„+.(h) + 5 3 Wi>kouko+i(h), (3.6) 
i=0 i=0 

where 4*„(ll)> uifc„(ll)> a n c l u*o(l') wiU ^ e called briefly, respectively, the w-stacked 
pseudo-state, the w-stacked input, and the w-stacked output. Taking (2.3) into 
account, (3.5), (3.6) take the form: 

5 3 T M X ( A ) 6 0 ( h ) = 5>,fcoft*p(A)ueo(/i), (3.7) 
i=0 i=0 

^„(lO = EV ' . toftm(A)6o( lO+53H ; '^ / , :p(A)M^( l ' ) . ' (3-8) 
i=0 i=0 

Equations (3.7), (3.8) are termed the ui-stacked (or, simply, stacked) form at 
(the initial) time ko of model (1.5), (1.6) or, briefly, the stacked model at time fc0, 
and can be rewritten in the following form: 

T t o(A)6„( l . ) = Uko(A)uko(h), (3.9) 

Vk0(h) = v*o(A)6.(l0 + Wt0(A)u to(/»), (3.10) 
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where: 

Tk0(A) := 5>, f c . /4(A), u..(A) := 5> ,« 0 ^(A) , 
i=0 i=0 

Vfco(A) := J2 V.,-X(A), W«0(A) := ^W i i fco^(A). 
i=0 i=0 

In the special case of the state-space model (3.1), (3.2), since r = 1, m = n, 
£(k) = x(k), equations (3.9), (3.10) reduce to 

Rn(A) xko(h) = Ako xko(h) + Bko uko(h), (3.11) 

W,(A) = Cko xko(h) + Vko uko(h), (3.12) 

which are termed the w-stacked (or, simply, stacked) form at (the initial) time 
k0 of the state-space model (3.1), (3.2), or, briefly, the stacked system at time k0. 
The w-stacked forms Aho, Bko, Cko, Vko at time k0 of A(k), B(k), C(k), D(k) 
were introduced in previous papers (see, e.g. [11, 12]), and allow the notions of 
invariant zeros, transmission zeros, input (output) decoupling zeros to be studied in 
a direct way for the w-periodic system (3.1), (3.2) [11]. This is obtained, as far as 
invariant zeros and decoupling zeros are concerned, through the matrix obtained by 
substituting the operator A by the complex variable z in 

^(4):= [A. "«.(-) * • ] . ,3,3) 

which will be called the w-stacked (or, simply, stacked) system matrix at (the initial) 
time k0 of system (3.1), (3.2). For w = 1 it reduces to Rosenbrock's system matrix 
[1], and, in general, it plays a similar role for the w-periodic system (3.1), (3.2) 

[11, 13]. 
Similarly, we can define in general the w-stacked (or, simply, stacked) system 

matrix at (the initial) time k0 of model (1.5), (1.6) in the following way: 

S^(A) - VT*°(A) % ° ( A ) 1 (3 14) 
bk°w- [ vko(A) m0(A)\- {tiA4) 

Notice that, for a fixed k0, equations (3.H), (3.12) can be considered as a time-
invariant description of the w-periodic system (3.1), (3.2), since they can be seen to 
be similar to equations (1.1), (1.2) by formally substituting 5, £, u, y, respectively, 
by A, xko(h), uko(h), yko(h), and by setting T(A) := Rn(A) - Ako, U(A) := Bko, 
V(A) := Cko, W(A) := Vko. The first n components x(k0) of xko(0) play the role of 
initial conditions at time k0 for computing the solution of (3.11), (3.12) as in [9, 10]. 

More generally, for a fixed k0, equations (3.9), (3.10) can be viewed as a time-
invariant description of the w-periodic model (1.5), (1.6), since they are formally 
similar to (1.1), (1-2). The pseudo-state and output responses £(k) and y(k) of 
(1.5), (1.6), for any k > k0, can be uniquely computed in w-stacked form through 
(3.9), (3.10), under the assumption that Tko(A) is square and nonsingular (as a 
polynomial matrix), from the input function «(•) and from some initial conditions, 
as stated by the following extension of well-known time-invariant results [1]. 
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Proposition 1 . [9, 10] If the polynomial matrix Tt0(A) is square and nonsingular, 
then for each input function «(•) there exist solutions ^fc0() of equation (3.9), and 
they depend on arbitrary independent initial conditions whose number is equal to 
the degree of detTfc0(A). 

If Tfc0(A) is square and nonsingular, the degree of detTt0(A) is called the order 
of the model (1.5), (1.6) at (the initial) time k0. For the determination of the 
initial conditions needed for the solution of (3.9), and for its effective computation, 
see [9, 10]. 

Proposition 2 . [9, 10] If Tt0(A) is not square and nonsingular, then one (or more) 
of the following situations occurs: 

(a) one of the rows of (3.9) can be reduced to the trivial identity 0 = 0 by a finite 
sequence of elementary operations of the types (i), (ii), and (iii) that will be defined 
in Section 4; 

(/?) there exists an w-stacked input function «*„(•) for which (3.9) admits no 
solution; 

(7) there exist solutions of (3.9) for any Ufc„(-), but they depend on an infinite 
number of independent initial conditions. 

Now, notice that in (3.9), (3.10) the time ko is arbitrary, whence similar rela
tions hold for ko +1 instead of k0, involving £fco+i('0> Mfco+i(l0> 2/fco+i(lO> r . 0 +i(A) , 
ufco+i(A), vfc0+i(A) and Wfc0+i(A). Notice that (2.3) can relate 6„+i(j0> «*o+i(l0> 
and j/fc0+i(/i) with £fc0(/i), Uk0(h), and yk0U

l), respectively. Relation (2.4) allows the 
following lemma to be proved, which exhibits relations between Tt0+i (A), ufc0+i (A), 
vfc0+i(A), Wfc0+i(A) and, respectively, Tfc0(A), ufc0(A), V*0(A), W*0(A), similar to 
(2.4) written with j = 0 and i = 1. 

Lemma 2 . If Tfc0(A) is square, then the following identities hold: 

Tfc0+,(A) = i?m(A)Tfc0(A)fl-1(A), (3.15) 

Ufc0+1(A) = Rm(A)Uko(A)R;l(A), (3.16) 

vfc0+i(A) = R0(A)Vko(A)Rm'(A), (3.17) 

Wfc0+i(A) = Ra(A)Wfc0(A)Rp-1(A), (3.18) 
detTt 0 + i (A) = detTfc0(A). (3.19) 

If Tfc0(A) is square and nonsingular for k0 = &o, then it is for all ko € Z, and the 
order of the model (1.5), (1.6) is independent of the initial time ko-

The following corollary of Lemma 2 follows from Corollary 1. 

Corollary 2 . If in (2.1) the operator A is substituted by a scalar complex variable 
z, then the identities (3.15)-(3.19) still hold with A replaced by z. 

Hereafter, by virtue of Proposition 2, Tt0(A) will be assumed to be square and 
nonsingular. By virtue of Lemma 2, for an arbitrary ko £ Z the degree of det Tt0(A) 
will be simply called the order of the model (1.5), (1.6). 
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In the special case of the stacked system (3.11), (3.12), relation (2.4) of Lemma 1 
yields directly relations similar to (3.16)-(3.18) for Bk0+i, Ck0+i, Vka+\, and relation 
(3.15) reduces to: 

Rn(A) - Ako+i = Rn(A) [Rn(A) - Ako) /£*(- - ) • 

4. STRICT SYSTEM EQUIVALENCE 

In the time-invariant case, a class of elementary operations on the system matrix 
corresponding to equations (1.1), (1.2) was considered by Rosenbrock [1] in order 
to derive a state-space description (1.3), (1.4) from the given model (1.1), (1.2). In 
a similar way, it seems natural to introduce the following six types of admissible 
elementary operations on the stacked system matrix (3.14) obtained from the given 
w-periodic model (1.5), (1.6). 

(i) Multiply any one of the first (w m) rows of (3.14) by a non-zero real constant 
a. 

(ii) Interchange any two among the first (w m) rows of (3.14). 
(iii) Add a multiple, by a polynomial /3(A) in A with real coefficients, of any one 

of the first (u m) rows of (3.14) to any other row. 
(iv) Multiply any one of the first (w m) columns of (3.14) by a non-zero real 

constant a. 
(v) Interchange any two among the first (ui m) columns of (3.14). 
(vi) Add a multiple, by a polynomial /3(A) in A with real coefficients, of any one 

of the first (w m) columns of (3.14) to any other column. 
The operations (i), (ii), and (iii) can be generated by left multiplying (3.14) by a 

polynomial matrix in A, with real coefficients, of the following form: 

\M(A) 0 1 ( 4 1 ) 

[Y(A) V J '
 (qA> 

with A/(A) square and unimodular, thus yielding: 

^ ( A ) : = [ M
( ^ £ ] # ( * ) . (4-2) 

Matrix M(A) being unimodular, and taking into account that: 

\M(A) 0 1 [ 0 1 _ [ 0 
[Y(A) / , „ ] [yko(h)\ ~ [yko(h)\ ' 

(4.3) 

we have that the solutions £k0(h),yk0(h) of 

«<A>[«::S] = U > ] (44» 
are exactly the same of (3.9), (3.10). 
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The operations (iv), (v), and (vi) can be generated by right multiplying (3.14) 
by a polynomial matrix in A, with real coefficients, of the following form: 

[TTl- • (45) 

with N(A) square and unimodular, thus yielding 

^ ( A ) : = 5 - ( A ) [ ^ 0
A ) * £ > ] . (4.6) 

It is easy to check that, matrix N(A) being unimodular, the solutions £*„(A), t/„0(A) 

and the solutions 60(A), Vk0(h) of (3.9), (3.10) are biuniquely related in the vectors 
£k0(h) and £it0(A) by means of the following functional relationship: 

6.(A) = N(A)£ko(h) + X(A)uk0(h), (4.8) 

and are exactly the same in the w-stacked output. 

It is stressed that, matrix N(A) being unimodular, the inverse of (4.8) 

£ka(h) = N-1(A)tk0(h)-N-i(A)X(A)uko(h) . (4.9) 

is of the same type of (4.8). 
Obviously for the following system matrix: 

«(-)-[^, i ] * - ) [ T V]- <41°> 
with M(A) and N(A) square and unimodular, the solutions £„0(A), J/„0(A) of 

7",A>rM»)i_r » 
^-'raJ-kwJ (4I,) 

and the solutions £„0(A), J/„0(A) of (3.9), (3.10) are biuniquely related in the vectors 
£fc0(A) and £t0(A) by (4.8) and (4.9), and coincide in the w-stacked output. The 
following definition is formally the same as the one introduced by Rosenbrock [1] in 
the time-invariant case. 

Definition 1 . Two (mu + qu) x (mu + pu) polynomial system matrices S '(A) 
and S2(A) with real coefficients of the following form: 

^ M ™ sS- «->•»• (4-> 
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with Ti(A) of dimensions mu x mw, are said to be strict system equivalent if a 
relation of the following form holds: 

*<->=[?$ £]*<-> I T r [ <4'i3> 
where M(A), At(A), ^ ( A ) , Y(A) are polynomial in A with real coefficients, and 
M(A), N(A) are unimodular. 

Therefore system matrices Sk
xt

o(A) and Sko(A) defined by (3.14) and (4.10) are 
strict system equivalent. 

In addition to the elementary operations (i)-(vi) , the following extra operations 
can be considered on the w-stacked form £fc0(h) at time k0 of the pseudo-state £(k) 
of the w-periodic model (1.5), (1.6). 

(vii) Add to each £(k0 + hu+£), £= 0, . . . ,w — 1, which are the vector components 
°f £kD(h), v scalar components, v > 0, which are defined to be equal to zero for each 
h > 0. 

(viii) Remove, if they exist, from each £(k0 + hui +£), £= 0 , . . . ,w — 1, which are 
the vector components of £ko(h), v scalar components, 0 < v < m, which are equal 
to zero for each h > 0. 

Obviously operation (vii) [resp. (viii)] is equivalent to add [resp. to remove] v 
scalar equations to (1.5) [resp. from (1.5)] of the following form 

£;.(*) = 0, (4.14) 

with ji G {m+l,... ,m + v} [resp. j , - £ ( l , . . . , m } ] , i = 1,.. .,v. The system matrix 
obtained from (3.14) after the elementary operation of type (vii) have been carried 
out, is strict system equivalent (through the operations of the type (ii) and (v)) to 
the following one: 

(4.15) 

A similar characterization of operation (viii) holds. 

Definition 2. Two w-periodic models of the type (1.5), (1.6) having inputs and 
outputs of the same dimensions p and q, respectively, pseudo-states of dimensions 
m,-, i = 1,2, and corresponding w-stacked models M\ , of the form (3.9), (3.10), 
i = 1,2, at the same initial time &o, a r e said to be system equivalent at time k0 

if there exists an operation of type (vii) or (viii) to be carried out on M\ and an 
operation of type (vii) or (viii) to be carried out on M\o such that the w-stacked 
system matrices at time &0 of the resulting w-stacked models at time k0 are strict 
system equivalent. 

Proposition 3 . The relation between two w-periodic models of the type (1.5), 
(1.6) introduced by Definition 2 is an equivalence relation. 

hш 0 0 
0 -Tкo(A) Uка(A) 
0 Vкo(A) m0(A) 
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Remark 1. By means of Definition 2 and of Proposition 3, whose proof is omitted, 
given the _>-periodic model (1.5), (1.6), an equivalence class of--periodic models, 
containing model (1.5), (1.6), is introduced. The solutions of each pair of--periodic 
models in such a class are biuniquely related in the pseudo-state, and are exactly 
the same in the the output. 

The following proposition follows from well-known time invariant results [1]. 

Proposition 4. Given two--periodic models M{ and Mi of the type (1.5), (1.6), 
having inputs and outputs of the same dimensions p and q, respectively, pseudo-
states of dimensions m,,t = 1,2, and the following--stacked system matrices at 
time .._: 

•V, l - -> - [ vfco,.(A) Wfco,.(A)J' , - 1 , i ' 
if M\ and Mu are system equivalent a( time ko, then the following pairs of matrices: 

•S£',,(A), $%t2(A), 

T„0i l(A), Tfco,2(A), 

[-Tfc0|1(A) l40,i(A)], [-Tfco,2(A) W_„,_(A)]) 

- r_ 0 . i (A) ] r-T fcD>2(A)' 

Vfc0,i(A) J ' [ Vfc0)2(A) 

have the same Smith forms, apart from some unit invariant polynomials, equal in 
number to w\rn\ — m2 | . 

5. CONCLUDING REMARKS 

It is worth to mention that, for a given --periodic model (1.5), (1.6), it is possible 
to introduce, in addition to the algebraic, machinery here presented, the transfer 
function matrix Gko(z) from the ..-transform uko(z) of uko(h) to the --transform 
yko(z) of yko(h), and to show that such a model is causal only if Gko(z) is proper 
and its upper-block-triangular part is strictly proper for all ko G Z [9, 10]; in addition, 
this is guaranteed if such conditions are satisfied for an arbitrary ko £ Z. 

In a subsequent paper it will be shown that: (i) such a transfer matrix is invari
ant under system equivalence, so that the above mentioned causality conditions are 
necessary for the existence of an w-periodic system that is system equivalent to the 
given model; (ii) under some additional assumptions, such conditions become also 
sufficient. 

(Received January 21, 1993.) 
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