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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 3 

TEST FOR SUBMODEL IN GIBBS-MARKOV 
BINARY RANDOM SEQUENCE 

MARTIN JANZURA 

The Gibbs-Markov random sequences (as studied in frame of statistical physics) are con
venient as probability models for sequences of dependent binary data. Thus, the model is given 
by a system of interactions which may be understood and estimated as a vector parameter. 
Setting some of the interactions equal to zero, we obtain a submodel. A test for the submodel 
is derived in the present paper, and a numerical example with simulated data is included. 

1. INTRODUCTION 

Random sequences with binary state space occur in many problems of decision
making and control. The state space, in general, may be given by any dichotomy, 
but for the sake of simplicity we shall use the {0, 1} representation. 

In order to obtain reasonable results from the statistical procedures we suppose 
the generating random sequence to satisfy the "bilateral'" R-Markov property 
with fixed positive integer R. We assume the bilateral Markov property rather than 
the unilateral one since we intend to apply the Gibbsian description of the distribution. 

The Gibbsian description being applied, we obtain a parametrization which 
brings a deeper insight into the dependence structure. Thus, we may deal not only 
with the "transition probabilities" but also with their inner structure given by a system 
of interactions. 

Naturally, some of the interactions may vanish, i.e. they may be equal to zero. 
Since the model is given by a system of non-zero interactions, we obtain a hierarchical 
class of models. And the aim of the present paper is to derive a method for testing 
a submodel. More precisely, if we know that a higher model takes place we ask 
whether the data can be explained with the aid of a given submodel. 

The proposed method may be considered as a generalization of the method for 
testing submodel in contingency tables (cf. e.g. [1]). The fact is not surprising since 
the Gibbsian models for Markov random sequences mean a generalization of the 
log-linear models used for the contingency tables. 
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The Gibbs random sequences represent a special case of the Gibbs random fields, 
studied in frame of statistical physics. Thus, we use many results obtained in general 
for the random fields. As the main basic references we follow [8] and [10]. 

2. GIBBS-MARKOV BINARY RANDOM SEQUENCES 

Let us denote by X = {0, 1} the state space, by fF = exp X the c-algebra of all 
its subsets, and by 2£ the set of all integers. 

Let us fix positive integer R. By R-Markov binary random sequence (b.r.s.) we 
mean any probability measure ji on the product space (X, ^)z satisfying 

H[Xj I X̂ rXf-yj) = JJ,[Xj I Xy-Rt.,.j-.lj+lr..j + R}) 

for every j e i f and a.e. x e l f [ / i ] . (We use the abbreviated notation /J.(XJ \ x^^) 
for the conditional distribution.) 

We denote by [R] = { 1 , . . . , R} the set of all positive integers not greater than R, 
and by £ = exp [R] the system of all subsets of [R]. For A e $ we put A = A u {0}. 

For a fixed non-void subsystem stf c $ let us suppose a real-valued function 

U:sf -+ 9t 

to be given which is often called the potential (of range R). The assumed values 

U(sf) = {UA}Aej,eM« 

are called the (finite range) interactions. 

An R-Markov b.r.s. n is called Gibbs b.r.s. with respect to the potential U (or, 
equivalently, with respect to the system of interaction {UA}AeJ) if 

l*\xj I xu-R,-J-i,j+i,-,j+R)) = 

= [exp{E^I(n^- . + y)}] - [ 1 + e x p { E ^ I [ U xk-t+j)}Tl 

Aesd teA keA~ Aest teA keA\{t} 

Thus, the interactions may be understood as parameters of the model. 

For every potential Ueffl** there exists exactly one Gibbs b.r.s. /%(cf. e.g. Theorem 
5.6.2 in [10]), which is stationary and ergodic (cf. Proposition 5.4 and Proposition 
4.1. in [8]). 

Further, let Mv be the so called transfer matrix, i.e. the strictly positive-valued 
(2R x 2R)-matrix with elements given by the formula 

JR 

Mv(xm, zm) = exp { £ UB Z { IT xk EI z u } 
Best t=l ite(j5+f)n[R] le(B+ t-R)n[R] 

for every xm,zmeXm. 

By ^max(Mu) we denote the uniquely defined (due to the well-known Perron-
Frobenius theorem) strictly positive eigenvalue of Mv, which is greater in absolute 
value than all other eigenvalues. 
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Due to Theorem 5.6.2 in [10] the function 

p(U) = R-llogXmax(MD) 

(called the pressure) is a real analytic function on M*. 
Explicitly, denoting CB = {x e Xs, x0 TJ xt = 1} for every B e $, it holds that 

iєB 

vP(u) = \^-(u)\ = w g u , 
\pUA }Aejf 

and 
V ^ v ) = Í^TTlTr W\ = { I M c * n T-*Q) - ^(Q) nv(CB)]}AJ [dUA8UB )AyBest J.--00 

cf. Section 3 in [2] and Theorem 5.1 in [7]) are continuous functions of the inter
actions. Here T: X^ -> Xs is the shift defined through T(x)k = xk+1 for every 
ke&, xeX®. 

Moreover, the function p is strictly convex (cf. Lemma 8.6 and Lemma 8.7 in [8]) 
wherefrom a one-to-one correspondence between Cjand \iv follows, and even strongly 
convex (cf. [3]) wherefrom it especially follows that 

W2p(U) > 0 (i.e. positive definite) for every Ue ffl* . 

Therefore, we may introduce the transform 

O: St* -» 9t* 
given by 

<X>(tj) = {iiv(CA)}Aesi = Vp(U) for every U G ®* , 

and we observe that O is a one-to-one differentiable mapping with the Jacobi matrix 

V dUB )A,1K* 

continuous as a function of U and positive definite for every fixed U. 
Thus, the inverse mapping <D_1 exists on the open set <&(<%*) c 01*, being also 

differentiable with the Jacobi matrix 

vo-1^) = (v2^-1^)))-1 > 0 

inverse to the Jacobi matrix of <D. 

We finish this section with the appropriate version of the variational principle 
for Gibbs distributions (cf. e.g. Proposition 8.1 in [8]): 

For every U° e 9? is holds 

min(P(U) - <£j,d>(U°)» = p(U°) - <£j0,O(£/°)> . 
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3. ESTIMATION 

A finite sequence (x1,..., xN) e (0, 1)N of binary data is supposed to be generated 
by a Gibbs b.r.s. fiu0 with fj° e 01^. Considering the interactions as a vector parameter 
we obtain a parameter estimation problem. 

In the same way as in [5] we estimate at first the transformed parameter 

9° = <D(U°) 

with the aid of the usual "frequency" estimator, i.e. 
N-r(A) 

9N = (N - r(A)Yx £ [ ] xJ+i for every A e $t 

where r(A) = max {j e A). 

Then we define the estimate of the interactions as the inverse transform, i.e. 

UN = 0~\BN) for 9N e <&(<%**) 

UN = 0 for BN £ O ( ^ ) . 

(In fact, for 9N £ ^(01^) we may define the estimate arbitrarily.) 

Proposition 3.1. For every £j° e 01st the estimate 0N of 6° = <J>(Cj°) is consistent 
and asymptotically normal with the covariance matrix given by V2p(U°), i.e. 

6N->0° a.s. [nuo] 
and 

Nl'2(9N - 6°) -> N(0, V2p(U0)) in distribution [/V] . 

The estimate UN of U° is consistent and asymptotically normal with the covariance 
matrix (V2p(U°))~K 

Proof. Cf. proofs of Theorem 3.1 and Theorem 3.2 in [5]. • 

Remark. Due to the variational principle introduced in the preceding section 
we obtain the estimate UN by minimization of 

p(u)-(u,QNy. 

4. TEST FOR SUBMODEL 

Suppose we want to test the hypothesis that some of the interactions are equal 
to zero. Thus, if we denote 

^ * = { a e ^ ; a B = 0 for Be^\^} 

where J1 cz $t is a given subsystem, we may formulate the hypothesis as follows 

H0: U°e®"{a . 

We try to construct such a test statistics which does not depend on the actual 
values of the remaining interactions UB, B e 0t. 
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We shall use the concepts introduced in the preceding sections, but with added 
subscripts s& or 0} in order to indicate which subsystem is considered to be fixed 
at the moment. Namely, the idea of the test consists in comparison of the attained 
minima of the function 

pJyu)-<u,eNy, 
when minimizing over 0F* and 01^®, respectively. And the minimization over 
0ts*\® may be identified with the minimization of the function 

pJU) - (u,?ri(®N)y 
over 0f (here Pr^f: ,^ -• 01® is the projection), i.e. with the estimation of the 
parameters of the submodel. 

Lemma 4.1. If 9 e ^J0l^) then Pr^(0) G <S>j0f). 

Proof. The condition 6 e <bj0tJ*) means that the strictly convex function 

F(u) = PjKu)-(u,oy 

assumes its minimum at a unique point U* e 0£s4'. 
Therefore the function E is coercive. Namely, we have 

F(U) = F(U*) + e\\U- U*\\ 

for Ue®* satisfying \\U - U*\\ > 1, where 

e = min {F(U - F(U*); || U - U*\ = 1} > 0 . 

Hence the restriction of the function E to the subspace 0t^m remains strictly 
convex and coercive, and according to Proposition 1.2 in [4], it assumed its minimum 
as well. Q 

Thus we may define a function ©: QjM*4) -> 01 through the formula 

®(0) = pJt*i\vtf(P))) - <$®\?<{Q))> P^W> -
- [PJ®J(O)) - <®*(o),e>] • 

Lemma 4.1. It holds 

v2©(») = [ v ^ o & i W - ![v2t,*(*-1(Pr»(fl)))]" °*.<<\» 

Especially, for d e *bjpt*\*) it holds 

V©(0) = 0, 

V2©(0) = [VWffl"1 - (FWtP'WW1 <W\* 
\ vJ „t\m an \J -j\ta -j st\38,j4\3»J 

Proof. All the results can be obtained by direct calculations. Q 
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Due to the consistency of the estimate BN we know that 

HV0(B
N e QjM**)) - • 1 as N ^ oo . 

Thus, for BN $ Q>J®*) we may define © ( ^ ) arbitrarily. 
Now, we may formulate the main result of the paper. 

Theorem 4.2. For every tj° e 0P*lm it holds 

2. N. (&(8N) -> Xf in distribution [fiVo] , 

where/ = card (s/) — card ($). 
Proof. Let 0° = <S>JU°). For 0* e ®J@*) we use the well-known Taylor formula 

to obtain 

©(0") = ©(0°) + <V©(0°), 9N - 0°> + 

+ i(SN - 9°)r V2©(0° + yN(6N - 0°)) (BN - 0°) 

for some yN e [0,1]. Since ©(0°) = 0 and V©(0°) = 0 we set for OP $<bj0t*) 
directly 

©(^) - 0N - e°y v2©(0°) (dN - 0°). 
By Proposition 3.1 it holds 

0"->0° a.s. [nv0] 
and 

#-/-(0w - 0°) -* N ( 0 , V2p(U0)) in distribution [nvo] . 

Therefore it follows from the known limit theorem (cf. e.g. 2c. 4(x) in [9]) that 

2.N.®(BN) -> £(CT V2©(0°) r) in distribution [nm] , 

where £(£) = N(0, V 2 ^ ( t / 0 ) ) . And since 

V2©(0°)V/^(U°) = ( ^ ° * ' * ^ ) 

is idempotent with the trace equal to / = card (stf) — card (0t), we finally obtain 
by 3b.4 (II) in [9] that 

£(£TV2©(0o)C) = ^ . D 

Thus, if we want to test the hypothesis 

H 0 : f / 0 e J ^ 
against the alternative 

we reject the hypothesis whenever the statistics 

2 J . (5(BN) 

exceeds the corresponding quantile of the ^-distribution with card (s/) — card (011) 
degrees of freedom. 

There is an important aspect which is worth to be mentioned. 
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For a pair /i, v of b.r.s.'s let us define the information gain of \x with respect to v by 

H(fi | v) = lim n-1 J log - £ . M ) d/*(x) , 
n-oo V ( X [« ] ) 

providing the expressions make sense and the limit exists. According to Theorem 
8.2 and Proposition 8.1 in [8] we have 

c5(eN) = H(M% I m») 
where 

01 = •i,(*") 
and 

^ = ^ 1 ( P r ^ ' v ) ) . 

Therefore the test based on the statistics 

2 J . ©(^) 

may be understood as a direct generalization of the test known for the contingency 
tables (cf. e.g. [1]). 

5. EXAMPLE 

Let us introduce a single example in order to illustrate the derived method. 
We simulated "unilateral" 3-Markov sequences with the transition probabilities 

(four various cases) given by the following table. (We employed the "unilateral" 
Markov sequences since their simulation is easier and the R-Markov b.r.s.'s obey 
the "unilateral" R-Markov property as well — cf. e.g. Section 5 in [8].) 

І0g[Pi(l | * i , *2i дr3)/P,(0 | xv 
x2> x3'* 

*1 x2 * 3 i = 0 i = 1 i= 2 í = 3 

0 0 0 0 - 0 - 5 - 1 - 1 - 5 

0 0 1 0 - 0 - 5 - 1 - 0 - 5 

0 1 0 0 - 0 - 5 0 - 0 - 5 

0 1 1 0 - 0 - 5 0 0-5 

1 0 0 0 0-5 0 - 0 - 5 

1 0 1 0 0-5 0 0-5 

1 1 0 0 0-5 1 0-5 

1 1 1 0 0-5 1 1-5 

Thus, we have R = 3, stf = exp {1, 2, 3}, card sf = 8. 
We consider the following subsystems 

@0 = {0} card ^ 0 = 1 

0$x = {0, {1}} card J1! = 2 
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Let us denote 

?2 = {0,{1},{2}} cardá 

?3 = {0,{1},{2},{3}} cardá 

H;: U°€^lmt for i = 0, 

?2 = 3 

?3 = 4 

the hypotheses to be tested. 
If H0 takes place the sequence consists of independent random variables. If H,-, 

i = 1, . . . , 3, holds the sequence is i-Markov with only pair-wise interactions. 
For every case Pt, i = 0, . . . , 3 we repeated the simulation three times with various 

initial values and fixed length N = 1000 of every sequence. The results are arranged 
in the following table. We denote the test statistics 2 . N. ^t{pN) simply by x2(i) 
for i = 0, . . . , 3. 

Po Pi P 2 Pз / V 2 

Xf 
(0-05) 

X2(0) 5-26 7-44 6-97 81-65 54-97 85-38 177-98 157-85 119-68 206-06 249-56 302-99 7 14-07 
X2(\) 3-02 6-88 4-64 8-53 3-95 3-11 109-59 48-21 48-71 127-55 73-43 117-83 6 12-59 
*2(2) 2-66 6-88 4-52 5-00 3-26 1-26 7-98 2-07 2-92 54-76 34-00 53-34 5 11-07 
X2(3) 2-41 6-88 4-40 4-87 3-06 1-22 4-45 1-09 1-11 6-75 2-71 4-14 4 9-49 

The transition probabilities P,, i = 0,..., 3, were chosen in order to correspond 
(at least approximately) to the hypotheses H{, i = 0, ..., 3, respectively. The above 
results agree quite well with the assumptions since for the data simulated with the 
aid of Pj the test rejects just the hypotheses Hy, j < i. 

6. CONCLUDING REMARK 

The proposed method does not depend on the assumption of binary state space. 
It could be applied to a more general state space as well. The only problem will be 
with the numerical calculation of the pressure (cf. Section 2). The same problem 
occurs if we generalize the method for random fields instead of random sequences 
(cf. [6]). 

(Received June 22, 1988.) 

R E F E R E N C E S  

[1] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland: Discrete Multivariate Analysis: Theory 
and Practice. MIT Press, Cambridge, Mass. 1975. 

[2] R. L. Dobrushin: Conditions of absence of phase transitions for one-dimensional classical 
model (in Russian). Mat. Sbornik 93 (1974), 29—49. 

[3] R. L. Dobrushin and B. S. Nahapetian: Strong convexity of the pressure for lattice systems 
of classical statistical physics (in Russian). Teoret. Mat. Fiz. 20 (1974), 223—234. 

[4] I. Ekeland and R. Temam: Convex Analysis and Variational Problems. North-Holland, 
Amsterdam 1976. 

[5] M. Janzura: Estimating interactions in binary data sequences. Kybernetika 22(1986), 277— 284. 

207 



[6] M. Janzura: Estimating interactions in binary lattice data with nearest-neighbor property. 
Kybernetika 23 (1987), 136-142. 

[7] H. Kiinsch: Decay of correlations under Dobrushin's uniqueness condition and its applica
tions. Commun. Math. Phys. 84(1982), 207—222. 

[8] C. Preston: Random Fields. (Lecture Notes in Mathematics 534.) Springer-Verlag, Berlin-
Heidelberg—New York 1976. 

[9] C. R. Rao: Linear Statistical Inference and its Applications. John Wiley and Sons, New 
York 1973. 

[10] D. Ruelle: Statistical Mechanics. Rigorous Results. Benjamin, New York 1969. 

RNDr. Martin Janzura, CSc, IJstav teorie informace a automatizace &SA V (Institute of 
Information Theory and Automation — Czechoslovak Academy of Sciences), Pod voddrenskou 
veil 4, 182 08 Praha 8. Czechoslovakia. 

208 


		webmaster@dml.cz
	2012-06-05T20:05:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




