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KYBERNETIKA —VQLUME 19 (1983), NUMBER 4 

GENERAL EXCHANGE ECONOMY 

TRAN QUOC CHIEN 

In the paper a general version of exchange economy is described. Further, some known results, 
namely the equality of the core of free disposals and that of group rational disposals (see [2], [3]) 
and the equality of the core and the set of equilibria (see [1], [4]), are generalized and proved. 

0. INTRODUCTION 

The model studied here is a generalization of usual games and markets. The 
fundamental notion is coalitions which form a Boolean cr-algebra. The states of 
an economy, the objects under consideration, form a set of vector measures, the set 
of values of which is a topological vector space. The concept of preference relations 
is generalized with regard to the so-called direct democracy law (see [2]). Abilities 
of coalitions, subsets of states, form an admissibility system. 

In Section 3 the core of an economy is defined and the equality of the core of free 
disposals and that of group rational disposals is formulated and proved. 

In Section 4 equilibria of an economy are defined in terms of the cores and a theo
rem on the core and the set of equilibria is proved. 

1. DEFINITIONS 

(M 1) 3$ denotes a Boolean cr-algebra of coalitions. 
In the paper individual players are understood as coalitions composed of only 

one element. Let E be the unit and e be zero of 3fl. If E is finite, individual players 
are perceptible, but in the case when 3$ is strongly atomless they are insignificant. 
From this reason we shall deal just with coalitions. 

(M 2) sd denotes the space of states. 
Suppose there is given a topological vector space X ordered by a cone X + . si is 
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then a linear subspace of positive measures defined on 3 with the values in X. For 
m, n 6 si, b e 38 we define the measure m\b\ n by the formula 

Vc e 3S(m\b\ n) (c) = m(b A c) + n(c - b). 

Assume that m\b\ n e si for every m,ne si, be 39. 

(M 3) (<b)beSS, in short (<b), denotes a preference relations system. 
Every b e 38 is associated with a binary relation -<;, in J / fulfilling 
(PRS 1) <E is nonempty. 

If -<£ is empty there is nothing to consider. 
(PRS 2) For every m,n,k,le si,b e 38 m <bn iff m\b\ k <b n\b\ I. 

This means the preference of b does not depend on this part of states which does 
not concern b. 

(PRS 3) For every m,nesJ, b e 3 if m <b n then there exists a c c fe, c + e 
such that for every c' c cm <ch and m|fe - c\ n = n. 

This is somewhat like a vote, players in c prefer n to m and for b — c m, n are the 
same. 

(PRS 4) For every disjoint bu b2e38 and m,ne si fulfilling m <cn V c c 6, 
and m «<c n Vc c b2 we have m -<j,lUj2 n. 

The sense of (PRS 4) is clear, if all subcoalitions of bx and b2 prefer n to m then 
i , u l ) j prefer n to m too. 

(M 4) (Jt(b))b!:m, in short .<#, is an admissibility system. For every k J „#(£>) c 
c si. 

(AS 1) For every b e j ^ ( 6 ) is nonempty. 
(AS 2) For every m . n e ^ t e J m e ^#(6) iff m\b\ ne J/(b). 
(AS 3) For every disjoint b, c e 38 Jt(b) n Jt(c) <= ^#(5 v c). 

J/(b), be 38, consists of all these states which are admissible with respect to the 
b\ internal acts (i.e. the states which can be reached by b itself). The admissibility 
of a n m e i does not depend on what happens in m outside of b (AS 2). Condition 
(AS 3) says that if for two disjoint coalitions b and c a state m is admissible then is 
also admissible for the join b v c. 

Definition 1. A four-tuple S = (38, si, (<b), Jt) composed of elements described 
in (M 1) —(M 4) is called an exchange economy, or simply an economy. 

An admissibility system J( is called additive iff for every disjoint b,ce38 Jt(b) n 
n Jt(c) = Jl(b v c). 

A preference system (-<;,) is called uniform iff for every m, ne si the set 
{bjm <b »} is an ideal. 

Definition 2. Let (<b) be a preference system. We define the modified preference 
system (Zb) assiciated with (<b) by the formula 

Vm,nesi"ibe38(m ZbnoVc c bm <c n) 
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Observe that 

(1) (<,,) is uniform. 

The economy (38, s#,(<b), Jt) is then indicated by ~S and called the modified 
economy associated with S. 

2. COMPOSITION OF ADMISSIBILITY SYSTEMS WITH RELATION 

We shall describe here a rule which allows to transform given admissibility systems 
to some new systems (such operation may, for instance, allow the free disposal 
or free reallocation of goods etc.). 

A reflexive binary relation R in s4 is said to be transferable iff 

Vm, n,k,lesé , Vb e 3§ : (m\b\ k) R(n\b\ k) o (m\b\ 1) R(n\b\ 1). 

: and transferable relation R and a coalition b e 
by the formula 

Vm, n e s4(mRbn o 3k e se : (m\b\ k) R(n\b\ kj) . 

For a reflexive and transferable relation R and a coalition b e 33 we define the 
relation Rb in si by the formula 

Examples: 

(2) Relation =:m=bn iff m(c) = n(c) Vc <= b . 

(3) Relation « : m x n iff m(E) = w(E) then m x bn 

iff m(b) = m » . 

(4) Relation g : m ^ 6n iff m(c) ^ n(c) V c c i . 

(5) Relation <a: m -o n iff m(E) ^ n(E), then 

m <3 bn iff m(b) S n(b). 

A binary relation R is said to be additive iff for any disjoint b,c~38 and m, »i e J / , 
mR'n and mR^n implies mRbvcn. 

Let -// be an admissibility system over sd and let R be a reflexive, transferable 
and additive binary relation in si. By RJi we shall denote the mapping from 38 
into the subsets of s4 such that 

Vfo e 38m e V/T(6) iff there exists n e Ji(b) with mRbn . 

It is easily checked that 

(6) RJ{ is an admissibility system . 

In general, changing an admissibility system for RJl means that we allow some 
new opportunities. In particular, all relations from examples (2) —(5) are additive. 
Changing Jl for ~J(, could be interpreted as to allow the free disposal, if we change 
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it for xJi we allow the internal free reallocation, if changing Ji for < Ji we allow 
both. 

If R is a reflexive, transferable and additive relation in s4, we call an admissibility 
system Ji over s4 R-semiadditive iff Ji = RJf for some additive system Jf. 

Roughly speaking, an R-semiadditive system is not much different from the 
additive one. 

Observe that 

(7) If a strictly positive numerical measure can be defined on 3D, then for any Ji 

we have -[*'Ji] = < Ji . 

(8) <Ji = <\*Ji] for every Ji. 

3. CORE OF AN ECONOMY 

Given an economy S = (38, stf, (<b), Ji), we define the core of <f(denoted by 
C(Ji)) by the formula 

C(Ji) = {m e Ji(E)IVn es#Vb238m<bn=>n$ Ji(b)} . 

The core consists of just admissible states which cannot be improved in the sense 
that there is no coalition b and a state that is better for b (in the sense -<6) and 
simultaneously admissible for b. 

Observe that 

(9) If Ji c Ji0 (in the sense that Ji(b) <=. Ji0(b) for every b e 38) 

then C(Ji) => Ji(E) n C(Ji0) . 

Further, let C(Ji) denote the core of the modified economy S associated with S. 

Obviously 

(10) C(Ji) 

Let -< be a preference relation and R be a reflexive and transferable relation in s4. 
We say -< is R-transitive iff -< o R = <. 

Theorem 1. Let R be a reflexive and transferable relation in stf and let <b be 
Rb-transitive for every b e 38. Then 

C(Ji) = Ji(E) n C(RJi). 

Proof. Let me C(Ji) then m e ^ ( £ ) c RJi(E). If m $ C(RJi) then there exists 
a b e 38, n e RJi(b) so that m -<fc n. But there exists a n0 e Ji(b) with nRbn0, hence 
m -<6 H0 for R6-transitivity of -<6 and that contradicts to me C(Ji). S o m e C(RJi). 
The inverse inclusion implies from (9) for Ji c RJi. • 
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Lemma 1. If R is a reflexive and transferable relation in si and if (<b) is a uniform 
preference system with <E 0 R = <E, then for every b e 38 <b o Rb = -<b. 

Proof. Let b e3§,m,nesrf with m(<b 0 R
6) n. Then there is a k e si with m <b k 

and fcR*n, so there are 1,1' e si with (m|fc| /) <E (k\b\ /') and (k\b\ /') R(n|/7| /'). 
Then (m\b\ I) <E(n\b\ /'), hence m <bn. 
Conversely if m <b n we have m(<b 0 R

b) n for nRbn. D 

Using Lemma 1 and Theorem 1 we have 

(11) If (-<i) is uniform and <E „ E = <E, where R is a reflexive 

and transferable relation in si, then 

C(Jl) = Ji(E) n C(RJi). 

Now let ,s/ be the set of all measures on J1 with the values in X. si is, with the 
usual additive and multiplicative operations, a linear space. Assume a topology T 
is given in s4 so that (3, T) is a topological linear space. 

Let si+ c: stf(<=:stf) be a closed, convex cone 0 e si'+, consisting a strictly positive 
measure q (q is strictly positive iff q(b) > 0 for every e + 6 e f ) . 

Let R+ be the binary relation in si generated by the cone s4'+. 

Observe that 

(12) R+ is transitive 

(13) If lim nk = n and mR+nkVk = 1,2,... then mR + n . 
fc-»oo 

si is then ordered by R+ (or by s4+). We denote by s4*+ the set of all positive 
linear functionals on sd + (fe sl+ =>j(«) ^ 0 for every n e si+). 

Let M c i be a closed, convex set, put 

K+M = {n e s?\3m e M nR + m} 

and 
R + M = R + M n ^ . 

Obviously 

(14) R+M is also a convex and closed set. 

Lemma 2. Let n0 <£ R + M, then every linear functional f on si separating «0 and 
R + M is positive (fesl*+). 

Proof. We have j(n0) > j(m) for all meR+M. Assume f $ stf*+, so there exists 
m0 e J / + with j(m0) < 0 and hence m - am0 e

 R + M for every m e M and a > 0. 
As for any fixed mt e M, there exists a0 > 0 with f(mx - <x0m0) > f(n0) we get 
a contradiction since f(n0) > f(m) for every m e R+M- • 
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It is easy to verify the following assertions 

(15) Let n0 e stf \ R+M. Then there exists an fe srf+ separating 

n0 and R+M. 

(16) Let M c sd + be a convex compact and let fes4*+. Then 

max/(m) = max fq) = max / ( m ) . 
meM meK + M meR*M 

Now for an admissibility system J4 we define 

J/R+(E) = {neR+J/(E)fifes4*+ f(n) = max f(m)} 
meJi(E) 

J/R+(b) = J/R+(E) n J/(b) Vft e ® . 

Obviously 

(17) J/R+ is an admissibility system . 

Theorem 2. Let the above defined relation R+ be transferable and let S = (38, stf, 
(<b), J/) be such an economy that <b is R + -transitive for every b e 3i. Assume that 

is convex, compact and J/(b) is closed for every b e 38. Then 

rR+) = J/R + (E)nC(R+J/) 

Proof. If m0 e C(J/R + ) then m0 e J/R+(E). If m0 £ C(R+J/) there exists a. b e 3$ 
and n0e

R+J/(E)nR+J/(b) withm0 «<6n0 .PutM = {n e R+J/(E)r\R+J/(b)\n0R
b+n}. 

M is obviously nonempty, compact (n0 e M) and ordered by R + . Let nt be the 
maximal element of M with respect to R+ (the existence of which will be proved 
later), then n t eJ/R + (E) for nt is a boundary point of R+J/(E) (nt = lim(n1 + 

<z-*0 + 

+ <xq),qes#+ strictly positive, and nx + aq$R+J/(E) Va > 0, otherwise there 
could exist («!]£>[ (/-.! + ocq))eM with n1R+(n1|fc| (nx + aq)), a contradiction with 
maximality of n,). We obtain then m0 <bnx and it contradicts to m0 e C(J/R+). 
Thus m e C(R+J/). 

The inverse inclusion implies from (9) for J/R+ c R+J/. 

Now we show that M has a maximal element (in the sense of R+). It suffices, 
using Zorn's Lemma, to verify that every linearly ordered subset P <= M has a su-
premum. For this reason we denote P„ = {m e PJnR + m}, neP, then P„(the closure 
of P„) is a closed, nonempty subset of P (P is compact). Every finite system of {P„}„eP 

has a nonempty intersection for R+ is complete on P and it follows that f) P„, + 0. 
neP 

Every element of f) P„ is then a supremum of P. The proof is complete. • 
neP 

A preference relation -< is said to be monotonous iff m < n (in the sense m(b) < 

< n(b) for every b e 38) implies m < n. 

Theorem 2 implies the following theorem. 
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Theorem 3. Let all assumptions of Theorem 2 remain unchanged and let <E 

be monotonous. Then C(JiR+) = C(R+Ji) and C(R+Ji) c JiR+(E). 

We see that JiR + (E) is somewhat like group rational set in the usual sense. The 
assertion of Theorem 3 says, roughly speaking, that the core of "free disposals" is 
equal to that of group rational disposals. 

4. EQUILIBRIA OF ECONOMY 

Given a topological vector space X ordered by a cone X+ then by a value operator 
(or a price system) we understand any positive continuous linear functional p e X + . 

An admissibility system Jt over a space s4 is called X+-bounded iff for every 
peX*+, be 3§ the set 

{pm(b)jm e Jt(b)} 
is bounded. 

It is easily checked that 

(18) If Ji is X + -bounded, R is reflexive, transferable and nonexceeding 

(it means mRn implies m(E) ^ n(E)) relation in si, then RJt is also X+-bounded. 

For an X+-bounded admissibility system Ji and a value operator p e X*+ we define 
the system Jip by the formula 

V k J Jip(b) = {m e stjln e Ji(b) : pm(b) = pn(b)} . 

Jip(b) can be interpreted as the "budget set" of the coalition b associated with 
the value operator p. 

Observe that 

(19) Ji c Jip for every p e X*+ . 

(20) For any X+-bounded admissibility system Ji and any reflexive, 

transferable and nonexceeding relation R Jip = \^Ji\p . 

Now let an economy S = ($8, si, (-<&), Ji) be given, then every element of the set 

W(Ji) = Ji(E) n U C(Jlp) 
peX+« 

will be called an equilibrium of the economy S. 

Further the set of equilibria of the modified economy S will be indicated by W(Ji). 

Observe that 

(21) W(Ji) c C(Ji), 

(22) W(Ji) c W(Ji). 

Supposing a preference system (-<i,) is given, an element xeX+ is said to be 
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desirable iff for any m e s/ there exists a n n e i with n(E) = x and for every b e 38 
m <b m + n. 

Let X° denote the set of all desirable elements. 

Theorem 4. Let Ji be «q -semiadditive and 0 6 X be a convergent point of X° 
(it means there exists a sequence of X° converging to 0). Then W(Ji) = W(Ji). 

Proof. It remains to prove W(Ji) c JY(.Jf) (see (22)). 
Let m0 e VF(^/) then there exists a p e X% with m0 e Ji(E) n C(Jip). Choose 

some e ^ i » 0 £ j , n0es/ with m0 -<j0 n0. Let i> e J((b0), then there exists some 
u e i with v(b) ^ «(b) and u e ^/(b) for any b e J1 for the -=a -semiadditivity of . # . 

As it implies from (PRS 3), there exists some e + c0 c fe0 with m0 < c o n0 and 

yn0|^o — co| no — no- We have 

pv(c0) :g pu(c0) ,< pn0(c0) (*) 

If 0 g pn0(b0 — c0) < pu(b0 — c0) then b0 - c0 + e. Choose some x e l ° 
with px S pu(b0 - c0) — pn0(b0 — c0) and let nx e srf with «i(E) = x and for 
every b e 38 m0 <b m0 +jiv Then m0 + «1 e Jip(b0 - c0) and m0 <6o_co m0 + n,, 
that contradicts to m0 e W(ji). 

Hence 

M ^ o - co) ^ Pu(b0 - c0) g p«0(t>o - co) (**) 

From (*) and (**) it follows pv(b0) < pn0(b0), i.e. m0 E Ji(E) n C(Jip), and thus 
m0 e FF(^T). D 

Now for further development we recall some elements of measure theory. 

An element b e 38 is said to be an atom of a numerical measure m iff for every 
c S b either m(c) = 0 or m(b — c) = 0. A measure is atomless iff it has no atom. 

A measure m : 3§ -» X (X is a linear space) is totolly atomless iff pm(pm(b) = 
= p(m(b))) is atomless for every p e X*. 

A Boolean c-algebra J1 is said to be strongly atomless iff any measure m : 38 -* X 
is totally atomless. 

Let a preference system (-<;,) be given and let b e 38, m, ne ssi with m -<,, n. 
Then -<6 is called 

right-continuous in (m, n) iff there exists an s > 0 with m -<6 (1 - 5) n for all 
0 ^ <5 ^ £. 

almost right-continuous in (m, n) iff there is an increasing sequence (b;), £>, <= b 
with u fr; = b and -<6i is right-continuous in (m, n) for all i. 

partial right-continuous in (m,n) iff there is such a e + c cz b that -<c is right-
continuous in (m, n). 

The system (-<;,) is (partial, resp. almost) right-continuous iff for every b e 38, 
m,nes/ with m <b n <b is (partial, resp. almost) right-continuous in (m, n). 
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Theorem 5. If (<b) is partial right-continuous and if a numerical atomless 
measure fi can be determined on 08, then (^b) is alomost right-continuous. 

Proof. Let e #= b e 38, m,ne sat m <b n. Put 

L = {b' e 38\b' c b, <b. is almost right-continuous in (m, n)} . 

Lis then ordered in the sense of operation "inclusion". Let P c Lbe a chain. Consider 
the set 

A = {ix(b')\b'eP}. 

We can choose a countable set A0 <r A, which is dense in A. As fi has no atom, 
we have b0 = \J V, b' c b0 for every V e P. 

n(f)eA0 

Obviously b0 e L, hence b0 is a supremum of P. As it follows from Zorn's Lemma L 
has a maximum and it is easy to verify that the maximum is b. So <b is almost 
right-continuous in (m, n). The proof is complete. Q 

An admissibility system Ji is called uniform iff for every sequence of disjoint 
elements {bt} and for every sequence {m,} of elements of si such that m ; e Ji(b\) 
for every i, the series £m;(fr;) converges. 

Theorem 6. Let S = (38, s4, (<b), <) be such an economy that 38 is strongly 
atomless, I is a locally convex Hausdorff space, (-<4) is partial right-continuous 
system and Ji is X+-bounded, uniform and <i-semiadditive. If moreover Vme 
e Ji(E) 3n e Ji(E) m(E) j£ n(E), n(E) lies in the interior of X+ and there exists 
a set X° c X composed of desirable elements for which 0 is a convergent point and 

V e * i 6 « V m e Ji(b) 3n e Ji(b) m(b) < n(b) e X° . 

Then C(Ji) = W(Ji). 

Proof. From Theorem 4, (21) and (10) it follows 

As 38 is strongly atomless, 0B has a numerical atomless measure, thus by Theorem 5 
the system (<6) is almost right-continuous. We have then W(Ji) = C(Ji) (see 
Theorem 5 of [ l]) and it implies W(Jt) = C(Ji). Q 

Theorem 6 is a generalization of the well-known Theorem on the core and the set 
of equilibria of an economy with a continuous of players. All assumptions in this 
Theorem, except the assumption that 0 is a convergent point of X, are discussed 
in [1] (page 25). Above mentioned assumption is restrictive from the theoretical 
points of view, however, it is quite acceptable in practice, because every coalition 
surely prefers those allocations that ensure to it more foods than others, even though 
the arised gains can be very small (m, n e s4, m(b) < 0 Vfo =1= e => n <b n + m 
VZ> e 38). 

(Received October 12, 1982.) 
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