
Kybernetika

Andrzej Myśliński
Shape optimization of a nonlinear elliptic system

Kybernetika, Vol. 29 (1993), No. 3, 270--283

Persistent URL: http://dml.cz/dmlcz/125101

Terms of use:
© Institute of Information Theory and Automation AS CR, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125101
http://project.dml.cz


KYBERNETIKA — VOLUME 29 (1993), NUMBER 3, PAGES 270-283 

SHAPE OPTIMIZATION OF A NONLINEAR 
ELLIPTIC SYSTEM 

ANDRZEJ MYSLINSKI 

Shape optimization problem for a nonlinear elastic plate governed by von Karman equa
tion is considered. Using material derivative method, sensitivity analysis of the solution 
to the von Karman system with respect to the variation of the domain is performed and a 
necessary optimality condition is derived. 

1. INTRODUCTION 

The paper deals with a shape optimization problem for a nonlinear elastic plate. The 
equilibrium state of this plate is described by a system of nonlinear, coupled elliptic 
equations of the fourth order. These equations, called von Karman equations, were 
investigated in [3, 6, 11]. The optimization problem considered in this paper consists 
in minimizing the cost functional approximating the plate stiffness with respect to 
the domain occupied by the plate. 

In literature [2, 4, 14, 15, 22, 23, 24] shape design sensitivity analysis for linear 
elliptic systems was developed by many authors. In recent years appeared papers 
investigating shape optimization problems for nonlinear elliptic systems, i.e. for 
shallow shells [9], buckled arches [10], plasma equation [13], contact problems in solid 
mechanics [15, 20, 24, 25]. The optimization problem for von Karman system was 
considered in [5] only where the right hand side of von Karman equations depends 
on a functional variable subject to optimization. The shape optimization problem 
for von Karman system where the domain occupied by the system is the variable 
subject to optimization was not investigated in the literature except [21] where the 
author considered this problem in different formulation than in this paper and with 
the nonsmooth cost functional. 

The aim of this paper is to determine the directional derivative of the cost func
tional of this shape optimization problem with respect to the variation of the domain 
occupied by the plate. In order to do i t , we shall employ developed by Zolesio [14, 24] 
the material derivative method. We shall investigate the sensitivity of the solution 
to the nonlinear state system with respect to the variation of the domain. We shall 
formulate first order necessary optimality condition for this problem. The present 
work can be considered as a natural extension of results in [22] to nonlinear elliptic 
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systems. 
Throughout the paper we shall use the notation: Hm(Q), / / " ( f i ) , m = 0,1, 2,3,4 

will denote the Sobolev spaces of order m with norm || -||flm(n) [1], n= (n i , n 2 ) is the 
unit outward versor to the boundary T, s=(—n2, »i) is the unit tangent versor to the 
boundary F, | ^ is the outward normal derivative of a function v on the boundary T 
of domain fi, u,j = Q® QX ., V{ = -~ for i, j = 1,2, Av = i>n + v22, y u is a gradient 
of a function v with respect to a variable x. 

2. NONLINEAR PLATE MODEL 

Consider an elastic nonlinear plate occupying in the plane Ox\X2 domain Q, C R2 • 
The domain f2 is bounded and simply connected. The boundary T of the domain 
f2 is Lipschitz continuous. We denote by w = w(x), x 6 fi the displacement of the 
plate and by / = f(x) the Airy's stress function [3, 11]. Let g be a perpendicular 
force bending the plate. In an equlibrium state the functions w and / satisfy the 
following system of von Karman equations [3, 5, 6, 11, 21]: 

A2w = [f,w] + XAw + g in Q, (1) 

A2f = -[w,w] in Q (2) 

with the following boundary conditions: 

„ n dw df . . 
w = / = 0, —- = - j - = 0 on T (3) 

On on 

where 

[/,ts] = /11W22 + /22W11 -2/12W12 , A2w = (tuii)n +(^22)22 + 2(^11)22 

The condition (3) implies that the plate is clamped along the boundary T. We shall 
consider von Karman equations ( l ) - (2 ) assuming that A 6 ft is a suitable small 
parameter such that A < Ai, and Ai > 0 is a constant satisfying [11]: 

o < / v<^4>dx<~UfHlisl) v^efl„2(fi) (4) 

The condition (4) implies we shall consider small deflections of the nonlinear plate. 
The parameter A indicates the intensity of compressive or tensile forces acting on 
the body. For suitable small AGK the system ( l ) - (3 ) has a unique solution [3, 11], 

We shall consider the weak solutions of problem ( l ) - (3 ) . We denote by o(-, •) : 
H2(Q) x H2(Q) - ft, &(-,•) : / / 2 ( 0 ) x //2(ft) - R, b(-,-,-) : H2(V) x H2(Cl) x 
J72(Q) -v ft as well as by /(•) : H2(Q) ~» R the forms defined by: 

a(u,z) = / (unzn + u22z22 + 2uuzu) dx (5) 
n̂ 

b(u,z) = I (ulZl+u2z2)dx (6) 
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b(u,Z,r) = [(Ui2Z2-U22Zl)rl + (ui2Zl-UnZ2)r2]dx (7) 
Ja 

l(z) = I gzdx (8) 
Ja 

The bilinear forms (5) and (6) are symmetric, continuous as well as, respectively, 
H2(Q,) and / ^ (Q) elliptic [18]. The trilinear form (7) is symmetric and bounded 
[3, 11]. g € L2(R2) is a given element. 

In variational formulation problem ( l ) - (3 ) takes the form [3, 6, 11]: for given 
element g £ L2(R2) find functions w £ H2(Q) and f 6 HQ(£1) satisfying: 

a(w,<f>) = b(f,w,<j>) + \b(w,<j>) + l(<j>) V^6iY 2(f i ) (9) 

a(f,n) = -b(w,w,r,) \/V€H2(Q) (10) 

If A satisfies condition (31) for t — 0 then the system (9) - (10) has a unique solution 
[3, 6, 11]. 

3. SHAPE OPTIMIZATION PROBLEM FORMULATION 

Before we formulate the shape optimization problem we shall introduce a family of 
domains Qt depending on a parameter t. The domain Qt will be considered as an 
image of a mapping Tt of the reference domain Q. We shall employ the speed method 
[14, 24] to describe the mapping Tt. We shall formulate the shape optimization 
problem for the variational system (9)-(10) in the perturbed domain Qt. 

Let t be a real parameter, such that t £ [0,a),a > 0. We denote by V(-, •) : 
[0, a) x R2 —* R? enough regular vector field: 

V(t,-)£C2(R2,R2)Vt<E[Q,cr), V(-,x)eC([0,a),R2)Vx£ R2 (11) 

By Tt(V) : R2 3 X —> x(t,X) £ R2 we denote the family of mappings depending 
on the parameter t £ [0,<r) where the vector function x(-,X) = x(-) satisfies the 
ordinary differential equation: 

^-X(T,X) = V(T,X(T,X)) r£[0,a), x(0,X) = X X £ R2 (12) 

The family Q( of domains depending on the parameter t £ [0, a) is defined as follows: 

Q0 = & and 

Qt = r.(V)(fi) = {x £ R2 : 3X £ R2 such that x = x(t) where 

the function x() satisfies equation (12) for 0 < r < t) (13) 

We shall assume that for a given value of the parameter t domain Clt is bounded, 
simple connected and has Lipschitz continuous boundary T t. The variational prob
lem (9)-(10) in the domain Q,t takes the form: for given element g £ L2(R2) and 
•parameter A £ R find functions wt £ H'£(&t) and ft £ H2(Qt) satisfying: 

at(wtAt) = bt(ft,wt,<f>t) + \bt(wt,<f>t) + lt(<f>t) V& £ H^(Qt) (14) 

at(ft,Vt) = -bt(wt,wt,r]t) V % £ / / 2 ( f i ( ) (15) 
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The forms o,(-, •), bt(-, •), bt(-,-,-), /<(•) are given, respectively, by (5), (6), (7), (8) 
where the integrals are taken over domain fi4 instead of fi. Moreover <f>t = (j>(t, x(t))-
For each t £ [0,a),cr > 0 and A satisfying (31) the system (14) — (15) has a unique 
solution (wt,ft) £ H2(Qt) x H2(nt). 

We shall consider the following shape optimization problem for system (14)-(15): 
find domain fit 6 U minimizing the cost functional: 

J(fit) = / w2dx (16) 
Jӣt 

where U is the set of admissible bounded domains. 
The shape optimization problem (16) consists in finding such configuration of the 
domain fit which minimizes the stiffness of the plate. For engineering motivation of 
this optimization problem see [2, 14, 15]. 

3.1. Existence of optimal solutions 

In order to assure the existence of an optimal solution to the problem (16) we have 
to select the family U of the admissible domains compact in an appriopriate sense 
[8]. Let D be a given bounded set in R2 and moreover assume fio C D, fi( C D for 
all t £ [0,a), a > 0, fio S U. We assume that a minimizing sequence of domains 
{fitfc} C U satisfies for k —+ oo the condition [8]: 

there exists a subsequence {fif } C {fit t}, denoted further by 

{fi(fc} such that the sequence of characteristic functions Xk of fitfc C U (17) 

converges in L2(D) to a characteristic function x of a subset fi C U. 

i. e., U is assumed to be compact for the strong L2(D) topology of the characteristic 
functions of its elements. For details concerning the selection of the family U see 
[8]. We can prove; 

Lemma 1. There exists an optimal domain fi £ U to the problem (16). 

P r o o f . The proof follows from [17] and [8]. O 

Note that Lemma 1 does not assure the existence of a unique optimal domain. 

Remark 1. In applications [14, 15, 19, 20, 21] the reference domain fio is selected 
as a rectangle and the vector field V is selected in the following way: 

V = (VUV2) V1 = t1k(x2) V2 = 0 (18) 

For (18) the set U of the admissible domains is equivalent to the following set U of 
admissible functions describing the boundary of the optimized domain: [19, 20]: 

I dk 
U = {k£ C°'\0,1) : 0 < a < к(x2) <c2,\~ 

\dx2 

í c з ' í к(x2) dx2 = c 4} (19) 
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where C°'l(0,1) denotes the set of Lipschitz continuous functions on the segment 
(0,1) and ci,C2,C3,C4 are given positive constants. The set (19) is assumed to be 
nonempty. The integral condition in (19) denotes that the mass of the optimized 
plate is constant [2]. The existence of optimal solutions to the problem (16) with V 
and U selected according to (18),(19), respectively, was shown in [19]. Note, that to 
obtain the existence of optimal solutions to the problem (16) with V given by (18) 
and U given by (19) but without the bound on the derivative of the function k, we 
can also use the regularization technique. For details see [22, 24]. 

4. NECESSARY O P T I M A L I T Y C O N D I T I O N 

In this section we shall calculate the derivative of the cost functional (16). Let us 
recall the definition of the Euler derivative [24]: 

Definition 1. The Euler derivative dJ(ft, V) of the cost functional J(ft) at a point 
ft in the direction of the vector field V is determined by: 

dJ(ft, V) = limsup[J(ft() - J(ft)]/f (20) 

Before we calculate the derivative of the cost functional (16) we shall show the 
Lipschitz continuity of the solutions to the system (14)-(15). 

Lemma 2. Let the pair (wt, ft) G H$(Qt) x /J0(fto), t G [0, a), a > 0 be a solution 
to the system (14)-(15). We denote by: wl = wtoTt £ H^(Q), f = ftoTt G W0(ft), 
w — wo G HQ(Q), / = /Q G HQ(Q). Then there exists constant e > 0, independent 
on t such that for t > 0 small enough: 

I k - Hlff'(n) < et | |/ ' - f\\HHil) < et (21) 

P r o o f . The proof consists of two parts. First we write the system (14) — (15) 
transported to the reference domain ft in canonical form [3, 6, 11]. Next we show, 
using the implicit function theorem [17] that the mapping: 

[ 0 ) ( r ) 3 i - W G#0
2(ft) (22) 

is Frechet differentiable at a point t = 0. This implies that the condition (21) is 
satisfied. 

Let us consider the system (14)-(15) transported to the reference domain ft. Let 
us introduce the operators L< : /J0

2(ft) — //0
2(ft) and Bt : H2(Q)xH2(Q) — 7J0

2(ft) 
defined for all <f> G //2(ft) by: 

& V . ^ ) = (£*«»*, *)Hj(n) (23) 

b\f,w\<f>) = ( £ ' ( / , ™ ' ) , < ^ ( n ) (24) 
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where (•, -)//2(n) denotes scalar product in //0(Q) [1]. Note, that the forms 6*(-, •, •) 
and &<(-, •) are given by (52), (53). By C ' t V ) : //0

2(f2) x i/0
2(fi) x //2(J2) - //2(fi) 

we denote the operator: 

C'(«;') = B\B*(w\ wf), w*) (25) 

Let D* G HQ(CI) be a solution of the equation: 

a*(o ' ,0) = / Jtg<t>dx V<£ G //0
2(fi) (26) 

jn 

where Jt = det DT( and the form a*(-, •) is given by (51). It can be shown that for 
all t G [0, <r), <r > 0 the operators L\ Bi,Ct have the following properties: 

L* is linear, compact and selfadjoint operator 
Bf is bilinear, compact and symmetric operator 
C is compact operator such that 

\\Cl(w) - C*(v)\\Hlm < const \\w - v\\H*m (27) 

(C*(u0.«>)tf*(n) = 1 1 ^ ( ^ . ^ ) 1 1 ^ ) > 0 V™ € Hl(Sl), w # 0 (28) 

Taking into account (23)-(26) we can write the system (14)-(15) transported to 
domain fl in the canonical form [3, 6, 11]: 

P(w\t) d~ (I-XLt)wt+Ct(wt)-Dt=0 (29) 

f = -B'(«;*,«!*) (30) 

Using the same arguments as in [3, 5, 11] it can be shown that for t £ [0, <r), <r > 0, 
A E R satisfying: 

A < A ! ( l - ( a - 1 | | B i | | | | D < | | / / 2 ( n ) ) 2 l 3 ) (31) 

there exists a unique solution (w\f) G #0(ft) x H$(n) to the system (29)-(30). 
Ai in (31) denotes the inverse of the largest eigenvalue of the operator L%, a G (0,1) 
is a real number, the norm of the operator Bl is given by: 

115*11= (32) 

= sup-dlB'Cf V ) l k ( n ) I C f > ' ) € Ht(Sl) x H%(Sl),\\f\\Hlm = | K | | H j ( n ) = 1} 

Moreover we can evaluate: 

l l ^ l l ^ n ) < ^XWDWHUU) (33) 

Let us consider the equation (29) only. To show differentiability of the mapping 
(22) at a point t = 0 we shall use the implicit function theorem [17]. We verify 
assumptions of this theorem. From (31) it follows that the equation (29) has a 
unique solution w% £ //2(fi) for t G [0,<x),cr > 0. From continuity of operators 
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Lf, Bt, Cl as well as from (11)-(12) it follows the existence of continuous partial 
derivatives P'w, and P[ of the mapping (22) with respect to w* and t respectively. 
The derivative Pw, in the direction <f> has the form: 

Pw,<j> = (/ - AL')<£ + 2Bt(Bt(wt,<j>), w%) + B^B^w^w1),<f,) (34) 

From (28) and (34) it follows: 

(KA,<f>)nl(n) = IMfen) ~ A(̂ <M)tff(n) + 

n&(w\ <i,)fHm + ( f r W ) , B'0,<f>))H,(n) = Ri (35) 

Using the boundedness of the operator Lt as well as (28) we can evaluate (35) from 
below: 

Л l > [ i _ A _ ц ß ІЯJ(П)J 
I2 

lяśЧn) 

Taking into account (33) we obtain from (36): 

A, 
Я 2 > 1 - - - , 

Ai VAi-A 
|í?ťIHIoť 

ІЯ-ҶП) ІЯD

2(П) 

(36) 

(37) 

Using (31) we can evaluate (37): 

#3 > [(I ^ ( ^ 

lЯg(П) > 0 ' l , l - ^ } ( l - a a ) I W I i J ( n ) ^ i -

From (35)-(38) we obtain: 

(PL^^HUti) > ^IHItf^n) > » V ^ 6 tf0

2(fi) 

(38) 

(39) 

From (39) it follows the existence of the continuous inverse of the operator Pw,. 
Hence by the implicit function theorem [17] follows Frechet differentiability of the 
mapping (22), i.e. Lipschitz continuity of wt. Moreover from (11) — (12), (30) follows 
the condition (21). D 

Using Lemma 2 we are able to prove: 

L e m m a 3. The derivative dJ(fi, V) of the cost functional (16) at a point fi in a 
direction V, defined by (20) is given by: 

d/(fi ,V) = 2 [ 
Jn 

wW dx (40) 

where W = -M. \s a shape derivative of the function wt defined by (42). 
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P r o o f . From (16) and (20) it results: 

dj(fi, V) = limsup I / w2 dx - [ w2 dx] /t 
i~-o Ljn, jn J 

Using formulae for transport the integrals from domain fi( to the reference domain 
fi [14, 24] we obtain: 

dJ(ft ,V) = limsup ( / [(wt o Tt)
2 - w2] det DTt dx + [ w2(del DTt - l)dx\ /t 

«—o l jn jn J 
(41) 

where DTt is the Jacobian of the mapping Tt, det DTt is determinant of DTt. Passing 
to the limit in (41) with t —>• 0, using (3) as well as (21) we obtain (40). • 

4 .1 . Sensit ivity analysis of solutions to t h e s t a t e sys tem 

In order to calculate the derivative (40) we have to calculate the shape derivative 
W of the solution wt to the system (14)-(15). Let us recall the definition [24]: 

Definition 2. The shape derivative W G H2(Q) of the function wt G H2(Qt) is 
determined by: 

(Uwt)]n = w + tW + o(t) (42) 

where \\o(t)\\H2W/t -> 0 for t -* 0, w = w0 G #2(f t) and Uwt G H2(R2) is an 
extension of the function wt G H2(Qt) to an open neighbourhood of Q,t C R2 such 
that the restriction (IIu;.)|n G H^tl) for t > 0, t small enough. 

To calculate the shape derivative we need also the notion of a material derivative 
[24]: 

Definition 3. The material derivative w G H2(Q) of the function wt G H2(£lt) at 
a point X G fi is defined by: 

Jim\\(wt oTt~ w0)/t - u>||tf2(n) = 0 (43) 

where w = WQ G H2(£l), the function wx = wt oTt G H2(Q) is an image of the 
function wt G H2(£lt) in the space # 2 (Q) . 

Let us recall [24] that if the shape derivative W G ff2(fi) of the function wt G 
Ho(Qt) exists, then the following condition holds: 

W = w - vwV(0) (44) 

Using Lemma 2 as well as Definition 3 we can prove: 
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Lemma 4. The material derivatives w € tf0
2(O) and / S tf0

2(O) of the functions 
wt € H%(Clt) and / . G tf0

2(Q() satisfying the system (14) ' (15) are given by: 

a(w,4>) + a'(w,<f) = b(f,w,<f>) + b(f,w,(j>) + 1>'(f,w,<f>) + 

\b(w,cf>) + \b'(w,<j>) + (g,<f>) V<^e//0
2(O) (45) 

a(f,r)) + a'(f,i1) = -b(w,w,t1)-h(w,w,,1)-b'(w,ii>,r)) V»;G//^(0) (46) 

where 
(g,<t>) = [ div(<7V(0))<M* (47) 

Jn 
The derivatives a'(-, •), 6'(-,-,-), &'(.,.) of the forms a«(-,), &<(•,-,•), *<(-,•) with 
respect to t at t = 0 are given by: 

a'(w,4>) = / [ - d i v V ( 0 ) ] A w A ^ d x + 
jn 

div [div V(0)7 - (DV(0) +TDV(0))](Au;V<> + VwA</>) dx (48) Í 
b'(f,w,<S>) = [ V T u) [V(V/ )d ivV(0) -DV(0)V(V/ ) -

jn 
TDV(0)V(V/) - V(TDV(0)V/) - VÍV/ fDVÍO^V^dí ; -

div [div V(0) / - (DV(0) +TDV(0))]V/dí; + L /n 

/ A/VTw(DV(0) +TDV(0))]VwV^ da; (49) 
jn 

b'(w,4>)= [ [d\vV(0)I - (DV(0) +TDV(0))]VwVcf>dx (50) 
jn 

where V(0) = V(0 ,X) , DV(0) denotes the Jacobian matrix of the matrix V(0), 
TDV(0) denotes transpose matrix of the matrix DV(0), I is an identity matrix. 

P r o o f . Using formulae for transport the gradient and the Laplacian of the 
function into the fixed domain [24] we transform the forms at(-,-), bt(-,-,-), &(•,) 
from the domain Qt to the fixed domain Q: 

a* ( tu* ,^ ) - (51) 

= [ J-1 div (JtDT-lTDTt-
lVwt) div (JtDTf^DT^V^) dx V w ' ^ ' e H%(£1) 

jn 
bt(ft,wt,<j>i)= (52) 

= / WTwTDTt-
lTDTt-

x V(TDT-* V/')TDT~ l V ^ J , dx - [ div (Jt DT~l 

Jn jn 
TDTt-'Vu;<)(VT/ iDTt-

1TDTr1V0t) dx V/', w\ tf <= tf2(fi) 
/•T 

bt(wt,<j>t) = DTf^wtDTf^^Jtdx Vte*,^ 6ff0
2(fi) (53) 

•/n 
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where Jt = det DTt, DTt is the Jacobian matrix of the mapping Tt, DT;"1 is the 
inverse of DTt and TDTt is a transpose of DTt. Since the mapping T( and the inverse 
mapping T,~' have continuous second derivatives with respect to the spatial variables 
[24] hence for all functions <f>, g ff0

2(fi<). <t> G ffg(fi), (wf,f*) 6 l/0
2(«) x ff0

2(fi) we 
have: 

«.(w.,&) = a ,(u>\^*) = « ' (u \c i ) 

bt(ft,wtAt) = bt(ft,w\<j>t) = bi(fi,wi,<!>) (54) 

6,(u4,0 () = 6 t (u t , 0 ' ) = 6 ' ( u \ 0 ) 

Subtracting from the system (14) — (15) the system (9) — (10) and using (51)-(54) 
we obtain 

a(wt - w, </>) + a^w*, <j>) - a(w\<j>) = (55) 

= 6 ( / \ u 1 - u , 0 ) + 6 ( T - / , u \ ^ ) + 6 ' ( / \ u . \ c A ) -

- b(f\w\tf>) + \b(v>t-w,<l>) + \bi(wt,$)-\l(wt,4>)+(gi-g,4) VciG tf2(Q) 

« ( / ' - L ' / ) + « t(T , * ? ) -« ( / ' , » / )= (56) 
= -{6(u>* - w, w,»,) + 6 ( u \ u>* - u>, 7,) + 6t(u>\ u>\ 7,) - 6(ti»\ u\7,)} V7, G H$(fl) 

Using (11)-(13), Lemma 2, dividing both sides of the system (55)-(56) by t as 
well as passing to the limit with / —+ 0 in (55)-(56) we obtain that the limits 
of the subsequences {(iu' - w)/t} and {( / ' - /)/<} satisfy (45)-(46). Since for 
A G R satisfying condition (26) the system (45)-(46) has a unique solution (w,f) G 
ff0(Q) x H'Q (it) by Lemma 2 follows the existence of the limits of the whole sequences 
{(wf - w)/t) and { ( / ' - f)/t) satisfying (45)-(46). • 

In [11] it was shown that the solution (w,f) to the system (9)-(10) has regularity 
(w,f) G {tf0

2(«)n tf4(«)} x {H$(Q)n ff4(ft)}. Hence as well as from (11) it follows 

VuV(O) G ff2(fi) V/V(0) G ff2(fi) (57) 

Integrating by parts the system (45) - (46) two times, eliminating the terms contain
ing the derivatives of V(0) and taking into account (44) as well as (57) we obtain 
the system of equations determining the shape derivative (W, F) G ff 2(£2) x tf 2(fi) 
of the solution (wt,ft) G H2(Q) x H2(Q) of the system (14)-(15): 

a(W, <f>) = 6(F, w,<j>) + b(f, W, <j>) + Xb(W,<f>) + h(W, w, <j>) V<£ G ff0
2(fi) (58) 

a(F,»,) = -26(w , w, 7,) + /, (F, / , 7,) V 7, G ff0
2(O) (59) 

where 

h(W,w,4>) = I W^-(A<f>)dT- f f ^ + A u ; V ( 0 ) n W d r (60) 

Note that in (60), by Sobolev trace theorem [1], we have on T: W G ff3/2(r), 
^ G ff'!2(r), A<f> G ff-1!2(r)) a.^ G / / - 3 / 2 ( r ) A s u m i n g ^ m o r e regular, i.e., 
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<f> G {!!o2(0) n H4(Cl)} we have traces in Acf> G tf3l2(r), £-A<t> G / / 1 l 2 ( r ) . For 
definition of Sobolev trace spaces H'(r), s real number, see [1]. 

Let us determine the boundary conditions for the derivatives W and F. Note 
that from (3) it follows that on the boundary T: 

^ = ^ = 0 (61) 
ds ds 

d2w - dlL - n d*w - J*L - n r«9, 
ds2 ~ 8s2 ~ ° 3s<9n " <9S<9» " l j 

where ^ and ^f- denote, respectively, the first and second derivatives of the func
tion w in the tangent direction s to the boundary V. From wt = ft = 0 on the 
boundary Tt and from (3) it results that w = / = 0 on the boundary T. Hence and 
from (44), (61) it follows that on the boundary T: 

W = F = 0 (63) 

Using the same arguments as above for the gradients of the functions wt and ft as 
well as taking into account (3),(44) and (62) we obtain on the boundary T: 

W £ . v ( 0 ) B i ^ = - ^ V ( 0 ) „ (64) 
On cm2 on On2 

Note, that the boundary conditions (63), (64) imply vanishing of the integral (60). 

4.2. The form of t h e directional derivative of the cost functional 

In order to eliminate W from (40) we introduce an adjoint state (p, q) G HQ(£1) X 
H2(Q) satisfying the following system of equations: 

a(p, 4>) = b(p, f, <t>) + \b(p, 4>)-2b(q, w, <j>)-2 [ wcf,dx+ [ Ap^- dT V<£G ff(Q) (65) 
jn jr on 

a(q,V) = b(p,w,n)+ f Aq^dT \/r)£H(Q) (66) 

where 
H(a) = {<j> G H2(Q) : (j> = 0 on T} (67) 

and (w,f) G H2(Q) x H$(Q) denotes the solution to the system (9)-(10). For 
A suitably small, it follows from [11], the system (65), (66) has a unique solution 
(p,q) G HQ(Q) x HQ(Q,). Moreover this solution has regularity (p,q) G {HQ(CI) n 
H\n)} x {H2(Q) n H4(Cl)}. Hence, by Sobolev trace theorem [1], we have on T: 
Ap G i / 3 / 2 ( r ) , Aq G / / 3 l 2 ( r ) . 

Lemma 5. The directional derivative dJ(Q, V) of the cost functional (16) at a 
point Q in the direction V is given by: 

dJ(Q, V) = - j (AwAp + AfAq)V(0)n dT (68) 



Shape Optimization of a Nonlinear Elliptic System 281 

where (w,f) G H$(Q) x H0
2(fi) and (p,q) € H$(fl) x #0

2(ft) satisfy, respectivly, 
systems (9)-(10) and (65)-(66). 

P r o o f . Setting <j> = W in (65) and taking into account (40) we obtain: 

2 f Wwdx = b(p, f, W)+\b(p, W)-a(p, W)-2b(q, w, W)- [ AwApV(0)n d r (69) 
jn jr 

Using (64) and setting 77 = F in (66) we obtain from (66): 

a(q, F) = b(p, w,F)- f AfAqV(0)n dF (70) 

Setting 4> = p in (58) and T) = q in (59) we obtain: 

a(W,p) = b(F,w,p) + b(f,W,p) + \b(W,p) 

a(F,q) = -2b(W,w,q) (71) 

From (69)-(71) it results (68). • 

The necessary optimality condition for the problem (16) has the standard form: 

Lemma 6. For all vector fields V defined by (11) - (12) an optimal solution ft 6 U 
to the problem (16) satisfies the following condition: 

d J ( f t , V ) > 0 (72) 

where dJ(Q, V) is given by (68). 

P r o o f . The proof is standard [7]. • 

5. CONCLUDING REMARKS 

In the paper the shape optimization problem for von Karman plate is considered. 
The small deflections of the plate are assumed. The conditions of the existence of the 
optimal domain are discussed. Using the material derivative method the directional 
derivative of the cost functional with respect to the variation of the domain occupied 
by the plate is calculated. This derivative depends only on the normal component 
V(0)n of the vector field V(t,x) at t=0 to the boundary T of the domain ft. Necessary 
optimality condition is derived. 

Selecting the vector field V and the family of admissible domains U in the form 
(18), (19), respectively, we can solve problem (16) numerically. Finite element ap
proximation for this problem is proposed in [19]. The optimization algorithms for 
solving such optimization problems are discussed in [2, 14, 15, 20, 22, 23]. The 
calculated directional derivative (68) of the cost functional (16) can be used in the 
optimization algorithms for calculating a descent direction [22]. To accelerate the 
convergence of these algorithms we have to use second order derivatives of the cost 
functional. The first attempts in this direction are reported in [12, 16]. 

(Received May 7, 1992.) 
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