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K Y B E R N E T I K A — V O L U M E 3 0 ( 1 9 9 4 ) , N U M B E R 5, P A G E S 5 5 1 - 5 6 2 

ON L-ESTIMATORS VIEWED AS M-ESTIMATORS 

JAN ŠINDELÁŘ 

Arithmetical mean and median usually serve as basic examples of M-estimators ([5]). 
Both of them are i-estimators. Thus there is a natural question whether there are some 
other L-estimators which are .M-estimators as well. We shall show that, with rare ex
ceptions, this is not the case. More precisely, we shall show that the arithmetical mean 
and empirical quantiles are the only i-estimators with nonnegative coefficients having a 
nontrivial ^-function. 

INTRODUCTION 

The presented paper has the following source of motivation. 
There are many nonstatistical approaches to uncertainty, some of them resulting 

in their own estimators (like gnostical theory of uncertain data, cf. [4]). Moreover, 
many people develop their own "problem oriented" estimators. Statistical properties 
of new-developed estimators are of interest from viewpoint of statistics as well as for 
practical purposes. E.g. it should be favorable to circumscribe (qualify) the field 
of successfull applicability of the estimator. Statistics could be a largely developed 
and well examined source of the desirable information. 

But how to find statistical properties of some estimator derived independently of 
statistics? 

A possible way is to verify whether the estimator is an M-estimator e. g. find
ing some of its V'-functions. It is a well known fact that the notion of ^-function 
playes a central role in theory of M-estimators (cf. [3, 2, 7]). Most of M-estimators 
are defined on the basis of corresponding ^-functions. Statistical properties of M-
estimators could be derived from their ^-functions (ibid). Hence if some ^-function 
of an M-estimator is found, then the above stated question can be answered using 
standard statistical methods (see [2]; see also [6] for examples). 

Two theorems on problem of determining V'-functions of given estimator are stat
ed in Section 1. General ideas are then illustrated on a specific class of estimators, 
namely on the class of L-estimators in Section 2. It is shown that the arithmetical 
mean and empirical quantiles are the only E-estimators with nonnegative coefficients 
having nontrivial ^-functions. 
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1. M-ESTIMATORS, L-ESTIMATORS 

The concept of estimator plays a central role in statistics. Various approaches 
to this notion can be found in the literature. For instance, an estimator could be 
a mapping from a sample space into a parametric space (see [5]), or a mapping 
from a set of probability distribution functions (containing empirical distribution 
functions) into a set of probability distribution functions (see [7]). For purposes of 
the presented text we shall view estimators as mappings ascribing reals to sequences 
of real-valued observations. Hence, with n G Af = { 1 , 2 , 3 , . . . } fixed, an estimator 
T is a mapping from Rn into R, i.e. 

T : Rn^R. (1) 

Consider a measurable space (fl, A) equiped with a probability measure P. Let 
X\,X^,Xz,... be a sequence of independent and identically distributed random 
variables. 

An M-estimator is obtained by minimizing VJ"=1 p(Xi,9) where p is a given real-
valued function (cf. [7]). If p has a partial derivative ip = | | , then the M-estimator 
may be defined as a solution of the equation 

X>(X . ,0) =- 0. (2) 

Df (2) will be considered below. Hence if T is an 
I, then 

J2l>(Xi,T(X1,...,Xn)) = 0 a.e. (3) 

The M-estimators getting out of (2) will be considered below. Hence if T is an 
M-estimator and n € At is fixed, then 

should hold. 

Consider n £ N and an estimator T given by (1). Assume that we want to 
know whether the estimator T is an M-estimator. For this purpose we should find 
functions ip satisfying (3), i.e. solve the functioal equation (3) in ip. 

Finding all solutions of (3) could be quite difficult. On the other hand we are 
usually interested in solutions of (3) satisfying some additional regularity conditions 
like measurability, continuity, differentiability etc., i.e. solutions of (3) are searched 
for in some class of functions tp : R? *-* R. Such a class of functions will be denoted 
hy T. 

Finally, we can formulate our task of verifying whether a given estimator is an 
M-estimator in the following manner. Given 

- n € At, 
- an estimator T : Rn *-* R, 
- a class T of functions tp, ip : R? *-* R, 

find all solutions ip of the functional equation (3) lying in the class T. 

The set 

j u , єSì\Ş2ф(Xi,T(Xi,...,Xn)) = 0 І (4) 
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may not be measurable. But this set is measurable under relatively general condi
tions laid on xp and T. For instance, if both the function ip and the estimator T are 
measurable functions, or, more generally, if 

J (X!,...,«„) € Rn £>(*<> r(xi---•.*«)) = o l (5) 

is a Borel subset of Rn, then the set (4) is measurable. For a fixed estimator T, the 
symbol TT denotes the set of all mappings ip : R? H-» R the set (4) is measurable 
which for. 

If some additional regularity conditions are laid on an estimator T, on desirable 
solutions of (3) and on an underlying statistical model, then solution of the functional 
equation (3) can be reduced to solution of a more simple functional equation. Let 
us discuss this topic in detail. 

Consider n £ N fixed. The random vector (X\,... ,Xn) induces a Borel measure 
on the cr-field Bn of Borel subsets of Rn denoted by 

Pxx,...,xn. 

Its support will be denoted by 
SPPXl,...,Xn. 

Solution of (3) can be reduced to solution of a more simple functional equation 
if, for instance, 

- T is a continuous mapping, 
- continuous solutions of (3) are searched for. 

The following two theorems are devoted to the topic. 

Theorem 1.1. Suppose that ^ G Tp. Then ip is a solution of (3) if 

V(x i , . . . ,*„) G SpPXl Xn : £ , * ( * , . T f a , . . . , * , . ) ) = °- (6) 

P r o o f . Consider ip G TT- Then the set (3) is measurable. Moreover {w G 
ft | (Xx,..., Xn) G Sp PXl,...,Xn} is measurable and has the probability one, so that 
(3) follows from (6). • 

We shall call solutions of (6) as T-solutions. 

Theorem 1.2. Consider (xi,...,xn) G SpPXu...tXn. Suppose that T is contin
uous at (xi,..., xn), ip is continuous at points (a;., T(x\,..., xn)) for i = 1 , . . . , n. 
If ip is a solution of (3), then 

J2ф(xi,T(xг,...,xn)) = 0. 
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P r o o f . Consider a function / : Rn •_, R defined by 

V{j/i,...,j/n) G ft" : f(m,...,yn) = Y,1>(yi,T(yi,...>yn)). 
1=1 

Hence / is continouus at ( x i , . . . , arn). We want to show that f(Xl ,-..,xn) = 0. 
Consider 0 < e. The interval / = (f(xlt... ,xn) - e, f(Xl,.. .,xn) + £) is a. 
neighbourhood of f(xi,..., xn) and / is continuous at ( x i , . . . , xn), hence there is an 
open neighbourhood U of ( x j , . . . , xn) such that f(U) C I. Now 0 < Px, x (U), 
because ( x i , . . . , x „ ) G Sp Pxl,...,xn- So that there is some (ylt.. .,yn) G Vsuch 
that f(y1,...,yn) = 0, as follows from (3). Hence 0 G I, because / ( [ / ) C I. 
Now 0 < e is arbitrary and 0 G (f(xt,..., xn) - e, f(x1,...,xn) + e), so that 
f(x1,...,xn) = 0. D 

Corollary 1.1. Suppose that T is a continuous estimator, ip : R2 i—• R is a 
continuous function. Then the conditions (3) and (6) are equivalent. 

Assume moreover that Px, is equivalent to the Lebesgue measure on Bj.. Then 
(3) takes place iff 

n 

V(x 1 ) . . . , x n ) G R" : V ^ O r i . T O E ! , . . . , ^ ) ) = 0. 

Let us turn to L-estimators. 

An order statistics corresponding to X1}..., Xn will be denoted by X{1),X(2), • • • 
...,X(n) (see [5], p. 40). 

An L-estimаtor has the form 

where w, are constants satisfying 

£>*«• (7) 

J^w; = 1 (8) 
i = l 

(cf. [5] , pp. 368-369). It is convenient to define wlt..., wn by means of a probability 
distribution on (0,1) (ibid). In such a case an E-estimator equals (7) with nonneg-
ative Wi,...,wn. Further on, wlt..., wn may depend on the value of X\,..., Xn\ 
they are constant (fixed) if observations Xlt... ,Xn are different. Then 

* ( i ) < X ( 2 ) < • • • < * ( „ ) . ' (9) 

In the following we assume that the distribution function of X\ is equivalent to 
the Lebesgue measure. Hence (9) is true almost shurely. 

Let us use an L-estimator (7) in (3). We obtain 

£ > (*(0.X>'*(0j =° ae- (10) 
•=i V «=i / 
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From our viewpoint an unknown parameter in the equation (10) is the function 
ij). Thus the functional equation (10) with "known" wi and X; should be solved. 
The task of the presented text could be thus formulated as follows. 

What are the L-estimators for which (10) is solvable (in vb); how do the solutions 
of (10) look like? 

We shal use the symbols x and y for n-tuples of observed values, i.e. 
x = (xi,..., xn), where x\,..., xn 6 R- We introduce an auxiliary set 

S = (x G Rn | xi < x2 < • • • < xn) (11) 

of ordered and different observations. This is motivated by the fact that W\,... ,wn 

are fixed for different observations only. 
Consider an E-estimator T. Hence 

Wx G S : T(x) = J^WiXi (12) 
»=i 

is true, where Wi,...,w„ are some nonnegative constants satisfying (8). Assume 
moreover that VJ : R2 i—> R is a T-solution. Then 

V x G s : ^2i>(xi,T(x)) = 0 (13) 
i=i 

is true. Hence any solution of (13) is a candidate for a T-solution. 
The estimator T is continuous on S. Therefore any continuous solution of (3) has 

to satisfy (13), as follows from Theorem 1.2. 
We shall found all solutions of (13) below. For the sake of simplicity we limit 

ourselves for the case when at least three observations are given, i. e. when n > 3. 
We shall show that the L-estimators 

arithmetical mean \w\ = w2 = • • • = wn = — 

empirical quantile (wk + Wk+i = 1 for some k) 
are the only L-estimators leading to nontrivial solution o/(13). Moreover we shall 
found all solutions of (13). 

2. ON T-SOLUTIONS OF T-ESTIMATORS 

The functional equation (13) will be solved in xj) having the domain R2. The class 
of all such solutions of (13) will be denoted by 

Clearly, (13) is true if and only if 

\fxeT-\t)nS: ^i>(xi,t) = 0 (14) 

holds for all t G R-

i = i 
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The following convention will be used repeatedly. If t is not speficied, then t ~ R 
is arbitrary but fixed. 

Using this convention we find that each ip ~ ̂ T,fi2 satisfies (14). 

Two main cases will be considered concerning coefficients w\,... ,wn. 

(CO) There are at most two positive consecutive elements among w\,...,Wn 

(i.e. at least one of Wk-i, Wk, Wk+i equals zero for all k = 2 , . . . , n — 1). 

(C4) There are at least three positive consecutive elements among w\,...,wn 

(i.e. iwjt-i, Wk, Wk+\ are positive for some k £ {2 , . . . , n — 1}). 

The former one will be partitioned into the following three subcases 

(CI) wk = 1, ke{l,...,n}. 

(C2) Wk + Wk+\ = 1 with Wk, Wk+i positive, k ~ { 1 , . . . ,n — 1}. 

(C3) Wj = 0 and there are k < j < I with wk, wt positive, j , k, £ ' { 1 , . . . , n} . 
For J C {1, 2 , . . . , n} we denote 

y~jx 

iff y and x differ at most in coordinates from J, i.e. iff t/, = _,• holds for all 
i € { l , . . . , n } \ J . 

L e m m a 2 .1 . Let _, y € T~l(i)C\S and _ ~j y take place for some J C { 1 , . . . , n } . 

If V> ~ *T,fi^ then 

£>(-.,.) = 5>(W.-)- (15) 

P r o o f . It holds (14) and ip(xi,t) = ip(yi,t) takes place for all i € { l , . . . , n } \ J , 
thus (15) is true. n 

Corollary 2 .1 . Let i> ~ ^T>R7. 

a) If w\ = 0, then ip(',t) is constant on (—oo,t). 

b) If wn = 0, then tp(-,t) is constant on (t,oo). 

c) li Wj = 0 for some 1 < j < n and _ ~ T~x(t) n S, then ^(-,t) is constant on 

(~j-i,~j+i)-

P r o o f . We prove the part a) only. Consider x\ and y\ from (—oo,t). There 
are _ 2 , . . . , _„ e -R such that x G T _ 1 ( t ) n 5 . Take y. = _,• for i = 2 , . . . , n. Then 
^>(_i,t) = yj(yx,t) is true according to Lemma 2.1, hence tjj is constant on (—oo,t). 

• 

The following two propositions characterize T-solutions of empirical quantiles. 
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Propos i t ion 2.1 (Case C I ) . Let wk = 1 for some k 6 {l,...,n}. Then r/> G 
VT,R2 iff i> : R2 ^ R and 

Vui, u2lt e R: ux<t<u2=>(k- l)i/>(u1,t) + iP(t,t) + (n-k)rp(u2,t) = 0. (16) 

The form of T-solution tp for Case CI is explained below. Consider t G R fixed. 
If k = 1, then (16) is equivalent to 

V u2,teR: t<u2^xl>(t,t) + (n-l)i)(u2,t) = 0 

and therefore 4>(-,t) is constant on (t,oo). The function ip(-,t) can reach arbitrary 
values on the interval (—oo, t). 

If 1 < k < n, then (16) implies that tp(-,t) is constant on each of the intervals 
(—oo,t) and (t,oo). Hence ip(-,t) can reach at most three values. 

If k = n, then (16) implies that ip(-,t) is constant on (—oo,i). Moreover the 
function ip(-,t) can reach arbitrary values on the interval (t, oo). 

P r o o f . (Proposition 2.1). Assume that wk = 1 for some k G {l,...,n}. 
If x G T~x(t) n S is arbitrary, then both 

xi <x2 < • • • < xn and xk = t 

hold. 

(only if) Let us fix ^ G ^T,R^ and u\, u2,t G R satisfying ui < t < u2. Consider 
x G T~x(t) n S arbitrary. 

al) Let k = 1. Then wn = 0, thus ij)(-,t) is constant on (j,oo) by Corollary 2.1b, 
i.e. rj)(xi,t) = xl>(u2,t) holds for i = 2 , . . . ,n and xx = t, so that 

0 = J2ip(xi,t) = rP(t,t) + (n-l)^(u2,t). 
•=i 

Therefore (16) is valid, as A; = 1. 

Analysis of the case k = n is similar. 
a2) Let 1 < k < n. Then both Wi = 0 and wn = 0 hold, so that if)(-,t) is constant 
on each of the intervals (—oo,t) and (t,oo). Therefore tp(xi,t) = if(u\,t) holds for 
i = l,...,k— 1 and ip(xi,t) = ij>(u2,i) takes place for i = k + l,...,n. Thus (16) 
is true. 

(if) Assume that i> : R? >-> R satisfies (16). Let x G S and i = T(x). Finally, 
consider ui < t < u2 arbitrary, 
bl) Let k = 1. Then ip(-,t) is constant on (£,oo), thus 

^ ( z . , * ) = ^(t,0 + (n- l )^(u 2 ,0 . (17) 
i=l 

The right-hand side of (17) equals zero, as follows from (16) and k = 1. Thus 

Analysis of the case k = n is analogical. 
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b2) Let 1 < k < n. Then t/> is constant on each of the intervals (-00, t) and (t,oo). 
Thus „ 

5 ^ V ( - . , 0 = (k-l)4>(Ul,t) + i(>(t,t) + (n-k)iP(u2,t), 
.=1 

i.e. x/> € * T , A 2 by (16). D 

Proposi t ion 2.2 (Case C2) . Let Wk and tufc+i be positive reals satisfying Wk + 
tujfc+i = 1, * € {1, • • •, n - 1}. Then ip G VTiR2 iff V> : R2 ^ R and 

V «i, «2, * 6 JR: «i << < «a =-=> k^(ux,t) + (n - k)ip(u2,t) = 0. (18) 

As can be easily seen, (18) implies that ip(-,t) is constant on each of the intervals 
(-00, t) and (i,oo). 

P r o o f . (Proposition 2.2). Let Wk and Wk+i be positive reals satisfying Wk + 
Wk+i = 1, k € {1 , . . . ,n— 1}. 

If _ € T - 1 ( i ) n s is arbitrary, then 

* = T(x) = ID* - i + Wk+i xh+i (19) 

takes place. Thus X{ < < holds for i = 1 , . . . , fc and t < Xi holds for i = k+1,..., n. 
(only if) Let if) _ \&T,.R2 and «i, u2, i G i? satisfying u\ < t < u2 be fixed, 
al) Let A; = 1. In this case x G T-1(2)n<S can be found such that x\ — u%. Moreover 
wn = 0, thus ip(-,t) is constant on (t,00) by Corollary 2.1b, i.e. ip(xi,t) = ip(u2,t) 
holds fori = 2, , . . , n . Therefore tp G *T,fi2 implies 0 = ip(ui,t) + (n-l)4>(u2,t) = 
kip(uut) + (n - k)i/j(u2,t). 

Analysis of the case k + 1 = n is analogical. 
a2) Let 1 < k and k+\ <n. In this situation w\ = u>„ = 0, thus i>(-,t) is constant on 
both (—00, <) and (t,oo), so that V" G ^T.fl2 implies fc^>(«i,<) + (n — A;) ip(u2,t) = 0. 
(if) Assume that i/> : R2 v-+ R satisfies (18). Let x G 5 and f = T(x). Finally, 
let «i < t < u2 be arbitrary elements of R. Then ip(-,t) is constant on each of the 
intervals (—00,<) and (t,oo), which gives 

n 

^2i>(xi,t) = kip(ui,t) + (n-k)rp(u2,t). 
i = \ 

Thus (18) implies tp G ^ T , A 2 - D 

Trivial mapping from iZ2 into R will be denoted by a. Thus cr(_,f) = 0 for all 
(M)G-R 2 . 

Proposition 2.1 (Case C3) . In the Case C3 it holds * T , R 2 = {>}• 

P r o o f . Consider ip G ^T,R3- Let (a,b) C R be an open interval. Clearly, it 
suffices to prove that ip(-,t) is constant on (a,b). We have k < j < I with Wk, wi 
positive and Wj = 0. Hence there is x G T_1(<) n <S satisfying _j_i < a and 
6 < Xj+i. Thus t/)(-,t) is constant on (a, b) by Corollary 2.1c. • 
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It remains to analyze the Case C4 when at least three consecutive coefficients 
among w\,... ,wn are positive. We shall show that for any T-solution tp and any 
fixed t £ R the function 

^(t + .,t)-i>(t,t) 
is additive in this case. Using this fact we prove that if ^r.i?3 ^ {<*}, then T is the 
arithmetical mean. 

It is worth mentioning that a function / : R>-+ Ris called additive iff 

f(u + v) = f(u) + f(v) (20) 

takes place for all u, v £ R. 

In the following a slightly more general functional equation then that of (20) is 
analyzed, namely a special case of the so-called Pexider's equation is used (see [1], 
pp. 141-142). 

Lemma 2 .2 . Let g, f : R •-*• R and a £ (0, oo). If 

g(u + v) = f(u) + g(v) (21) 

holds for any u, v £ R satisfying the constraints 

0<u + v and - a (u + v) < u < a (u + v), (22) 

then / is additive. 

P r o o f . Consider s i , s2 G R arbitrary. Let us take some s > (^ + l) -(|»i| + |*a|)-
We use (21) and subsequently put u = s\ + S2 and v = s; u = s\ and v = S2 + s; 
u = si and v = s. It is possible to do it because the constraints (22) are fulfilled 
in all these three cases. We add the last two obtained equations and substract the 
first one from the result. We find that / ( s i + s2) = / ( s i ) + f(s2) is true. D 

Corollary 2 .2 . Let g : R >-+ R and a, /? € (0, oo). Assume that 

g(u + v) = g(pu) + g(v)-g(0) (23) 

holds for any u, v £ R satisfying (22). Then g(.) — g(Q) is additive. 

P r o o f . The function g(/3 •.) - g(0) is additive by Lemma 2.2, thus g(-) - g(0) is 

additive as well. D 

Lemma 2.3. Let wjb-i, Wk and wk+i be positive for some k £ {2,.. • ,n — I}. If 
tp £ ^r.R2 and t < w, then 

ip(w + ., t)-rp(w,t) 

is additive. 

P r o o f , a) We shall consider points x, y £ T _ 1 ( i ) n s satisfying x ~{jt,*+i} y-
Thus it should hold both 

wk xk + wk+i xk+i = wk yk + wk+i yk+i 
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and 
nxk,t) + ip(xk+i,t) = i>(yk,t) + xj)(yk+l!t). 

The differences Xk+i - xk and Xk+i - yk+i play key role in the proof. For this 
reason we rewrite the above stated equalities as 

yk = xk + (xk+i - yk+i) • --?- (24) 
wk 

and 

4>(xk,t) + il>[xk + (xk+i-xk),t]= . (25) 

= V> ( x k + (xk+i -yk+i)--^-,t\ + i>[xk + (xk+i -xk) - (xk+i -yk+i)]-

We specify points x, y mentioned above, 
al) Let us fix xk, Xk+i satisfying 

t < Xk < Xk+i (26) 
(but otherwise arbitrary). 
a2) Further on, let yk+i satisfy 

- a(xk+1 - xk) < Xk+i - yk+i < a(a: f c +i - xk), (27) 
where 

a = wk. 
Now J/* is computed using (24). 

It holds yk < J/fc+i, as follows from (27) and (24) (namely, 
yk < Xk + wk+i(xk+i - xk) < Xk+i - Wk(xk+i - Xk) < yk+i)-
a3) We take an auxiliary open interval (a,b), where 

a = xk - Wk+i(xx+i - xk) 

b = Xk+i + Wk (xx+i - xk) • 

All yk+i satisfying (27) and all corresponding yk computed by (24) lie in (a,b). 
Moreover, we introduce an auxiliary constant xn+i = +oo. 

There are ~ i , . . . , Xk-i less then a and Xk+2, • • •, xn+1 greater then 6 such that 
x G T_ 1(.-) n S (which follows from 2 < k, t < xk and 0 < wk~i, wk, wk+1). We 
put y{ = Xi for all i e {I,... ,n}\{k,k+ 1}. 

Thus x, y 6 T-1(t) n S and x ~{k,k+i} V t a k e place. Therefore under the con
straints (26) and (27) the equality (25) holds, 
b) Let us put 

W = Xk, U + V = Xk+l-Xk, « = Xk+l - Vk+l-

With this substitution (25) converts into 

•>p(w,t) + tp(w + u + v,t) = tl>lw + --~~u, t) + ip(w + v,t) 

and constraints (26) and (27) convert into (22). If we set g(.) = i>(w + .,t) and 
j3 = ^ ± i , we find that g satisfies (23). Thus g(.) - g(0) = $(w + .,t)- i>(w,t) is. 
additivTby Corollary 2.2. • 
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Proposition 2.4 (Case C4). a) Let 

to, = to, = • •• = u;„ —• —. (28) 

Then ip £ *T| jR2 iff ./, : R? ^ R and ^(< + ., <) is additive for all t £ R. 

b) Let Ar G { 2 , . . . , n - 1} be such that u>k-i,Wk,Wk+i are positive. If (28) does not 
hold, then \PT,.RS = {o-}. 

P r o o f . Let Wk-i, Wk, itfjt+i be positive, tp 6 *T,fi2- Let us fix i G .R. Then 
xp(t + . , < ) - V(<,t) is additive by Lemma 2.3. If x G T " 1 ^ ) n s, then 

0 = f>(z.,<) = Jtt(< + [*i-W-*(M)} + »!KM) 
i=i i=i 

is true, thus / n \ 

0 = rP\t + jr/[xi-t],t)+(n-l)TP(t,t) (29) 

holds. 

(Part a) Assume that (28) takes place, x £ T'1^) n S. Then 

£ > , - * ] = 0. (30) 
i=i 

(only if) Let xp £ ^TiR2. Then rp(t,t) = 0 by (29) and (30), hence rj)(t + ., t) is 
additive. 

(if) Suppose that ip(t+., t) is additive for all t £ R. Then 

£>(-., 0 = f> ( t+ [*.-<],<) = tf (< + l > . -*],*) (31) 
i=i i=i V i=i / 

is true, so that „ 

][>(-.,.) = iK* + <M) 
i=i 

is valid by (30). On the other hand ip(t + 0,t) = 0 follows from additivity of 
i>(t + .,t). Thus rp G*T,fl2. 
(Part b) Assume for contrary that rp £ ^T.R* is nontrivial, i.e that tp(u,t) ^ 0 
for some (u,t) £ R2. Then xp(t + .,t) — ip(t,t) is nonconstant (otherwise ip(t + ., t) 
is constant; there is x £ T~1(t)nS; thus 0 = Yli=i TK**,-) — "V'('M), s o t n a t 

ip(u,t) — 0 which is a contradiction). 
The relation (28) does not hold, thus there is a nonempty open interval (a, b) C R 

such that 

M)ç{x>-ť] x G T - ^ n s 

So that rp(t + .,t)- xp(t, t) is constant on (a, b) by (29). 
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Now %j)(t + .,t) — ip(t,t) is n o n c o n s t a n t a n d addit ive, t h u s it is n o n c o n s t a n t on 
any n o n e m p t y o p e n interval (e. g. on (a, b)) which is a contradic t ion. • 

Let Tm be t h e a r i t h m e t i c a l m e a n , i .e. let 

Tm(X) = ±l-Xi 
«=i 

hold for each x e Rn. 
We consider T m - s o l u t i o n s , i .e . " a r i t h m e t i c a l mean"-so lut ions , satisfying weak 

a d d i t i o n a l regular i ty condi t ions . Namely, weak type of measurabi l i ty of T m - s o l u t i o n s 
will be a s sumed. 

We denote 
T = {if> : R2 •-• R\if>(-,t) is m e a s u r a b l e for each t £ R} . 

P r o p o s i t i o n 2 . 5 . I t holds rp £ $Tm,R* H T iff ip : R2 i-» R and 

Vti, t 6 R : ip(u,t) = ( « - * ) • *(*) . ( 3 - ) 

where h : R i—>• R is a rb i t rary . 

P r o o f , (only if) Let V £ * r m , f l 2 <^T,t £ R. T h e n ip(t + ., t) is b o t h addi t ive 

and measurab le , t hus ip(t + v,t) = v • ip(t + l,t) holds for any v £ R, i .e . ij>(u,i) = 

( « - * ) • </>(< + l , t ) is t rue for all w £ R. P u t ft(<) = rp(t + l,t) for all t £ R. 

(if) Let h : R >-* R be a rb i t ra ry , V be defined by (32). T h e n rj>(t + ., t) is addi t ive , 

so t h a t ip £ ^Tm,R2 by Propos i t ion 2 .4a . Clearly, ip £ T. D 

(Received March 22, 1993.) 
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