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K Y B E R N E T I K A — VOLUME 30 ( 1 9 9 4 ) , NUMBER 3, P A G E S 2 7 9 - 2 8 8 

STIRLING DISTRIBUTIONS AND STIRLING 
N U M B E R S OF T H E SECOND KIND. 
COMPUTATIONAL PROBLEMS IN STATISTICS 

F R A N Q O I S H E N N E C A R T 

The left-truncated generalized Poisson distribution belongs to the family of the modified 
power series distributions. Using sufficiency and completeness of £ ^ x . (minx , , $ 3 x 0 ) 
respectively, when the truncation point is known (resp. unknown), the minimum variance 
unbiased (M.V.U) estimator for certain functions of the parameter $ (resp. 0, r) involved 
in these distributions can be obtained (see Charalambides [3,4], Jani [10], Voinov-Nikulin 
[23]). 

These distributions, as well as the corresponding M.V.U estimators, was expressed in 
terms of the modified Stirling numbers of the second kind (S.N.S.K). In this paper we give 
some ways to compute these numbers: first we summarize some usual and less standard 
identities or relations affecting the S.N.S.K. Some basic properties are given and discussed 
in view of calculation. 

Then, by generalizing asymptotic estimates of the usual S.N.S.K, we give and discuss 
alternative ways to compute the modified S.N.S.K. 

1. INTRODUCTION 

The problem of the M.V.U estimation for a left-truncated modified power series 
distribution was studied by Gupta [9], Jani [10,11], Kumar [12], Kumar and Consul 
[13], Voinov [22] and many others. Tate and Goen [20] considered the problem of es
t imating the parameters involved in the left-truncated Poisson distribution (L.P.D). 

When the truncation point is assumed known, in the case in which only the zero 
class is missing, the M.V.U estimator was expressed in terms of the usual S.N.S.K, 
while in the general case the M.V.U estimator was based on the generalized S.N.S.K. 
More generally, Patil [17] discussed the same problem for the generalized power series 
distribution (G.P.S.D), investigating the problem of the existence of the M.V.U 
estimator for certain functions of the parameter involved in the G.P.S.D. 

The statistical situations built from these distributions are numerous and the 
possible applications are important (see Berg [1] and Singh [19]). 

When the truncation point is known, Charalambides [3,4] obtained the M.V.U 
estimator in the case of the L.P.D and, in view of the computat ion of the M.V.U 
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estimators, gave recurrence relations with respect to the values of the sufficient, 
complete statistic Z = ~l X{ and the sample size. 

When the truncation point is unknown, the M.V.U estimation for certain function 
of the parameters was also solved by Charalambides [3,4], giving the general form 
of this estimator in accordance with the sufficient, complete statistic (Z, Y), where 
Y = minx ; , in terms of the generalized S.N.S.K. 

Our attention was attracted to computing in a direct way, not using recursion 
relations, the M.V.U estimators involved in the Left-truncated generalized Poisson 
distributions (L.G.P.D). Using standard properties of multiplication of series, we 
obtain some general well-known identities, certainly giving the value of the modified 
S.N.S.K, but this being too complicated for any efficient calculations. However, 
from some combinatorial reasons, it is possible to deduce some relations to produce 
interesting ways to calculate the generalized S.N.S.K. Charalambides [5] obtained 
recurrence identities giving the modified S.N.S.K. These relations can be used to 
compute recursively these numbers, and it remains in practice the only efficient way 
to obtain the exact values of the modified S.N.S.K. 

The modified S.N.S.K can be defined through their exponential generating func
tion. Using the Cauchy integral theorem, we can express them in terms of this 
generating function, and thus obtain an integral expression of the modified S.N.S.K. 
Then, applying analytic methods of estimating complex integrals, following respec
tively the approachs of Moser-Wyman [14], Bleick-Wang [2] and Temme [21], we get 
some different expansions of these numbers. These asymptotics are distinguished by 
their respective domain of convergence. 

2. STIRLING DISTRIBUTIONS OF THE SECOND KIND 

Consider the left-truncated generalized Poisson distribution (L.G.P.D) 

[ (\+ (3xy-l(e-P0dy/x\Bp(9,r), ifx = r,r+\,... 
?e{X = x} = < (2.1) 

[ 0, otherwise, 

where 

r - l ^(i + ßey-Ңe-^ y , r^(i + ßty-Қe-ß° y 
Bß(«>r)-Z^ 7\ ~e -l^ 7\ ' 

í=r C' 1=0 *" 

(2.2) 

with the conditions of convergence 0 < 9 < 1 and |/?0| < 1. 
a) Let us suppose that X = ( x i , x 2 , • • • ,Xn) is a sample of n random variables 
being distributed as the L.G.P.D with parameter 9 and known r. The L.G.P.D 
belongs to the family of the modified power series distribution (M.P.S.D), so is an 
exponential distribution. Thus the sum Z = YL1=\ x* ls a n exhaustive statistic for 
the parameter 9 and is distributed as a modified Stirling distribution of the second 
kind (M.S.D.S.K) defined by 

f n\S(z,n,r,P)(e-Pe9y /z\BnJ9,r), if z = nr, nr + 1 , . . . 
Pe{Z = z} = \ (2.3) 

I 0, otherwise 
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where the real number S(z,n,r,fi), which is none other than the coefficient of 
(e-^Oy fz\ in the expansion of B$(0,r)/n\, defines the modified S.N.S.K. 

Moreover, by Jensen's inequality, we deduce from the fact that Z is sufficient and 
complete, that the M.V.U estimator for some function g(9) of the parameter 9 can 
be expressed as Eg(g(9)\Z). Nikulin [15] formulated a generalization of the result 
of Patil [17] and Joshi-Park [24], which gives a necessary and sufficient condition 
for the existence of the M.V.U estimator for some function g(9), and provides a 
technique for constructing the M.V.U estimator in terms of the sufficient statistic; 
in our situation, this result can be summarized as follows: 

We note W[Y^7i^l(^)] = {? • It > 0). Let Z = Ylxi b e t h e sufficient complete 
minimal statistic. Then the M.V.U. estimator T(Z) of g(9) exists if and only if 

W[g(9)B$(9,r)]cW[Bn(9,r)}, 

_ f c.(Z, n)/b(Z, n), ifZ C W[g(9)B%(9, r)] 

[ 0, otherwise, 

where the numbers b(Z, n) et c(Z, n) designate respectively the coefficients of^z(9) 
in the series expansion ofBp(9, r) and g(9) B^(9, r). 

From this we obtain for P${X = x} and 9m the following M.V.U estimators: 

P9{T=x}=^(\ + (3xy-lS(Z-x,n-\,r,(3)/nS(Z,n,r,(3), 

Z-rn 

6m= J2 rn(/3k)k-mZ\S(Z - k,n,r,(3)/k(k - m)\(Z - k)\S(Z,n,r,(3). 

к=m 
b) If r is unknown, the statistic (Z,Y), where Y designates the minimal order 
statistic mini<,<n xt, is sufficient and complete for the parameter (9, r). The joint 
distribution of (Z, Y) is 

n\(s(z,n,y,0)-S(z,n,y+l,fi))(e-^0y ; . 
-!B»(t».r) ' " V - T 

Pe>r{Z = z,Y = y}=< 

0, otherwise. 

In this case, the M.V.U estimators of r and 9m are 

r = Y-S(Z,n,Y+\,p)/(S(Z,n,Y,f3)-S(Z,n,Y+\,p)), 

fn _ ZST rn(pk)k~mZ\ S(Z -k,n,YJ)-S(Z -k,n,Y + \,(3) 

km Hk-m)\(Z-k)\ S(z,n,Y,p)-S(Z,n,Y+\,(3) 

c) Similarly, let us consider a sample X — (X\, Xa, • • •, Xn) of n random variables 
being distributed as a M.S.D.S.K defined in (2.3) with parameters 9, k and r. This 
distribution also belongs to the family of the M.P.S.D, thus the sum Z = Y^!i=i %i iS 

exhaustive for the parameter 9 when k and r are assumed known. The distribution 
of Z is 

[ ^ ^ . n i b . r ^ K e - ^ ^ V ^ I B ^ ^ r ) , if z > nkr 
P»{Z = z}= < 

I 0, otherwise. 
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Let us notice now that each random variable Xi can be split up into the sum 
Xi = Y2j=\ X?" °f ^ independent and identically distributed random variables V}, 
following a L.G.P.D with parameter 6 and r. 

It is also possible to compute the M.V.U estimator for some functions g(0) of 
the parameter 6 which can be written ~e(g(9)\Z). We have for instance the M.V.U 
estimator of Pe{X = x; 9} 

— , , (z)S(x,k,r,p)S(Z-x,nk-k,r,(3) 
Pe{X = x} = Pe{X = x\Z} = KxJ - ' ' I H [ K • '—^-L. 

Ln
k-k)S(Z,nk,rJ) 

All the preceding M.V.U estimators can be used for goodness-of-fit test (see Singh 
[19], Nikulin [15]); they are expressed in terms of the S.N.S.K, and this shows the 
usefulness to compute them. 

3. COMBINATORIAL IDENTITIES AND RECURRENCE RELATIONS 

With the notations of the previous section, we have 

oo 

B0(0tr)=J2b***($)> f3'1) 
x=r 

where tf(0)-= e " ^ 0 and bx = (1 + (3x)x~l/x\, x = r,r+l,.... 
We have to compute the kth power of the series Bp(9, r), 

oo , 0 0 

Bkß( ,r)= (J2Һ**( )) = £ an(k)*n( ) . 
k 

n=kr 

With the above notations, we have an(k) = ~S(n,k,r,{3). 

a) General expressions of the coefficient of the Hh power of a series. 

By Cauchy's rule of multiplication of series, we obtain 

an(k)= J2 Kf>n2---bnk. (3-2) 

ni+n2 + - •+nk=n 

By multinomial theorem, we can express an(k) as 

n (U\- \ ^ ik)tl+l2+-+ln Uk-tl-l2 lnhllLt2 . L/„ 
an{k)- - ^ lxW....tn\

 b° b l h n 

li+2l2+-+nln=n l * n 

where for k and m two positive integers, (k)m = k(k — l)(k — 2) • • • (k — m + 1). This 
can be rewritten, regrouping the terms with the same power of &o, as 

an(k) = J2(k)mbk
0-

m J2 t^t i ,*iI*2a---fr-
m=\ il+2l2+...+ntn=.n - n " 

ti+t2 + --+tn=m 
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For r > 1, the r first terms in the series Bp(6, r) vanish, thus we deduce the following 
formula for the modified S.N.S.K 

S(n,k,V,0)= Y, TTl ",' , ,**/*&'•••&• (3-3) 
rtr + (r + l)lT + l +... + n*„=n r ' r + 1 " • 

<r+<r + i + - + < „ = « : 

b) The generalized Stirling numbers of second kind. 

Now we study the special case (3 = 0. Let us recall that the number S(n,k,r) 
is none other than the number of partitions of the set {1,2,... ,n} of the n first 
nonnegative integers into k disjoint subsets each containing more than r integers of 
{1,2,. . . , n } . From this, considering alternatively partitions depending on whether 
{1, 2 , . . . , r} forms a block or not, we can deduce the following "triangular" relation 

S(7i, k, r) = kS(n -i,ktr)+("_ l \ S(n -r,k-l,r), (3.4) 

with the initial conditions S(n, k, r) = 0 if n < kr and S(n, k,r) = 1 if n = kr. 
This recurrence is very useful for computations, but unfortunately, to get the value 

of a certain given generalized S.N.S.K, it generates many of intermediate calculations. 
Using the "including-excluding" principle, we have the following representation 

of the generalized S.N.S.K as 

1 V /̂ t^fk\ V^ n\(k - j)n-^-^—-li 

If we put r = 1 in this formula, we obtain the well-known equality giving the standard 
S.N.S.K k 

S(nfk) = ^(-iyQ(k--j)n. (3.5) 

These two previous formulas give the best known way to compute the S.N.S.K 
when we need only the value of one Stirling number. But although this method 
is better in terms of computing time and memory requirement than the recurrence 
one, it is reasonably interesting only for relative small values of k and r. On the 
other hand, if we don't need the exact value of S(n, k), the relation (3.5) can be 
truncated, assuming that n is sufficiently large with regard to k, and then gives an 
estimation of this number. 

c) We now direct our attention on the case r = 1. Gupta [9] gave the useful equality 
linking the modified S.N.S.K with r = 1 and the regular S.N.S.K 

S(n,k,l,P) = _^(U_l)(l3nr-iS(j,k). (3.6) 
j=k V J J 

So, using either (3.4) or (3.5), it is possible and easy with (3.6) to compute the 
modified S.N.S.K in this special case. 

d) Two recurrence relations for the modified S.N.S.K. 
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The modified S.N.S.K satisfy the following recursion relations (see Charalambides 
[4]) and Voinov-Nikulin [23]): 

n-r( i fc- l )+l 

S(n + l,*,r,/?)_ J2 (l + ^ y - ^ / j W - i + l.ib-l.r.fl, 
j =r \J 

S(n,*,r+ l.ffl = h-m^^-,)n]St:~H^X'0)-JTi (n - rj)\j\(r\y 

Putting {3 — 0 and r — 1, we deduce a well-known relation for the regular S.N.S.K. 

4. ASYMPTOTICS OF STIRLING NUMBERS 

The exponential generating function of the numbers S(n, k, r, fi) is 

±Bk
0(e,r) = £ S(n,k,r,(5)(e-^9)n/n\. (4.1) 

** n>kr 

Then, by the Cauchy integral theorem, we obtain the following integral expression 

S(n'k'T'0) = j \ h l c
B k ^ ' 1 ( z ) ' T ) 7 ^ ' (42) 

where the contour C encloses the origin and is included in the unit disc. 
Now we distinguish the two cases whether /? is zero or not. 

a) Suppose that /3 — 0. The numbers S(n, k, r, /?) reduce to the generalized S.N.S.K, 
and V(9) = 9. Writing BQ(z, r) = B(z, r), formula (4.2) gives 

s(n'k'T) = t.iilc
Bk(z'T)^' (43) 

Let us call I the integral in (4.3). Following the idea of Temme [21], we put 

$(z) = -n In z + k In B(z, r), (4.4) 

and we obtain I = fc e*t*)&. 
The saddle-point ZQ is defined by the positive real solution of the equation <f>'(z) = 

0, that is 

Z°-B(^r) ~ F ( 4 5 ) 

We now define a local transformation of $(z) around the point z = ZQ ; as 
remarked by Temme [21] for the standard S.N.S.K, the usual saddle-point method 
is based on a local quadratic transformation, and does not give here approximations 
very accurate when n ~ kr. Observing that $(z) ~ (kr — n) In z when x —• 0 + and 
$(z) ~ kz when x —» +oo, we are led to put 

$(z) = kt + (kr - n) In t + A, (4.6) 
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where t is the new variable and A is a constant term defined by the additional 
conditions: z = 0 •& t = 0, z = +oo <=> t = -f oo and z = z0 & t = t0, where t0 is 
the point which cancels the derivative of the right hand-side of (4.6). So we have 

t0 = (n-kr)/k and A = $(z0) - kt0 + (n - kr)lnt0. (4.7) 

Thus, by applying the transformation (4.6), we get 

[ - e A [ e k t K t ) * * where M 0 = i^ = ML^) . (4.8) 
J A v ; *»-*»•+- ' hK ' z dt z$'(z) v ' 

The function /z is analytic in a neighborhood of the origin and in a domain including 
the real axis, so fi is analytic at t = 0 and t = t0. The contour C can be deformed 
into a contour through the point t0. 

A first approximation is now obtained by replacing fi(t) by //(to)- This gives in 
view of the relations (4.3) to (4.8) as n —• +oo 

5(„ k r) "' f"--'V-tr-*(*--) / **0 (49) 

Several computations with different values of n and r was done, and showed the 
uniform character of (4.9) with respect to k. 

It is possible to obtain higher order approximations for the generalized S.N.S.K 
by following Temme's procedure. We have 

c( i \ n ! (n-kr\n~ rBk(z0,r)^ t , . x ,_ £ 

Xn'h'r)~W~~~\~~~) ~~~~hu ' 

where ,<„ = „ and „ w ( . ) = t jLSff l ~ f ( ' o ) , < > 0 . 
at c — to 

b) In the general case (3^0, denoting C = tf_1(C), from (4.2) we obtain 

S(n,k,r,P)=7£-L£ Bk(z,r)(l~0z)e^^-, (4.10) 

which can be rewritten as 

* - • * . - * > - ^ { X ^ . - ^ - ^ T - X ^ . ^ - ' F } ' <4-U> 
The previous argument can be adjusted to estimate each of these two similar inte
grals. In this way, the first order and high order estimates follow. 

c) Moser-Wyman [14] formulated two different asymptotic expansions of the stan
dard S.N.S.K., each of them valid over two complementary domains, depending 
whether n — k = o(y/n) or n — k —• +oo as n increases to infinity. Those can be 
extended easily to the generalized S.N.S.K. For obtaining similar expansions of the 
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modified S.N.S.K, we need some modifications. According to (4.11), we have in fact 
to expand integrals as 

/ = J^(z,r)e^^. (4.12) 

Putting z = Reie and g(6, R) = k\n Bp(Rei9,r) + fhiReiB - in9, we get 

r+-
I = A exY>(g(9,R))de, 

J -ir 

where A is some constant. Then we compute the MacLaurin expansion around 
9 = 0 of g(9,R). At this stage, we choose R such that the term in 9 vanishes 
(9 = 0 correspond to the saddle-point ZQ of the previous method). Distinguishing 
the contributions in / with small 9 (major arcs) and with large 9 (minor arcs) and 
extending the range of integration, we obtain 

oo +CX3 

I ~ A'{ J2(VkR)-s / exp(-</>2)6,(0)d4, (4.13) 
- = o • ' - < » 

for some calculable constant A' and where bs(<f>) are polynomials in <f>. The integrals 
in (4.13) can be easily calculated. The expansion (4.13) is valid as n — kr tends to 
infinity. 

Formula (4.13) can be completed in the following way : 
Writing f(z) = (Bp(z,r) - brV

r(z))/(brV
r(z)) where br = (1 + j3r)r-1 /r\, we get 

from (4.12) 

'-SnJ^ + ̂ ^i^-T- <4-14> 
The substitution q = 2/k, z = qw transforms I into 

/ = ̂ (""r)|?/(1 + /^2/V"°"^r-

Expanding (l + f(qw)) q in a MacLaurin series about q = 0, we obtain 

I = q'{n-kr)^_ (FUW)e-+P*»» d™ , 

where F(q,w) = Y1T=QPJ(W)^
 a n ( l Pj(w) a r e polynoms in w. Thus we can write, 

putting^- = [£^(Pj(w)e"(^))]w=Q 

I /L\ n~^r n — kr—l /n\j 
S(n,k,r,P) = ^ l - ) 6* ~P - U . (4.15) 

• y / j=0 \ / 

If we truncate the summation in (4.15), we obtain an equivalent which is valid for 
n — kr = o(y/n). 

Using essentially the same ideas, Bleick-Wang [2] obtained another asymptotic 
for the standard S.N.S.K valid on a smaller domain but giving better accuracy. 
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In our numerical simulations, the first order approximations achieved by Temme 

or Moser-Wyman's approach produce approximations with relative errors less than 

1/100. If we consider the first two terms of each of these expansions, the accuracy 

reaches 1/1000. 

In the following table, we give an application for n = 10, r = 1 of the formulas 

(4.9), and (4.13), (4.15) truncated at the first two terms. 

Table 1. Approximations of standard Stirling numbers of the second kind. 

* 5(20, fc) (4.9) (4.13)-(4.15Г 

1 1 0.9993 0.9997 
2 511 512.98 510.92 
3 9330 9390.1 9332.8 
4 34105 34319 34114 
5 42525 42750 42531 
6 22827 22922 22826 
7 5880 5897.7 5877.9 
8 750 751.45 749.1 
9 45 45.04 45 

10 1 1 1 

Table 2. Approximations of generalized Stirling numbers of the second kind. 

fc S(20, fc,2) (4.9) (4.13)-(4.15)* 

1 1 0.9995 0.9999 
2 5.2427 105 5.2429 105 5.2409 105 

3 5.7536 108 5.7766 108 5.7535 108 

4 4.1388 101 0 4.1650 101 0 4.1397 Ю 1 0 

5 5.3618 Ю 1 1 5.3983 Ю1 1 5.3632 Ю1 1 

6 1.8618 101 2 1.8736 101 2 1.8622 101 2 

7 2.0267 101 2 2.0377 101 2 2.0270 101 2 

8 6.9474 Ю 1 1 6.9756 Ю1 1 6.9466 Ю1 1 

9 6.2199 101 0 6.2341 101 0 6.2199 101 0 

(*) best of the two formulas (4.13) and (4.15) - (f) not computed via (4.9). 

(Received March 3, 1994.) 
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