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K Y B E R N E T I K A — V O L U M E 16 (1980), N U M B E R 5 

Optimization Problem with Parameter and 
Its Application to the Problems of Two-Stage 
Stochastic Nonlinear Programming 

VLASTA KAŇ KOVÁ 

!f there is an unknown parameter in an optimization problem then the optimum is a function 
of this parameter. Surely, the study of this function is very important. In this paper, firstly, we 
shall consider a deterministic problem with an unknown vector parameter. We shall try to find 
conditions under which the optimum is a continuous, concave and Lipschitz function of the 
parameter. This at the same time also yields sufficient conditions for stability of the determi
nistic nonlinear optimization problems. 

Secondly, we shall use the mentioned results for some types of stochastic models. It is easy 
to see that, generally, the optimalized function in two-stage stochastic programming problems 
is the mathematical expectation of the optimal value of the optimalized function in a deterministic 
optimization problem with the parameter. We shall introduce conditions under which the opti
malized function in a two-stage stochastic nonlinear programming problem is continuous and 
differentiable. At the end of this paper some examples of two-stage stochastic nonlinear program
ming problems fulfilling this conditions will be given. 

I. Introduction 

In the first part of this paper we shall consider a deterministic optimization problem 
with an unknown parameter. We shall investigate the dependence of the optimal 
value on the parameter. From the practical point of view, it is very important that 
"small" variations of the parameter caused "small" variations of the optimal value 
too. It is easy to see (cf. [ l]) that this property need not be fulfilled even in a very 
simple case. In this paper we shall try to find a class of deterministic parameteric 
problems for which the optimum is a continuous, concave and Lipschitz function 
of the parameter. 

We shall apply the results of the first part of this paper to derive the properties 
of two-stage stochastic nonlinear programming problems. We shall find conditions 
under which the optimalized function in these problems is continuous and differenti
able. These conditions apply directly to functions figuring in the setting of the problem 



itself. The results of this paper complete those of the results of [4] where the conti
nuity of the optimalized function follows from the continuity of a set mapping. 
At the end of this paper some examples of two-stage stochastic nonlinear program
ming problems fulfilling our conditions will be given. 

It remains to remark that the corresponding results for linear case has been proved 
in [2]. 

II. Deterministic Models 

1. FORMULATION OF THE PROBLEM 

Let X a E„, Yc: Em be non-empty sets, E(x, y), E,(x, y), / = 1, 2, ..., / be real 
valued functions defined on E„ x E,„. (E„, n 2; 1 denotes n-dimensional Euclidean 
space). 

If 

(1) K(Y) = {xeX : F,(x, y) ^ 0, i = 1, 2, ..., /} for yeE , „ , 

then the general deterministic optimization problem with the vector parameter 
y can be introduced as a problem to find 

(2) sup {E(x, y) : x e K(Y)} = <p(y) for y e Y 

2. SOME AUXILIARY ASSERTIONS 

If Y 4= 0 then (1) defines a mapping of Yinto the space of subsets of X. If, further, 
X is a compact set and E,(x, y), i = 1, 2, ..., / are continuous functions then (1) 
defines a mapping of Yinto the space of compact subsets of X. Since it is easy seen 
from [4] that the continuity of O(Y) follows (under general conditions) from the 
uniform continuity of X(y); so to obtain conditions under which w(y) is a continuous 
function it is enough to find such properties of E,(x, y), / = 1,2, . . . , / that K(Y) is 
a uniformly continuous mapping. 

We shall give some definitions. 
The Hausdorff distance between two subsets in E„ is defined in the following way. 

Definition 1. If X', X" <= E„, n ^ 1 are two non-empty sets then the Hausdorff 
distance of these sets An(X', X") is defined by 

(3) An(X', X") = max [Sn(X', X"), Sn(X", X')] 

Sn(X', X") = sup, inf Q„(x', x") 
x'eX' x"eX" 



where Q„ denotes the Euclidean metric in E„. (We usually leave the subscripts in 413 
symbols A„, Q„, 8„.) 

Now, we can already give the definition of the mapping semicontinuous from 
below and the definition of the uniformly continuous mapping. 

Definition 2. X(y) is a mapping semicontinuous from below in the point y0 e Y 
if for every e > 0 there exists d > 0 such that the implication 

Qjy, Yo)<$, Y^Y^ 8„[K(Y0), K(Y)] < e 
is valid. 

Definition 3. K(Y) is a uniformly continuous mapping on Y if for every e > 0 
there exists <5 > 0 such that the implication 

y, y' e Y, Qm(Y, y') < 5 => A[K(Y), K(Y')] < e 
is valid. 

Now we can formulate our first auxiliary assertion. 

Lemma 1. Let X + 0, Y 4= 0 be compact sets, K(y) * 0 for y e Y. Let, further, 
E,(x, y), i = 1,2,. . . , / be continuous functions on X x Y. If X(y) is a mapping 
semicontinuous from below in every y e Ythen K(y) is a uniformly continuous map
ping on Y. 

Proof. We shall give the proof of this statement by contradiction. Let us assume 
that, under the assumptions of Lemma, there exists e > 0 such that for every natural 
number r there exist yr, yr e Yfor which 

Qm(Yr,Y'r)< ijr, A[K(Yr), K(Y'r)] > 8 . 

But this assumption is equivalent to the following one: There exists e > 0 such 
that for every natural number r there exist yr, yr e Yand xr e K(yr) for which 

(4) Qm(Yr> Yr) < l / r , Q„(xr< xr) > £ » for every x'r e -K(yr). 

As the sets X, Yare compact and the functions E;(x, y), i = 1, 2, .... / continuous, 
it is easy to see that there exist subsequences {y rJ, {x rJ of the sequences {y,}, {xr} 
and points y0 e Y x0 eX such that yrfc -> y0, xrk -> x0 e K(y0). 

Further, we obtain from (4) that there exists e > 0 such that for every <5 > 0 there 
exists Y e Yfor which 

Qm(Yo, Y') < 5 , Q„(x0, x') > e for every x' e X(y') . 

But this contradicts to the assumption that K(y) is a mapping semicontinuous from 
below in every y e Y. • 



Let for every e > 0, X(s) be defined by 

X(E) = X + B(s) = {x = x1 + x2: xleX,x2e B(s)} , 

where B(e) denotes e-surroundings of 0 e E„. 

If we shall assume that X fulfils condition 

(5) X => {x e E„ : E,(x, y) > 0, i = 1, 2, ..., / for an y e Y} 

and if 

(i) X 4= 0 is a compact, convex set, Y #= 0 is a compact set; 

(ii) E,(x, y), / = 1, 2, ..., / are continuous functions on X x Yand, further, there 

exist on X(E0) the continuous partial derivatives of the functions E;(x, y) for 

every y e Y and an e0 > 0; 

(iii) K(y) 4= 0 for every y e Y; 

then we can introduce conditions under which K(y) is a uniformly continuous 

mapping. 

Lemma 2. Let the conditions (i), (ii), (iii) and the relation (5) be fulfilled. If the 

vectors of partial derivatives of the functions E,(x, y), i = 1, 2, ..., / with respect 

to the components of vector x are linearly independent at all points (x, y), xeX, 

yeY such that E,(x, y) = 0 at least for one i e {1, 2, ..., /} then K(y) is a uniformly 

continuous mapping on Y 

Proof. In according to Lemma 1 to prove Lemma 2 it is enough to prove that 

K(y) is a mapping semicontinuous from below in every yeY. Since X is a compact 

set the sets K(y) for every y e Yare compact too. But from this it is easy to see that 

the assertion of Lemma 2 will be proved if we shall prove the following: 

For every y0 e Y x 0 e K(y0), E > 0, there exists 5 > 0 such that 

(6) Qm(Y, y o ) < ^ > y e Y = > x e K(y) exists such that Q„(X, X 0 ) < e . 

Let y0 6 Y x 0 e K(y0), e > 0 be arbitrary. Then either 

a ) -F;(x0! yo) > 0 f ° r every ie {1,2, ..., /} , or 

b) Ei(x0, y0) = 0 at least for one i e {1, 2,...,/} . 

If a), then the validity of (6) follows from the continuity of the functions E;(x, y), 

i' = l ,2 , . . . , /. So it remains to prove (6) in the case b). In this case we divide the set 

1,2,...,/ into two parts IX,I2 by 

iєI^oF^Xo, y0) > 0 

iєI2o E;(x0, y0) = 0 . 



From the continuity of the functions E,(x, y), / = 1, 2, ..., / follows the existence 
of an <5t > 0 such that, for every y e Ysuch that gjy, y0) < «51; there exists x e K(Y) 
such that Q„(x, x0) < e and E;(x, y) > 0 for /' e li

lt remains to consider the case i el2. We denote the vector of partial derivatives 
dFijdxj, j = 1, 2, ..., n in the point (x0, y0) by VE,(x0, y0) = VE; for iel2. From 
the assumptions of Lemma 2 follows the existence of x0 e E„ such that (VE;, x0) > 0, 
for every i s I2 (symbol ( , ) denotes the scalar product in E„). But, as the vectors of 
the partial derivatives are continuous, we can easy see that there exists also x' e ^(e0) 
such that Q„(x', x0) < e and E,(x', y0) > 0 for i e I2 simultaneously. 

Further, the validity of the implication 

Q,„(Y, y0) < <52 , y e Y=> the existence of x e K(Y) such that 

E;(x, y) > 0 , i el2 , Q„(X, X0) < s simultaneously 

for an d2 > 0, follows from the continuity of the functions E;(x, y), i = 1,2,.. . , / . 
Now it is easy to see that, for 5 = min (St, 82), the relation (6) is valid. • 

Remark 1. If we assume the independence of the vectors of partial derivatives 
only for i e {1, 2, ..., /} such that E; = 0 in the corresponding points instead of for 
every i = 1,2,. . . , / , then the assertion of Lemma 2 is valid too. (This follows imme
diately from the proof of Lemma 2.) 

The conditions under which the mapping K(Y) is uniformly continuous are given 
in Lemma 2. The assumption of the existence of the partial derivatives of E;(x, y), 
i = 1, 2, ..., / with respect to the components of vector x occurs in these conditions. 
Now we shall introduce some other conditions. There the demand of the existence 
of the partial derivatives will be replaced by a concavity. 

If 

(ii') E;(x, y), i = 1, 2 , . . . , / are continuous functions on X(s0) x Yfor an s0 > 0 

and if they are, for every y e Y concave functions of x on X(e0); 

(Hi') {xeX : E;(x, y) > 0, i = 1, 2, ..., /} 4= 0 for every y e Y then the following 
statement is valid: 

Lemma 3. If the conditions (i), (ii'), (iii') are fulfilled then K(Y) is uniformly 
continuous mapping on Y 

Proof. Obviously, to prove this Lemma it is enough to prove (6) for all y0 e Y 

x0 g K(YQ) and e > 0. 

Let y0 e Y x0 EK(Y0), e > 0 be arbitrary. We shall define the subsets Ilf I2 by 

i e It o E;(x0, y0) > 0 

ieI2oFt(x0, y0) = 0 



Continuity of the functions E;(x, y), i = 1,2, ..., / yields the existence of an 
<5. > 0 such that for every y e Yfor that g(y, y0) < ^ there exists xeK(y) such 
that g„(x, x0) < e and also E,(x, y) ^ 0 for i e / . . 

Now, we shall consider the case i e / 2 . It is easy to see that, under the conditions 
of Lemma, there exist xx e K(y0), x2 e X(e0) such that the conditions Q„(xu x0) < B, 
Qn(x2, x0) < e, E;(Xj, y0) > 0, E;(x2, y0) < 0 are fulfilled for i el2. Further, the 
existence of an <52 > 0 for which the implication 

Qm(Y> Yo) < <52 , y e Y=> F,(xu y) > 0 , F,(x2, y) < 0 for every 

i e I2 and some x1 e X , x2e X(E0) 

is valid, follows from the continuity of functions Ff(xj, y), i = 1,2,.. . , / . 

But now we have, for iel2, 

t?,„(y, Yo) < 32 » y £ Y=> there exists x e X(y) such that E,(x, y) ^ 0 

for every i e I2 and £„(x, x0) < e0 simultaneously. 

It is easy to see that for d = min (5t, d2) the condition (6) is valid. D 

3. ASSERTIONS 

In the previous part we have dealt with auxiliary assertions. Now we shall utilize 
them to get the properties of the functions cp(y). However to derive these we shall 
use the results of the paper [4] too. There are given conditions under which the 
uniform continuity of K(y) yields the continuity of the function <p(y). 

For a reference we now present Lemma 1 of [4]. 

Lemma 4. Let K(y) be uniformly continuous mapping of Y into a space of non
empty and closed subsets of X. Let, further, E(x, y) is a uniformly continuous 
function on X x Y If 

(7) (p(y) = sup {E(x, y) : x e K(y)} < + oo for every y e Y 

then the function q>(y) is continuous on Y. 

Theorem 1. Let the conditions (i), (ii), (iii) and the relation (5) be fulfilled. If the 
vectors of partial derivatives of the functions E,(x, y), i = 1, 2, ..., / with respect 
to the components of vector x are linearly independent at all points (x, y), xeX, 
y e Ysuch that E((x, y) = 0 for at least one i e {l, 2, ..., /} and if E(x, y) is a conti
nuous function on X x Ythen cp(y) is a uniformly continuous function on Y. 



Proof. As X, Yare compact sets, it follows from Lemma 2 and Lemma 4 that 
to prove the Theorem it is enough to prove the validity of (7). But this follows imme
diately from the condition (i), conditions (ii), (iii) and the assumption of the continuity 
of the function F(x, y). • 

Remark 2. If we assume the independence of the vectors of partial derivatives 
of the functions E,(x, y) only for i e {1, 2, ..., /} such that Ft = 0 in the correspond
ing points instead of for every i = 1,2,. . . , / then the assertion of Theorem holds 
too. (This follows immediately from Remark 1.) 

Theorem 2. If the conditions (i), (ii'), (iii') are fulfilled and if E(x, y) is a continuous 
function on X x Ythen <p(y) is a uniformly continuous function on Y 

Proof. The assertion of Theorem 2 follows from Lemma 3 and Lemma 4. • 

Theorem 3. Let X, Ybe convex and non-empty sets. 

1. If E(x, y), E;(x, y), i = 1, 2, ..., / are concave functions onX x YandifX(y) 4= 0 
for every y e Y then <p(y) is a concave function on Y; 

2. If Y is a compact set and if there exists e0 > 0 such that 
a) E(x, y) is a concave, bounded function on X x Y(E0), 
b) F,(x, y), i = 1, 2, ..., / are concave functions o n l x Y(e0), K(y) + 0 for every 

y e Y; 

then q>(y) is a Lipschitz function on Y. 

(Y(e) for e > 0 is defined in the same way as X(e).) 

Proof. The assertion 1 follows from Lemma 1 of [3]. 
Further, it follows from 1. that under the assumptions of 2. the function <p(y) is 

bounded and concave on Y(e0). Thus we can utilize Theorem 10.2 of [8]. The asser
tion 2 follows immediately from this Theorem. • 

It is easy to see that, generally, <p(y) can be infinite. But under the assumptions 
of this paper the function q>(y) (or its stochastic equivalent) is bounded. 

At the end of this part we shall note that the conditions of the stability of deter
ministic optimization problems are given in the theorems we proved too. 

Some special models of two-stage stochastic nonlinear programming problems 
are given at the end of this paper. The stable deterministic optimization problems 
can be found from this special stochastic models. 

III. Stochastic Models 

Now we shall try to use the results of the previous parts for two-stage stochastic 
nonlinear programming problems. 



1. FORMULATION OF TWO-STAGE STOCHASTIC NONLINEAR 
PROGRAMMING PROBLEMS 

First we note that in this part we will try to preserve the notation employed in the 
previous part. Hence to define two-stage stochastic nonlinear programming problems 
we divide vector y into two parts y = (z, u), where z e Es, u e Er, r + s = m. 

Let now X c £„, Z <= Es, U <= Er be non-empty sets, (Q, £f, P) be probability 
space, %(m) be s-dimensional random vector defined on (Q, £f, P). 

Let, further, the vector %(co) fulfil the condition 

(8) P{co : df(to) e Z} = 1 . 

(in (8) it is assumed that {m : <*(a>) eZ}e Sf). 
If E(x, z, u), E;(x, z, u), i = 1, 2, ..., Z are real valued continuous functions 

defined on E„ x Es x Er and if the mapping J<;(u, z) and the function cp(u, z) are 
defined by 

(9) K(u, z) = {x e X : E,-(x, z, u) > 0 , i = 1, 2, ..., 1} 

<p(u, z) = sup {E(x, z,u):xe K(u, z)} for u e Er, zeEs, 

then we can introduce the general problem of two-stage stochastic nonlinear pro
gramming as a problem to find 

sup {E <p(u, Z(coj) : ueU} , 

where E denotes the operator of the mathematical expectation. (In this paper we 
shall assume such conditions that all symbols in the definition of two-stage stochastic 
programming problems are meaningful.) 

The aim of this part is to find conditions under which the function E cp(u, £(co)) 
is continuous and differentiable. 

2. CONTINUITY OF THE FUNCTION E cp(u, {(©)) 

Theorem 4. Let E(x, z, u) be a continuous function on X x Z x U and let 

1. Z 4= 0, U 4= 0 be compact sets, 
X 4= 0 be a compact, convex set such that the condition 
X => {xeE„ :E ;(x, z, u) > 0 for every j = l , 2, ..., / and an ueU, zeZ} 
holds; 

2. E;(x, z, u), / = 1, 2, ..., / be continuous functions on X x Z x U and let there 
exist on X(s0) continuous partial derivatives of the functions E;(x, z, u), i — 1, 2,... 
..., / for every ueU, ze Z and an e0 > 0; 



3. K(u, z) * 0 for every u e U, z e Z. 
If the vectors of partial derivatives of the functions E,-(x, z, u), i = 1,2, . . . , / 

with respect to the components of vector x are linearly independent at all points 
(x, z, u), x e X, z e Z, u e U such that E,(x, z, u) = 0 at least for one i e {l, 2 ..., /} 
and if the condition (8) is fulfilled then E tp(u, £(a>)) is a continuous function on U. 

Proof. The assertion of Theorem 4 follows from Theorem 1 and properties of 
integral. • 

Theorem 5. Let E(x, z, u) be a continuous function on X x Z x U and let 

1. X 4= 0 be a compact, convex set, 
Z 4= 0, U =(= 0 be compact sets; 

2. E;(x, z, u), / = 1,2,. . . , / be continuous functions on X(e0) x Z x U for an 
e0 > 0 and E,(x, z, u), i = 1, 2, ..., / be for every ze Z, u e U concave functions 
of x on X(e0); 

3. {x e X : E;(x, z, u) > 0, i = 1, 2, ..., /} + 0 for every zeZ, ueU. 
If the condition (8) is fulfilled then E q>(u, £(«)) is a continuous function on U. 

Proof. The assertion of Theorem 5 follows from Theorem 2 and properties 
of integral. • 

Theorem 6. Let the assumptions 1, 3 of Theorem 5 be fulfilled. Let, further, the 
functions E(x, z, u), E,(x, z, u), i = 1,2,...,/, be concave on X(s0) x U(e0) for an 
e0 > 0 and every z e Z. If E(x, z, u), E;(x, z, u), /' = 1,2, ..., / are continuous 
functions on X(s0) xZx U(e0) and if the condition (8) is fulfilled then 
1. E tp(u, £(co)) is a continuous and concave function on U; 
2. E tp(u, %(co)) is a Lipschitz function on U. 

Proof. Since it follows from Theorem 2 that cp(u, z) is a continuous function 
on U x Z and since, further, it follows from Theorem 3 that tp(u, z) is a concave 
function for every z e Z on U, the assertion 1 follows from the properties of integral. 

Further, since X, Z, U are compact sets and E(x, z, u) is a continuous function, 
we can easy see that E(x, z, u) is a bounded function on X x Z x U. However, 
under the condition that E(x, z, u) is a bounded function so that tp(u, z) must be 
bounded function too. Now, the assertion 2 follows from [5] (condition (10)) and 
the properties of integral). • 

Until now we have dealt with the continuity of the function E cp(u, £(co)). In the 
sequel we shall try to find conditions under which E q>(u, £(co)) is a differentiable 
function. 



420 3. DIFFERENTIABILITY OF THE FUNCTION E cp(u, §(©)) 

The case of discrete random variables is discussed in [3]. For discrete case, the 
result has been obtained by simple generalization of the corresponding result in linear 
case. The continuous case is complicated. We shall deal with special cases only. 
However these cases are quite important from the practical point of view. 

Let Yt c Emt, t = 1, 2 be convex, compact sets for which int Yt =t= 0; X, U be 
convex sets; ht(u, z) = \htl(u, z ) , . . . , htmt(u, z)], / = 1, 2 be vector functions defined 
on Er x Es mapping U x Z into int Y„ t = 1,2. 

Let, further, the functions E(x, z, u), F,(x, z, u), i = 1,2, . . . , / fulfil the conditions 

F(x, z, u) = F(x, h.(u, z)) = F(x, y.) , 

E;(x, z, u) = F ;(x, h2(u, z)) = F ;(x, y2) , i = 1, 2. ..., / , 

where F(x, yj) or F,(x, y2), i = 1, 2, ..., / are real valued functions defined on E„ x 

x Emi or £„ x £m2 respectively. 

If K(Y2), <P(YU YI), YI e Yi, y2 e Y2 are defined by 

X(y2) = { x e X : F ; ( x , y 2 ) ^ 0 , i = 1, 2, . . . , /} , y2 e £ m 2 , 

HYu y2) = s u p { F ( x , y 1 ) : x e ^ ( y 2 ) } , yj e £ m , , y 2 e £ m 2 , 
then 

K(u, z) = K(h2(u, z)) , 

<p(u, z) = ^(h^u, z), h2(u, z)) for every u e £ r , z e £ s . 

Now we shall introduce the conditions of differentiability of the function 
E cp(u, S(co)). 

Theorem 7. Let U, X be convex sets and F(x, ys), F ;(x, y2) i = 1, 2, ..., / be 
concave functions defined on X x Yi(e0), X x Y2(e0) for an e0 > 0 respectively. 
Let, further, htj(u, z), t = 1, 2,7 = 1, 2, ..., m, be continuous functions on U x Z 
such that for every z e Z they are differentiate on U. Then if the condition (8) is 
fulfilled and if 

1. [h,(u, %((o)), t = 1, 2] are for every ueU random vectors such that their pro
bability measure are absolute continuous with respect to the Lebesque measure 
in £mi x £m2; 

2. the condition 

Qmt\ht(u,z),ht(u',z)\^gt(z)Qr(u,u') 

is fulfilled for t = 1, 2 and every u,u' eU, zeZ and, further, there exists finite 
E g,(«J(Q,)) for / = 1, 2 ; 



3. E(x, ya) is a bounded function on X x Yi(fi0), and K(y2) 4= 0 for every y2 e Y,(e0), 
then E cp(u, i;(co)) is a differentiable function on int U. (Symbols Yi(e0), Y2(s0) are 
defined in the same way as X(e,0), Y(s) in the previous part.) 

The assumption 2 is rather simple in the case when the functions o,(z), t = 1, 2 
do not depend on z. This happens, for example, if hti(u, z), t = 1, 2, / = 1, 2, ..., m. 
are bounded and concave (or convex) function on U(e0) (cf. (10) of [5]). 

Proof. It follows from Theorem 3 that ^(y^ y2) is a concave and Lipschitz 
function on Yl x Y2. 

Let, now, u0 e int U be arbitrary. According to [7], there exists a set Ar a 
c int [Yj x Y2] of the Lebesque's measure 0 such that <7i(y,, y2) is a differen
tiable function on [int Yr x int Y2 - JV\ If 

Z(u0) = {z e Es : [h,(u, z), h2(u, z)] e JT] , 

then it is easy to see that 

P{OJ : $(o>) e Z(u0)} = 0 . 

Further, as hti(u, z), t = 1, 2, / = 1, 2, ..., m. are for every zeZ differentiable on U 
it is easy to see that (p(ht(u, z), h2(u, z)) is a differentiable function in the point u0 

for every z ^ Z(u0). 
Since we have proved that <p(yl7 y2) is a Lipschitz function on Yx x Y2, we can 

easily see from the assumption 2 that <p(u, z) = <p(hy(u, z), h2(u, z)) is for every 
z e Z a Lipschitz function on U. If we denote the Lipschitz constant of (p(u, z) by 
H(z), it follows from the assumptions that there exists finite E H(%(co)). Since, 
further, it follows from the assumption 3 that <p(y1; y2) is a bounded function we get 
that there exists a finite E <p(u, £(co)) for every u e U. 

But this already verifies the Lebesque's Theorem assumptions from which the 
differentiability of E <p(u, <̂ (co)) in the point u0 directly follows. As u0 e int U has 
been arbitrary the proof of Theorem is finished. • 

Corollary 1. Let U, X be a convex set and, for an e0 > 0, E(x, yx), E;(x, y2), 
i = 1,2,. . . , / be concave functions on X x Y^EQ), X x Y2(e0) respectively. Let, 
further, htj(u, z), t = 1,2, j = 1, 2, ..., mt be continuous functions on U x Z and 
let there exist on U partial derivatives of the functions htj(u, z), t = 1, 2,;' = 1, 2, ... 
..., m, for every z e Z. If 

a) htj(u,z), t = 1,2, j = 1,2,..., m, are for every z e Z concave functions on 

i!(s0); 
b) 71 ,̂(0, z), f = 1, 2, j = 1, 2, ..., mt are on U(e0) bounded functions by constant 

not depending on z e Z; 
and if the assumptions 1, 3 of Theorem 7 and the condition (8) are fulfilled, then 
E cp(u, J(co)) is a differentiable function on int U. 



422 Proof. Obviously to prove Corollary 1 it is enough to prove that the assumption 2 
of Theorem 7 follows from the assumptions a), b). Further, to prove this it suffices 
to prove htJ(u, z), t = 1, 2,j = 1, 2, ..., m, are Lipschitz functions of u, ueU with 
Lipschitz constant not depending on z, z e Z. But this statement has been proved 
in [5] (relation (10)). • 

If E(x, z, u), E;(x, z, u), i = 1, 2, ..., / are concave functions the following result 
takes place. 

Corollary 2. If the assumptions of Theorem 7 are fulfilled and if E(x, z, u), 
F,(x, z, u), i = 1,2, ..., I are for every z e Z concave functions on X x U then 
E <p(u, <jf(co)) is a concave, differentiate function on int U. 

Proof. According to Theorem 3 cp(u,z) is for every z e Z a concave function 
on U. From this it follows that E cp(u, £(a>)) is a concave function on U too. The 
differentiability of E cp(u, £(©)) on int U follows from Theorem 7. Q 

Now, we shall introduce another conditions for the differentiability of the function 
E cp(u, i(co)). 

Theorem 8. Let Z eE s be a compact set and let for every zeZ, htJ(u, z), t = 1,2, 
j = 1,2,..., m, be differentiable functions of u. If the relation (8) is fulfilled and if 

1. h,(u, %(co)), t = 1, 2 are for every u e U random vectors such that their probability 
measures are absolute continuous with respect to the Lebesque's measure in 
Em! x Em2; 

2. the condition 

Qm,[h<(u, z), ht(W, z)] ^ g,(z) Qr(", "') 

is fulfilled for t = 1, 2 and every u, u' e U, z e Z, and further, there exists finite 
E gt(S(co)) for t = 1, 2; 

3. y2 e Y2 => -K(y2) 4= 0 and the fulfilment at least one of two conditions 

a) K(y2) is a compact set, 

b) F(x, yt) is a bounded function on K(y2); 

4. F(x,y1) is a Lipschitz function on E„ x Y: with Lipschitz constant c«, 

5. ,d[X(y2), K(y2)] rg C2 em2(/2, y^) for every y2, y2 e Y2, where C2 is a constant, 
then E <p(u, ^(co)) is a differentiable function on int U. 

6. F(x, y,), F,(x, y2), / = 1, 2 , . . . , / be concave functions on E„ x Yt, E„ x Y2 

respectively. 

Proof. The assertion of Theorem 8 follows from Theorem 2 and Remark 4 of [3]. 

D 
(Some conditions under which the assumption 5 of Theorem 8 is fulfilled are given 
in [3] and [6].) 



4. SOME SPECIAL CASES 

Till now we have dealt with theoretical problems only. First we found conditions 
under which the optimum in a parametric deterministic optimization problem is 
a continuous, concave and Lipschitz function of the parameter. Further, we used 
the results for deterministic parametric problems to gain the properties of the opti
malized function in two-stage stochastic nonlinear programming problems. 

In this last part we shall try to introduce special cases of functions E(x, z, u), 
T,(x, z, u),i = 1,2,.. . ,/ fulfilling the conditions under which cp(u, z) and E q>(u, %(<x>)) 
are continuous, concave and differentiable functions. At this place we can note that 
these stochastic problems easily yield examples of stable deterministic problems. 

In this part of the paper we shall assume that 

(a) the condition (8) is fulfilled; 

(b) the functions F(x, z, u), F ;(x, z, u), i = 1, 2, ..., / fulfil all conditions that have 
been introduced in the beginning of Part 3. 

Example 1. In this first case we shall assume 

Ft(x, z, u) = ht(u, z) - g((x, z) for every i = 1 ,2 , . . . , / . 

It follows from Theorem 5 that if 

a) X is a compact, convex set and U, Z are compact sets; 

b) gt(x, z), h;(u,z), i = 1, 2 , . . . , / are continuous functions on X(e0) x U x Z 
for an e0 > 0, and further, gt(x, z) is for every z e Z a convex function on X(e0); 

c) {xeX : a,(x, z) < ht(u, z), / = 1, 2, . . . , / } # 0 for every zeZ,ueU; 
and if F(x, z, u) is a continuous function on X x Z x U then cp(u, z) and E cp(u, %(a>)) 
are continuous functions on U x Z too. (Condition c) is fulfilled if, for example, 
there exists for every z e Z a point x = x(z) fulfilling the conditions o,(x, z) <; 0, 
/ = 1,2, . . . , / and if at the same ht(u, z) > 0, i = 1, 2, ..., / for every ueU, z e Z.) 

If we assume 
b') fl;(x, z), hf(u, z), i = 1,2, ..., / are continuous functions on X(e0) x Z x U 

for an e0 > 0 and if there exist on X(E0) continuous partial derivatives of the 
functions g,(x, z), i = 1, 2,..., I for every z e Z and an e0 > 0, and the vectors 
of partial derivatives of the functions g,(x, z), i = 1, 2 , . . . , / with respect to the 
components of vector x are linearly independent at all points (x, y ) , x e l , y e Y, 

c') {x e E„ : tj;(x, z) S ht(u, z), i = 1, 2, ..., /} = (x e X : g;(x, z) S ht(u, z), i = 

= 1,2, . . . , /} + 0 for every z G Z, u e U, 
instead of b, c then tp(u, z) and E <p(u, £(co)) are continuous functions too. 

We have introduced examples of two-stage stochastic nonlinear programming 
problem in which E cp(u, £(«)) is a continuous function of u. Now we will find 
conditions under which E (p(u, £(co)) is a differentiable function. 



424 Example 2. Consider the following rather simple case of two-stage stochastic 
nonlinear programming problem in which 

F,(x, z, u) = ht(u, z) - Z(x) , i = l , 2 , . . . , / 

E(x,z,u) = / ( x ) , 

where ht(u, z), / = 1,2,..., l,f(x) are for every zeZ concave functions on X(e0) x 
x U(e0) (for an £0 > 0) , / (x) , i = 1,2, . . . , / are convex functions on X(e0). 

If hj(u, z),/-(x), i = 1,2,.. . , / , f(x) are continuous functions on X(E0) X U(£0) x 
x Zand if 

a) X, Z, U are convex, compact and non-empty sets, 
b) the probability measure of the random vector \hx(u, §(co)),..., h,(u, £(co))] is 

for every u e U absolute continuous with respect to the Lebesgue's measure 
in E,, 

c) {xeX : / ( x ) £ ht(u, z), i = 1, 2, . . . , / } + 0 for every U E l / , z e Z ; 
d) h,(u, z), / = 1, 2, ..., / are for every zeZ differentiable functions on U; 
then E q>(u, £(co)) is a continuous, concave and differentiable function on int U. 

The statement of this example follows from Theorem 3, Theorem 7 and Corollary 1. 
Certainly, there exist a possibility to find the other examples of two-stage stochastic 

nonlinear programming problems in which E cp(u, Z(co)) is a continuous and differenti
able function. Now, we shall introduce the last example. 

Example 3. Let A(u, z) be for every u e £,., z e Es an (m x n) matrix with non-zero 
columns, h(u, z) be for every u e £ „ z e £ s an (m x 1) vector function. 

Let, further, K(u, z) be defined by 

(10) K(u, z) = {x e E„ : A(u, z) x ^ h(u, z ) , x > 0} 

If 

a) U, Z are non-empty compact sets; 
b) there exists e0 > 0 such that the elements of A(u, z) and h(u, z) are a non-negative 

and continuous function on U(£0) x Z. Further, the rank of matrix A(u, z) 
is for every u e U, z e Z equal m; 

c) inf {h(u, z) : u e U, z e Z) > 0 ; 
d) F(x, Z, U) is a continuous function on X x Z x U; 
then E cp(u, £(«)) is a continuous function on U. 

The statement of this examples follows from Theorem 5. (The existence of a com
pact, convex set X follows from the asumptions.) 

The case A(u, z) = A for every u e U, zeZ (where A is a constant matrix) is 
introduced in [3]. Under general conditions E cp(u, %(co)) is in this case a differenti
able function on int U. 

(Received September 22, 1979.) 
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