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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 3 

A Comparison of Three Optimality Criteria 
for Observation Channels 

IGOR VAJDA, PETR NEDOMA 

A general observation channel {P, g } with two input symbols is considered. New estimates 
of the discrimination information I{P, Q) in term of average probability of error are found. These 
estimates and previous estimated of the same kind as well as previous estimates of Hellinger's 
integral HX{P, Q) of order a e (0, 1) in term of average probability of error are numerically eva­
luated. Results are presented in a graphical form. 

1. PROBLEM STATEMENT 

Suppose that simple hypothesis Hu H2,... are tested on the basis of a statistics 
distributed by a probability distribution P ; on a measurable space {X, 9t) provided Ht 

is true. In accordance with [1], the family {P;} can be interpreted as a general observa­
tion channel with the input or output space {1,2, ...} or X respectively. Thus the out­
put x e X of the channel is supposed to be distributed by P ; iff (if and only if) the 
j-th symbol has been realized at the input. 

In communication, radar detection, search for a location of an object, experiments 
design, and many other situations we are faced with a possibility to specify the channel 
within certain range given by a priori known circumstances, i.e. we can choose P ;s 
arbitrarily from given distribution classes ^ ; , i = 1,2, ... 

As optimum observation channel is usually considered that minimizing the pro­
bability of error corresponding to a priori given probabilities nu n2,... of the inputs 
1,2,. . . and to the best algorithm for identification of the inputs at the output. 

However, simultaneously with the probability of error optimality criterion, another 
criteria have also been considered in the literature. This is motivated by frequent 
difficulties with minimization of the error probability over the Cartesian product 
0>

1 x 0>2 x . . . Interpretation of these criteria is similar (even if not so evident) as 
that of the probability of error and, at the same time, they are appreciably simpler 
for analytical treatment and numerical calculations than the probability of error. 



In the present paper discrimination information and Hellinger's integral of order 
0 < tt < 1 are considered as optimality criteria and relations between them and the 
probability of error are studied. 

2. OPTIMALITY CRITERIA 

Throughout this paper we shall restrict ourselves to the two hypothesis case only, 
i.e. we shall consider observation channels of the form {P, Q] only, where P, Q are 
probability distributions given on (X, 3C) by Radon-Nikodym densities p, q with 
respect to a dominating finite measure p on (X, X). The P or Q is governing the 
distribution of the channel output depending on whether the hypothesis H or its 
alternative K is true respectively. The H and K are a priori expected with probabilities 
TT and 1 - % e (0, 1). 

The probability of error en(P, Q) is defined by 

(1) en(P, Q) = nP(E) + (1 - n) Q(X - E) = | min [np, (1 - TT) q] d/z, 

where E e 3C denotes the subset of the channel outputs for which H is less a posteriori 
probable than K, E = {x e X : np < (1 — n) q}. 

Remark 1. In what follows we shall write simply e(P, Q) instead of e1/2(P, Q). 
In [2] it has been proved that 

(2) 2 min [n, 1 - TT] e(P, Q) g en(P, Q) = 2 max [TT, 1 - n] e(P, Q). 

Using this inequality relations between various optimality criteria and en(P, Q) can 
be reduced to the relations with the more simple e(P, Q) even in the case 7r 4= 1/2. 

Remark 2. Since the monotone relation 

(3) V(P, Q) = 2[1 - 2e(P, Q)] 

holds between e(P, Q) and the total variation* 

(4) V(P, Q)=(\p-q\dfi = 2[Q(E) - P(E)] , 

the total variation is usually used instead of e(P, Q) in the literature. Recall that the 
range of values of en(P, Q) or V(P, Q) is the interval [0, min (n, 1 - 7r)] or [0, 2] 
respectively, and that eJP, Q) = 0 or V(P, Q) = 2 iff P and Q are orthogonal on 
(X, X) and en(P, Q) = min (n, 1 - TT) or V(P, Q) = 0 iff P and Q are identical on 
(X,X). 

* The same E as in (1). 



Another functional which has been used in the literature (see, for example, [3, 4]) 
as an optimality measure for the channel {P, Q] is the /-divergence (or generalized 
Shannon's relative entropy) of P with respect to Q defined by 

(5) I(P, Q)= [ p\ogplqdn 

or ./-divergence J(P, Q) = 1(P, Q) + l(Q, P). 

In [5, 6] Hellinger's integral H1/2(P, Q) and in [2, 7, 8] generalized Hellinger's 

integral or order a 

(6) HX(P, Q)= f p V - d / i , a e (0,1) , 

has been used as an optimality criterion for {P, Q}. 

Remark 3. It is well-known that-P(P, Q) or HX(P, Q) takes on values from the 
interval [0, + oo] or [0, 1], where I(P, Q) = 0 and HX(P, Q) = 1 iff P = Q on 3C 
and HX(P, Q) = 0 iff P and Q are orthogonal on SC. If P is not absolutely continuous 
with respect to Q on 9C, then J(P, Q) = + oo. 

Since all three functional en(', •), l(-, •) and Hx(-, •) should serve for the same 
purpose one can ask into which extend the corresponding optimality criteria are 
equivalent or, in other words, which is the relation between quantities en(P, Q), 
I(P, Q), and HX(P, Q). This problem, however, has many particular aspects, depending 
mainly on if or which restrictions are imposed on the a priori considered classes 
SP, 2. of distributions P, Q. 

In the present paper upper and lower bounds for /-divergence and Hellinger's 
integral of order a e (0, 1) in term of en(P, Q) or total variation V(P, Q) are investi­
gated provided no restrictions are imposed on 0>, 2.. 

3. NOTATION 

Denote 

(7) 17(F) = sup I(P, Q) , V(e \ n) = sup I(P, Q) , 
V(P,Q) = V e„(P,Q) = e 

(8) l / ( e | j t . a ) = sup HX(P, Q), 
eAP,Q) = e 

(9) L(V) = inf I(P, Q), L(e \ n) = inf I(P, Q), 
V(P,Q) = V e„(P,Q) = e 

(10) L(e \n,a)= inf HX(P, Q), 
e„(P,Q) = e 

for every real a, n e (0, 1), V e [0, 2], and w e [0, min (n, 1 - -A]. The constraint 
infima and suprema are considered for all possible pairs P, Q on a non-trivial mea-



surable space (X, St). (It can be shown that the quantities in (7) —(10) are the same 
for any (X, St) such that that there exists non-empty E e SC different from X.) 

It follows from (3) that 

(11) t / ^ > = t / Q [ 1 ~ l ] | i ) ° r U(e\m = U(2(l-2e)) 

and 

(12) L^ = L(^[1-2
1]^) °r L(e I 1/2) = L « 1 - 2 e ) ) ' 

4. RELATION BETWEEN I(P, Q) AND V(P, Q) OR en(P, Q) 

As to the upper bounds U(V), U(e | n), they are not too interesting: U(e \n) = + co 
(i.e. U(V) = + oo) for e e [0, min (n, 1 - n)) (i.e. Ve (0, 2]) and U(min [;:, 1 - n] | 
17t) = 0 (i.e. U(0) = 0). As to the lower bounds L(V), L(e \ n), they have not been 
explicitely evaluated so far but in [9-14] attention has been paid to obtaining 
satisfactory lower estimates of the function L(V) on the interval Ve [0, 2]. In this 
section new upper and lower estimates of L(V) will be found and, using Remark 1, 
the corresponding estimates of L(e \ n) for e e [0, min (n, 1 - it)"], where n 4= 1/2, will 
be established, too. 

For applications mentioned in Sec. 1 above, lower estimates of L(V) are interesting 
in the first place. In [9] is has been shown that L(V) ^ Ui(V) for Ve [0, 2], where 

(13) L1(V) = V-log(l+V). 

In [10] the inequality L(V) ^ L2(V) on [0, 2] has been proved with L2(V) = V2\T 
and r > 0. 

This result has been sharpened in [11,12], where the same inequality has been 
proved with T = 2, i.e. with 

(14) L2(V) = ^ . 

The following lower estimate 

V2 V4 

(.5) ^ > ~ T + S' 

which has been first stated in [13], is a corrected version of a lower estimate from 
[14]. In [13] the following estimate has also been stated: 

(16) L4(V) = l o g ^ - ^ . 
W 2 - V 2 + V 



178 The curves for all these estimates can be seen from Fig. 1. From the same figure one 
can also see the following upper estimates of L(V) obtained in [13]: 

(17) 

(18) 

(19) 

L W = L3(V) + ^ i ± i 3 , 
K } A J 36(4 - V2) 

L\V) = L4(V) + 2V3 

(2 + Vf 

w 2 2 - V 

Remark 4. For all numerical calculations in this work we use Hewlett-Packard 
calculator model 9100 B. When using iterative procedures (for example for solving 
transcendental equations) we use the accuracy of about 10~4. 

Fig. 1. 
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All the results mentioned above are based on the fact that 

/ ( P , e ) 6 P , £ ) , o g f f i + ( 1 - P ( E ) ) , o g i ^ a , 

for every Es9C. Setting here the same E as in (4) or (l) and applying (4) we obtain 



I(P, Q) = ij/(P(E),V(P, Q)), where ij/(x,V) is defined for Ve[0,2] and 179 
x e [0, 1 - 7/2] by 

ф(x, V) = x log 
7/2 

+ (1 - x) Jog 
1 - x 

1 - x - 7/2 

The curves for \jj(x, 7) are given in Fig. 2. One can see that for any 7 e [0, 2) there 
exists exactly one x = x(7) minimizing \j/(x, V) on [0, 1 — 7/2], and that 

(20) L(V) = min ф(x, V) = ф(x(V), V). 
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Unfortunately, the function x(V) of the minimizing x's has not been explicitely 
evaluated so far because of the equation 

M ^ Z ) = 0 forfixed Ve[0,2) 
dx 

is transcendental. Numerical evaluation of this function can be seen in Fig. 2 and Fig. 3. 
Using this numerical evaluation L(V) = '/'(x(V), V) has been evaluated in Fig. 1. 

In this situation we can proceed by the following manner. We shall try to find out 
estimates l(V) ^ x(7) = u(7), 7 e [0, 2), and then, since i^(x, 7) is convex on 



1 8 0 [0, 1 - Vj2], to estimate $(x(V), V) by the point of intersection of the tangents 
h(v)(x), tu(V)(x) of the curve \fi(x, V) in the points x = l(V), x = u(V). If we denote 
by \ji'(x, V) the partial derivative 8i(/(x, V)j8x, then the tangent txo(x) of \j/(x, V) in 
the point x = x0 is given by the equation 

tjx) m ty'(x0, V)x + xj,(x0, V) - f(x0, V) x0 . 

Fig. 3. 
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Therefore the x-coordinate ic(V) of the point of intersection of ti(V)(x) and tu(V)(x) 
is given by 

= my), y) - v w . V) + *'(<y)>v) u(y) - vow,v) w 
[ ) V(u(V),V) - r(l(V),V) 

and it holds 

(21) tl(v)(x(v))^Hv) = mv),y)-

Hence we obtain by this way the following lower or upper estimates of L(V): 

(22) L5(V) = tl(v)(x(V)) = tu(V)(x(V)) 

or 

(23) 

respectively. 

Ü(V) = ф(x(V),V) 



In order to obtain the corresponding explicite formulas for L5(V) and L4(V) we 181 

shall prove the following 

Lemma. It holds l(V) < x(V) < M(V) on [0, 2) for 

(24) l(V) = ~ exp Г 
4V 

2 L 3(2 - V ) J 

(25) u(V) = ^i_0. 

Proof. The inequality x(V) < u(V) for u(V) given by (25) has been proved in [13] 

(this inequality has been used to obtain the lower estimate (16)). 

As to the inequality l(V) <, x(V) it is easy to see that 

(24) lim xl/'(l(V), V) = 0 
v-*o + 

for \jj'(x, V) = dil/(x, V)j8x and for l(V) given by (24). We shall prove that ij/'(l(V), V) 
is decreasing for V e (0, 2) i.e. that 

(25) ±r(l(V),V)<0, Ve(0,2). 

This together with (24) implies that ip'(l(V), V) ^ 0 for V e [0, 2]. Since ij/(x, V) 

is convex on [0, 1 - V/2] and \l/'(x(V), V) = 0, the inequality il/'(l(V), V) ^ 0 implies 

l(V) < x(V), q.e.d. 

Thus it remains to prove (25) only. Instead of (25) we shall prove equivalent rela­

tion 

(26) — xjj'(l(2u), 2u) < 0 , u e (0, l) . 
d« 

Evaluating the derivative, after obvious manipulations we obtain, that (25) is equi­

valent to the following inequality 

(27) j§f(u) = -Al2 + Bl + C < 0 , w e (0, 1), 

where 

'--M-K-ir^r 
A = A(u) = 6 + 6w2 , 

B = B(u) = 9 - I2u + 5u2 - 6w3, 

C = C(u) = - 3 + 8M - 7K 2 + 2u3 . 



182 Denote 

h = {« - (0, 1): B > 0, B2 + 4AC > 0} , 

Iz = {ue (0, 1): B < 0, B2 + 4AC > 0} . 

We shall prove that 

(28) ; < B - V ^ + 4AC) o n 
V 2A 

(29) l > B + ^(B2 + 4Aq ^ 
V ; 2A 

These two statements imply (27) because, since _Sf(0) = _*(1) = 0, _?(l/2) < 0, 
_?(u) > 0 for some w e (0, 1) implies that there exists u e (0, 1) such that _?(u) = 0, 
i.e. that Z(2u) is a root of the equation 

-A(u)x2 + B(u)x + C(u) = 0 

or, in other words, that 

l(2u) e \B(ti)-sl{B(ii)2+4A(u)C(u)) B(u) + J(B(u)2 + 4A(u) C(u))} 
V ^ J 2A(„~) ' 2A(u) f 

Proof of (28): By an application of the inequality exp (y) _ (1 — y ) - 1 , which holds 
for all y e (— oo, + oo), we get 

& > ) _ - 1 = 3 1 ^ = $(«). 
2 4 u 2 3 + u 

3 1 - u 

We shall prove that 

_ B - J(B2 - 4AC) 
$ < _ i 1 on It . 

2A 
Since A$2 + C has no zero point on Iu and A > 0 on (0, 1), it holds on IY that 
B2 > —4AC > 4A2<P2. Under this condition the last relation is equivalent to the 
following series of relations: 

B - 2A<2> > 7 (B 2 + 4AC) on lx , 

$2A > <PB + C on Ilr 

9(1 - uf A > 6(1 - u)(3 + u)B + 4(3 + uf C > 0 on It , 

, 52u3 - 8u4 + 44u5 > 0 on Ix . 

The last of this relations evidently holds. 



< 0. 

Proof of (29): Since, evidently, A > 0, C < 0 on (0, 1), J(B2 + 4AC) < \B\. 183 
Hence, on I2, B + ^(B2 + 4AC) < \B\ + B = 0, and, consequently, 

B + V(B2 + 4AC) 

2A 

Thus (29) holds. 

Thus, we have proved the following 

Theorem 1. It holds L5(V) < L(V) ^ L4(V) on the interval [0, 2] for functions 
defined by (22), (23) with l(V), u(V) given by (24), (25). 

Fig. 4. 
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The curves for L5(V), L4(V) are given in Fig. 4 (L4(V) is in this figure identical with 

the numerically calculated L(V). One can see from this figure that the analytic expres­

sions L5(V), L4(V) are better than any of the estimates Lt(V), L'(V) listed above and 

that L4(V) can be used as a satisfactory approximation for L(V). 

Remark 5. Instead of (25) 

u^expf- UV 1 
2 •]_ 2 0 ( 2 - V ) J 

might be used in Theorem 1. This substitution to (22), (23) yields similar estimates 



184 L6(V), L5(V) as L5(V), L4(V) in Theorem 1. The behaviour of u*(V) is shown in Fig. 3. 
The proof of the inequality x(V) ^ u*(V) can be based on the same idea as that used 
in the proof of (24). 

Applying Remark 1 and taking into account the fact all the estimates L((V), lf(V) 
above are monotonic functions of Vwe obtain the following result: 

Theorem 2. For every n e (0, 1) and 0 <| e ^ min (n, 1 — n) it holds 

(26) Lt (l\l - — -T| £ L(e | , ) ^ L' f 2 [ l - ^ -T | , 
y ' \ l min (n, 1 - IT)J) ' V L max (it, 1 - 7r)Jj 

where L;(V), U(V) are arbitrary of the estimates considered above. 

5. RELATION BETWEEN Ha(P, Q) AND en(P, Q) 

This relation which will be here expressed in terms of U(e \ n, a), L(e \ n, a) intro­
duced in (8), (10), has been previously studied in [5, 6] and the most recent results 
have been published in [7, 8, 2]. The following result follows from [2] (as to the 
inequality (28), it can be deduced from [8] as well). 

V i 
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0 

Fig. 5. я = 0-5 



Fig. 6. я = 0-3 

Fig. 7. я = 0-1 



186 Theorem 3 . For every a,ne (0, 1) and every 0 ^ e <* min (it, 1 - n) it holds 

(27) U(e | n, a) £ U,(e | jt, a) = 7Ta(l - Tr)""1 «»--<-.--«>(l - e)«~«<«.i-«), 

(28) L(e 17t, a) = L t(e | sr, a) = 7c"a(l - n)"'1 e . 

The curves Ux(e | n, a) and L^e | re, a) are shown in the following three figures for 
% = 0-5, 0-3, and 0-1, and a varying between 0 and 1. 

(Received April 24, 1972.) 
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