
Kybernetika

Boris M. Schein
On some problems in the theory of partial automata

Kybernetika, Vol. 5 (1969), No. 1, (44)--49

Persistent URL: http://dml.cz/dmlcz/125254

Terms of use:
© Institute of Information Theory and Automation AS CR, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125254
http://project.dml.cz


KYBERNETIKA ČÍSLO 1, ROČNÍK 5/1969 

On Some Problems in the Theory 
of Partial Automata 

BORIS SCHEIN 

The paper shows how some semigroup-theory methods can be used in automata problems. 

The theory of automata is closely connected with the theory of semigroups (or, to 
be more exact, with the theory of representations of semigroups by transformations). 
The concept of automaton without outputs is equivalent to the concept of representa
tion of free semigroup by transformations. If we consider everywhere or not every
where defined, one-valued or many-valued transformations, we obtain full or partial, 
deterministic or nondeterministic automata. All this was discussed by the author in 
his lecture at the International symposium on relay circuits and finite automata in 
Moscow, September 1962 [1]. 

Many results in the theory of transformation semigroups may be interpreted as 
results on automata (and vice versa). Unfortunately, the main concepts and results 
of the theory of transformation semigroups are almost unknown among the specia
lists in the automata theory. Quite a few recent results on automata turn out to be 
well known after being translated into semigroup language. 

The aim of this paper is to present some results on transformation semigroups as 
results on automata. This semigroup-theoretic results have been partly published in 
[4, 5]. The main ideas of these results, the underlying point of view (the so-called 
"relation algebras") were exposed in [2] and, in a much shorter form, in [3]. 

The output function of an automaton does not play any r61e in this paper. We 
consider automata without outputs. 

A (finite) automaton is an ordered triple A = (X, S, 5) where X is a (finite) set 
of input symbols, S is a (finite) set of inner states and <5 is a transition function, i.e. 
a partial mapping of the set X x S into S. If <5 is everywhere defined, the automaton A 
is called full. If 8(x, s) is not defined, it means that the automaton is destroyed when 
the input is x while the inner state is s. One can consider multi-valued 8. In this case 
the automaton A, which is in the state s, goes to some state from the set <5<x, s> where 



<5<x, s> is the set of images of (x, s) e X x S under <5. If <5<x, s> = 0 it means that A 45 
is destroyed if x is the input while s is its inner state. If <5 is multivalued, the automaton 
is called nondeterministic. 

The function <5 may be easily extended to a function q> defined on a subset of the 
set X* x S where X* is the free semigroup with identity e generated by X. We define 
<p(e, s) = s, <p(Xi x2 ... x„, s) = <5(x„, q>(xx ... x„_ t , s)). Clearly, q> is partial or 
multivalued if <5 is partial or multivalued as well. 

The input word a is called applicable to the inner state s of A if A with the inner 
state s is not destroyed by the input a, i.e. when cp(a, s) is defined. If A is nondeter
ministic, a is applicable to s if q>(a, s) 4= 0, i.e. if A need not be necessarily destroyed 
when a is its input while s is the initial state. 

Let A be an automaton with a set of inputs X. Let us define binary relations XA 
and CA o n X* by the following conditions: 

(a, /?) e XA means that whenever a is applicable to some inner state, then /? is 
applicable to this state; 

(a, p) e £A means that if a is applicable to some state s e S, then q>(a, s) = cp(p, s). 
(For nondeterministic automata q>(a, s) c cp(P, s).) 

Clearly, XA a n d CA a r e quasiorder relations (i.e., they are reflexive and transitive). 
These relations possess a rather simple and natural "automaton meaning": (a, 0) e XA 
means that if A is not destroyed by the input word a, it is not destroyed by the input 
word P; (a, /?) e CA means that if the input word a does not destroy the automaton, 
then a and P lead to the same transformation of the inner state. We write a r x j ? and 
a <A P instead of (a, P) e %A and (a, p) e £A respectively. 

Our aim is to find an abstract characterization of these binary relations, that is to 
find conditions characteristical for r -^and <A among all quasiorder relations onZ*. 

If £, is a quasiorder relation then its symmetric part is the following relation s? : 
(a, p) e Sj means that (a, 0) e £, and (/?, a) 6 £,. The index of £, is the number of dif
ferent equivalence classes modulo s?. 

Main Theorem. Let r- and < be two quasiorder relations on a semigroup X*. 
There exists a (finite) nondeterministic automaton A with the set of input symbols X 
such that r- = XA and < = Ct if and only if r- is left regular, i.e. 

(1) ar- p -^-yar- yP , 

right negative, i.e. 

(2) apr- a, 

< is stable, i.e. 

(3) al<Pl,«2<P2-+ala2<pip2, 



46 «< is stronger than r~, i.e. 

(4) a -< p -* a r p 

(a«d -< has finite index). 
There exists a (finite) deterministic automaton A with the set of input symbols X 

and such that r = jrA and < = £A if and only if conditions (l) —(4) are satisfied, 
(< has finite index) and 

(5) a < y, p < y, a r- p -> a < p , 

(6) y r- a, y r /?<>, a < p -»• y r ad . 

O u t l i n e of the proof. The necessity of these conditionsis verified straighfor-
wardly. Each of these conditions has a simple "automatic meaning", e.g. (2) means 
that if an input does not destroy the automaton, then any beginning of this input 
also does not destroy the automaton. 

Sufficiency. Let the conditions (l) —(4) be satisfied. Let us consider an automaton A 
with the input set X and with inner states (a, ft) where a is the equivalence class modulo 
e.< containing a; ft is the equivalence class modulo e containing ft and p r* a. 
The condition (4) implies that if «< has finite index then r also has finite index and 
the set of inner states of A is finite. Therefore, A is finite if -< has finite index. 

By definition, the input symbol x is applicable to the inner state (a, ft) if and only 
if P r- ax. The applicability of x does not depend on the choice of representatives a 
and P in the classes a and p. If x is applicable to (a, ft) then x sends this inner state to 
one of the states (y, ft) where y -< ax. Clearly, A is nondeterministic. The reader may 
easily verify that r = %A and «< = £A, Q.E.D. 

Now let the conditions (l) — (6) be satisfied. Let T be the set of ordered pairs 
(a, ft) as defined above. Let e be an equivalence relation on T defined as follows: 
(au ft2) = (a2, ft2) (mod e) means that either (dcl5 ft]) = (a2, ft2) or ftx = ft2 and there 
exists y eX* such that y -< au y < a2 and y = ftu The reflexivity and the symmetry 
of e are self-evident, the transitivity follows from (5). Let S denote the quotient set 
Tje. Let us consider an automaton A with input symbols X and inner states S transi
tion function 8 of which is defined as follows: 8(x, s) is defined if an only if /? r ax 
for some a and P such that (a, ft) e s. It was mentioned above that this condition does 
not depend on the choice of a and ft in the equivalence classes a and ft]. It does not 
depend on the choice of (a, ft) in s. In effect, let (a., J5.) = (a, ft) (mod e). Then there 
exists y e X* such that y -< a, y < ay and y = ft = ftu But P r ax, hence, by condi
tion (6), P r- yx. We have P±r- p and yx < a±x, therefore yx r axx, i.e. py r ayx. 

If x is applicable to s, then, by definition, c)(x, s) = t where (a, ft)es and (ax, ft) e f 
for some a and /?. It is easy to verify that the function 8 is one-valued, i.e. the automa
ton A is deterministic. If -< has finite index, then, evidently, A is finite. We omit the 
straightforward verification of the equalities f- = %A and -< = (,A. 

The theorem is proved. 



If a stable quasiorder relation | on X has finite index, then, by the well-known 
result of S. C Kleene, the equivalence classes modulo zK are regular events over the 
alphabeth X. Let a e X*. Then the set of all p such that (a, /?) e £ is a regular event 
as well. It would be interesting to consider these events and their interconnection 
with the automaton when £ = CA o r £ = XA 0 n the latter case these events are also 
regular). 

Corollary 1. Let r- be a quasiorder relation on a semigroup X*. There exists 
(finite) automaton A with the set of input symbols X and such that %A ~ |— if and 
only if r- is left regular and right negative quasiorder relation (of finite index). 
These conditions are necessary and sufficient for both deterministic and non-
deterministic cases. 

Proof. The necessity follows from the main theorem. Now let i— satisfy the condi
tions (l) and (2). Let us consider the identical order relation -< (i.e., a -< /? means 
that a = /?). Clearly, r- and -< satisfy the conditions (l) — (6), hence, by the main 
theorem, there exists a deterministic automaton A such that r- = XA a n d •< = CA-
This automaton is infinite. 

Now let r- be of finite index and S be the set of inner states of A. Let us define 
an equivalence relation r\ on S by the following condition: s == /(mod n) means that 
for every a e X* a is applicable to s if and only if it is applicable to t. This relation 
n defines the state-homomorphism of A onto some automaton Ajn with the input 
set X and the set of states Sjn. Using the definition of r\, one can easily deduce that 
~" = XAIT 

Let au ...,a„ be representatives of all equivalence classes modulo en .Then s = t 
(mod n) if and only if a ; is applicable to s exactly when at is applicable to t for 
i = 1, . . . , n. It is evident now that n has finite index, i.e., Sjn is finite. Hence, A is 
a finite automaton. 

Corollary 2. Let < be a quasiorder relation on a semigroup X. There exists 
a (finite) nondeterministic automaton A with the set X of input symbols and such 
that CA—<if ana" only if «< is stable (and of finite index). There exists a (finite) 
deterministic automaton A with the set of input symbols X and such that CA = -< 
if and only if -< is stable and weakly steady, i.e. 

(7) a<py,a<5n,P<5-+a<pn 

and is a quasiorder relation (offinite index). 

Proof. The necessity of these conditions is verifiable straightforwardly. If -< is 
stable (and of finite index), then let us define a r- fi for all a, fie X*. Clearly •< and r-
satisfy the conditions (l) — (4) and, by the main theorem, there exists a nondetermin
istic (finite) automaton A such that £A = -<. 



48 Now let -< be stable and weakly steady. We shall construct a deterministic auto
maton A with the input set X and with the set of inner states consisting of all non
empty subsets of X* saturated for «< (a subset H cz X* is called saturated for -< if 
oce H, a -< /? -+ /? 6 H). Clearly, if -< has finite index, then the set of all saturated 
subsets is finite and A turns out to be a finite automaton. The input x is applicable 
to the inner state H if and only if H contains a word the last letter of which is x. 
In this case 8(x, H) = Ht where a. e Ht *-> a xe H. It is easy to verify that Ht is an 
inner state and that CA = -<• 

We have considered several semigroup-theoretical problems discussed in such a way 
that they appear to be automata problems. The choice of these (and not some other) 
problems was purely by chance. Our aim was to show some possible applications of 
the theory of representations of semigroups by transformations to the automata 
theory and to draw attention of specialists in the automata field to possibilities of the 
semigroup theory. 

(Received June 14th, 1968.) 
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O některých problémech v teorii částečných automatů 

BORIS SCHEIN 

Automatem se rozumí trojice (X, S, 5), kde X jsou vstupy, S stavy a d přechodová 
funkce definovaná ne nutně všude (proto částečné automaty); přitom se připouští 
deterministický i nedeterministický případ. Definují se dvě kvasiuspořádání r- a -< 
na X* a řeší se následující problém: Jsou-li na volné pologrupě X* definovány dvě 
binární relace kvasiuspořádání, pak se mají určit nutné a postačující podmínky pro to, 
aby existoval automat v uvedeném slova smyslu, který předepsané binární relace 
určuje jako své relace r- a -<, a to jak v případě deterministickém tak i nedetermi
nistickém. 

Cílem článku je ukázat, jak se dají použít metody teorie pologrup na problematiku 
z teorie automatů. 

Boris Schein, Mihailovskaia Str. 2—111, Saratov, U.S.S.R. 


		webmaster@dml.cz
	2012-06-04T17:57:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




