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K Y B E R N E T I K A — V O L U M E 18 (1982), N U M B E R 4 

THE ENERGY DISSIPATION, THE ERROR PROBABILITY 
AND THE TIME OF DURATION A LOGICAL OPERATION 

MILAN MARVAN 

On the basis of the physical model of a logical operation we discuss the relations between the 
energy dissipation Ed, the error probability p and the time of duration of one step of a logical 
operation ts. It is shown that for given p there exists the minimal time of duration t* of the step 
of an operation. Neyman's expression Ed = kTIn \/p (k — Boltzman's constant, T — absolute 
temperature) is interpreted as the expression for energy dissipation in the case of an operation 
realized in the minimal possible time for given p. 

1. INTRODUCTION 

The mathematical cybernetics does not take into account the fact that processing 
of information requires the use of real physical degrees of freedom which are governed 
by the laws of physics. The logical operation is realized in a material element, which 
is characterized by physical quantities. The fluctuation of these quantities necessarily 
produces the errors in the logical operation, which are not considered in mathematical 
logic. 

An engineer trying to build up a computer employs both physical properties 
of material and physical law in order to achieve good parametres of a logical element. 
He wants to shorten the time of duration of one elementary logical operation, to get 
a lower energy dissipation or to get the higher reliability. The effort to get the best 
parameters of logical elements provokes the interesting question for a physicist: 
"What are the principal limits on these parametres?" 

This question recalls the situation in the half of the last century, when the deve
lopment of steam engines gave rise to the principal problem of the best (ideal) effi
ciency of the engines. The determination of the limit of the efficiency have had 
a great importance in spite of the fact that real engines work with much worse 
efficiency than the ideal ones up to the present time. The research on this problem 
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stimulated the formulation of the second law of thermodynamics which is one of the 
fundamental laws of physics. 

We believe that the research on the principal limits on the parameters of the in
formation machines can be of a similar importance. We can obtain useful results 
from the technological point of view as well as regarding the matters of principle. 

The first systematic discussion of the concept of information in connection with 
physical problems was given by L. Brillouin [ l ] who considered measurement of the 
physical quantity as the process of gaining information. The character of our problems 
— connected with logical operations — is similar but not the same. This problem 
was very well formulated and, in some respects, also solved by R. Landauer and 
his co-workers [2], [3], [4]. For good reviews on physical limits in digital electronics, 
see [5]. The most recent approach to the physical limits in information transfer is 
based on the cosmological consideration [6], [6a]. 

In the present paper we follow works of R. Landauer and J. W. F. Woo [4] who 
studied the elementary steps in the logical operation in the case of one possible phy
sical model which is briefly described in Section 2. This disscussion enables us to find 
the connection between the expression of Landauer and Woo for energy dissipation 
[4] and the expression given earlier by M. S. Neyman [7]: Neyman's formula ex
presses the energy dissipation for the step realized in the minimum time (Section 4). 
We show that the dependence of the energy dissipation on the time ts of duration 
of the step (which we are interested in) has two branches (see Fig. 3, Section 5). For 
the more economical branch" we obtain the result expected: the time and the energy 
dissipation have the complementary properties, the logical operation running in 
a shorter time costs more energy (but we cannot make rs arbitrary small!). The 
result less expected is the following one: the same time can be realized by two 
possible different velocities of representative particles. Only one of these velocities 
corresponds to the "more economical branch" of the energy dissipation. 

We find a useful compromise between two demands — between a short time and 
low energy dissipation; we call the corresponding regime the "optimum regime". 
At the end of our work we study the relations between the quantities in the "optimum 
regime". 

Although our conclusions are derived from the particular model, we believe that 
the main results hold more generally. 

2. THE ELEMENTARY PHYSICAL MODEL OF A LOGICAL 
ELEMENT - QUALITATIVE CONSIDERATIONS 

Let us consider logical elements which can occur in two alternative states: 0 ,1 . 
In our model the logical states 0,1 are realized by placing a representative "particle" 
in one of two possible minima of potencial well (Fig. 1). The logical operation is 
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a process in which representative particles are transformed from one minimum 

to the other minimum. 

Before analyzing the elementary model more exactly, an intuitive qualitative 

consideration is useful. The reliability of elements is connected with the height of the 

central barrier W (see Fig. 1): the higher barrier corresponds to the smaller pro

bability of random jump across the barrier due to thermal fluctuations. From this 

UiJ 
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Fig. 1. Logical states 0,1 are realized by placing a representative "particle" in one of two possible 
minima of a potencial well. 

point of view the high magnitude of W seems to be very favourable, however, the 

following questions immediately arise: What energy dissipation is connected with 

transporting "particles" across potential barrier from one to the other state? Does 

the energy dissipation depend on the height of the barrier Wand, as a consequence, 

is the energy dissipation the function of reliability? 

M. S. Neyman [7] has given the formula which can be written in the form: 

(2.1) Ed = kT ln - + kT ln ЛI 
P 

where p is the error probability due to thermal fluctuations in an "individual me

asurement". However, according to R. W. Keys and R. Landauer [3]: " . . . There 

is some uncertainty in both the definitions and the origin of Neyman's Equation 

(i.e. (2.1)). Eq. (2.1) has a close formal relationship to Eq. (14.31) of Brillouin's book 

[1]". 
In the equilibrium the probability of the jump of a particle across the barrier is: 

(2.2) p ~ S-
w'kT 

and the first term of Eq. (2.1) becomes: 

(2.3) Ed

A) = W. 

Although such an intuitive consideration is not quite right because the system during 

the logical operation is not in an equilibrium, it seems clear that Neyman's expression 
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has two different types of terms: the first term is dependent on the height of barrier, 
but the second is independent. At this point the similar results were given by Landauer 
and co-workers [2], [3], [4]. They have shown that the total dissipation energy con
sists of two types of terms, too: 

(2-4) Ed = Ed
A) + EB

d 

in which the first term has the form: 

(2.5) W-VA-W, 
"d 

the second term is given by 

(2.6) E<B) = yBkT. 

In Eq. (2.5) v is the velocity of representative particle, vd is the finite velocity which 
the particle attains in viscous medium (friction coefficient rj) due to force K, vd = K\r\. 
The quantities yA, yB in (2.5), (2.6) are the numbers close to 1; for example, yB = In 2. 
In the case yA = 1 and v = vd Landauer's expression (2.5) goes over to (2.3), i.e. it 
goes to Neyman's expression which we transformed by means of (2.2). Remembering, 
however, that the expression (2.2) is not quite exact, the connection between both 
Neyman's and Landauer's expressions can be considered to be proved qualitatively 
only. More exact consideration will be given in Section 4. It will be shown that 
v = vd\2 (and not v = vd) represents the case in which both expressions are the same. 
We can keep in mind that Neyman's expression is valied for specific velocity v 
of a representative particle, while (2.5) is more general. 

However, there is a drawback in the formula (2.5); namely, Ed
A) is expressed by 

means of the parametres v, W which are not interesting from the point of view of 
"good properties of a computer". The aim of our article is to express the energy 
dissipation by means of more suitable parameters — the error probability p and the 
time of duration of operation ts. In order to achieve such a change of variables, we 
shall use the following expression, in particular (see [4]): 

(2 7) „ = exp [-x0(K - t,v)jkT] 

1 + exp[-x0(K-riv)lkT~] 

which is more general than (2.2). 
Now let us give a description of the physical model of a logical element and opera

tion (for a more detailed description, see [4]). 
The transport of the particle from the state "0" to the state " 1 " can be realized 

by two types of steps: 

(A) The potential well which has an oblique bottom (see Fig. 2) is widened 
(or contracted). We consider the motion of our particle as the motion of a Brownian 
particle under the constant force K. The energy dissipation in this step is described 
byE^(Eq.(2.5)) . 
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(B) The second step consists in the erection (or in the elimination) of the central 
barrier. The energy dissipation is given by Ed (Eq. (2.6)). 

In our discussion we shall consider the first type, as far as it will not be said ex
plicitly otherwise. 

\ 

Fig. 2. The first step of a logical operation in the physical model according to R. Landauer and 
J. W. F. Woo. 

3. ENERGY DISSIPATION FOR A GIVEN ERROR PROBABILITY 
AND FOR A GIVEN VELOCITY OF THE REPRESENTATIVE 
PARTICLE 

In this Section we want to express the energy dissipation as the function of the error 
probability and of the velocity of the representative particle. First of all we express 
p (see (2.7)) and Ed

A) (see (2.5)) by means of the same quantities. 
If x0 is the change of x-coordinate of the particle which moves under the influence 

of the constant force K, the change of the potential energy is: 

(3.1) W=x0K. 

The maximum velocity in viscous medium is given by 

(3.2) „ , - . * . 
n 

Using (2.7), (3.1), (3.2) we obtain 

(3.3) 
exp[-(iy//cT)(l ~vjvd)] 

1 +txpl-(WJkT)(l-vjvd)] 
The combination of Eq. (3.3) and Eq. (2.5) gives: 

kT (3.4) E™ = 
vdjv - 1 

<£ for t ф O . c Ф ^ p Ф O , ! , 

349 



where 

(3.4') J? = ! n ( l / p - l ) . 

The cases v = 0, v = vd are considered separately: 

Ed
A> = 0 

sxp(-WJkT) for v = 0 , 

~ 1 + exp(-WJkT) 

(3.6) 1 for ti = Cj. 

(3.5) 

P = i 

Since we are interested in the logical elements with small errors we put: 

(3.7) p < 1 

and (3.4), (3.4') has the form: 

(3.8) BS-). W L - m i . 
(vdjv - 1) p 

In this Section we have replaced Why p. In the following Section we shall substitute 
the time r. for velocity and we find the minimum of its magnitude. 

4. THE MINIMUM TIME OF ONE STEP OF LOGICAL OPERATION 

We shall consider the time of operation in the step A (see Section 2). The velocity 
of the representative particle moving in the viscous medium under the constant 
force K (directed along the x-axis) is exponentially increasing at the beginning and, 
asymptotically, it is going to the magnitude vd. The potential wall moving in the 
direction of coordinate x with constant velocity v (v < vd) impedes the free motion 
of the particle. In this case the velocity of the particle increases only to the value v 
of the velocity of wall (during the time interval tt) and then it is maintained on this 
value during the time interval t2. If t2 P tY we can write for time of operation in one 
step approximately ts = tt + t2 = t2 and thus we obtain 

(4A) ts = ^ \ 
v 

or, using (3.1) 

(«) . . - i * . 
v K 

From (4.2) and (2.5) (we choose yA = l) follows 
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Combining (4.3) with (3.3), we obtain the quadratic equation which has two solutions 
(E^)+ , (£<*>)": 

(4.4) (Ed
AY = (±Kvdts - kTSe) ± JdKvJ ts J(\Kvdts - IkTS?) . 

The condition that the solution is real reads: 

(4.5) * . f c ^ * . 
Kvd 

It follows that there exists the minimum possible time of operation in the step 
considered 

(4.6) t * - ~ L ^ ' 

Kvd 

If we insert (4.6) into (4.4), we obtain 

(4.7) ( E ^ ) * = kTS£ 
which is (for p <g l) the first term of Neyman's expression (2.1). 

We see that expression of Landauer and Woo is transformed into the Neyman's 
expression, if the time of operation is equal to its minimium value. 

The next question of interest is what velocity of the particle (or of the wall) corres
ponds to the regime of the shortest time of operation. From (4.7) and (3.8) it follows 
that this velocity is given by 
(4.8) v* = \vd 

rather than v = 0 as we could naively expect. 
From (2.5), (4.7) and (4.8), choosing yA = 1, it follows that the height of the 

potential barrier (for given p) has necessarily to be: 

(4.9) W* = ikTSf . 

The more detailed discussion of the dependence of energy on time is in the following 
Section. 

5. THE ENERGY DISSIPATION AS THE FUNCTION OF THE ERROR 
PROBABILITY 

Let us introduce the dimensionless quantities 

(5.D «-.**-, {^r = &i. 
V J kT V ' kT 

Using these quantities, Eq. (4.4) has the form: 

(5.2) ( ^ > ) ± = ( i a - i f ) ± ^ ^ - 2 ^ . 
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The solution is real if 

(5.3) - > iæ. 
2 

This equation is equivalent to (4.5). We can introduce e by relation 

(5.4) = - ( l + . ) 2 * . 

The quantity e is the measure of the deviation from the shortest time operation regime. 
This is clear from the fact that Eq. (5.3) can be written in the equivalent form: 

(5.3') 

Further, we can cast the Eq. (5.2) into the form 

(5.4') 
•U)\± 
y-=( l+2e)±2V(<l+£)) . 

From the last equation it follows that the ratio of energy dissipation and the level 
of the error J§? (i.e. the left hand side of (5.4')) is constant for the given e (i.e. for 
given tjt*). The dependence of S^jS? on e is shown in Fig. 3. 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 10 1,1 1,2 

Fig. 3. The dependence of the ratio of energy dissipation and measure of reliability on times. 
Dimensionless quantities Sd = Edjk T, £C = ln(l//> + 1) and s = tjtf — 1 were used. 
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Two roots (S(
d

A))+, (Sd
A)) correspond to two possible velocities v+, v for given p. 

It can be shown that v+, satisfying 

(5.5) \vd < v+ < vd 

corresponds to (Ed
A))+, whereas v~, satisfying 

(5.6) 0 < »_ < \vd , 

corresponds to (E(
d
A))~. 

From the point of view of energy economy, we prefer the velocity v~ from the 
interval (5.6). 

At the first sight the interval (5.6) would seem advantageous also from the point 
of view of the short time of the logical operation. But this is not quite true. It will 
be shown that the both intervals are equivalent with respect to "time economy". 
From Eq. (2.5) with yA = 1 and from Eqs. (3.4), (4.2) the time ts can be written as: 

(5.7) ts = - '* <e. 
K v(vd - v) 

It is seen that rs is the function of v symmetric about the point vd\2, i.e. we obtain 
the same time ts both for v = vd\2 + a> and v = vd\2 — OJ. 

To conclude our discussion, we may state that there are no reasons for choosing v 
outside the interval (5.6). 

6. THE OPTIMUM REGIME OF THE LOGICAL OPERATION 

Until now we have discussed the first type of the step of logical operation (see 
Section 2). In this step we can choose either short time of operation or, on the other 
hand, the large energy dissipation with the short time. However, taking into account 
that in the second type of step we have always Ed

B) ~ fcT(see (2.6)), it is clear that 
the minimalization of EA significantly below the value of /cThas no meaning. From 
this it follows that the optimum regime which is the result of the requirement of both 
— the small energy dissipation and the short time — can be realized for: 

(6.1) EA = kT. 

It is easy to show that the corresponding time of the step A of the operation is: 

(6.2) rs = ^ ( l + ^ = ^ ( l + f̂. 
Kvd K 

Eq. (6.2) can be written in the dimensionless form: 

(6.3) kml!k±*l. 
v ! t* 4 se 
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In the regime under consideration it is necessary to choose the magnitude of the 
velocity according to 

(6.4) I « _L-
' vd 1 + J2? 

and the value of the height of the barrier according to: 

(6.5) rY = fcT(l + Se) . 

In Eqs. (6.2) —(6.5) the measure of reliability SS can be choosen, the parameters 
of the model are temperature T, force K and coefficient of friction r\ (or vd). 

7. CONCLUSION 

Analyzing one of the possible simple models of logical element we have found 
the dependence of the energy dissipation Ed

A) on the time ts of the step A of the 
logical operation and on the error probability. The dependence E(A) on the time rs 

has two branches which correspond to two different velocity intervals of a represen
tative particle, (0, vd\2), (yd\2, 0). The velocity vd is the physical characteristic of the 
model, it means the maximum possible velocity in medium with friction coefficient rj 
and in a field of the constant force K. The "more economical" branch shows the 
decreasing character of the energy dissipation with increasing time rs. 

For a given error probability it is not possible to shorten the time fs to an arbitrarily 
low value because there exists the minimal time r* of duration of the step considered. 

The energy dissipation of logical elements working in the regime of the minimum 
time fj* is described by expression (4.7) which Neyman considered as the general 
expression for Ed. Since the energy dissipation of the other steps are in order of mag
nitude, given by kT independently of the details of the model, the lowering of Ed

A) 

deep below /cThas no practicle importance. Therefore, the regime in which Ed
A) ~ kT 

can be considered as the optimum regime. The parameters corresponding to this 
regime were found. 
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