
Kybernetika

Monica Marcus; Gheorghe Păun
Regulated Galiukschov semicontextual grammars

Kybernetika, Vol. 26 (1990), No. 4, 316--326

Persistent URL: http://dml.cz/dmlcz/125438

Terms of use:
© Institute of Information Theory and Automation AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125438
http://project.dml.cz

K Y B E R N E T I K A - V O L U M E 26 (1990) , N U M B E R 4

REGULATED GALIUKSCHOV SEMICONTEXTUAL
GRAMMARS

MONICA MARCUS, G H E O R G H E P Ă U N

We consider matrix, programmed, random context and regular control semicontextual gram
mars in Galiukschov sense ([4]), with and without appearance checking. The generative capacity
of such grammars is investigated, compared with non-restricted semicontextual grammars and
with Chomsky grammars.

1. INTRODUCTION

The semicontextual grammars were introduced in [4] under linguistical motivation
and they were investigated in [1], [6], [7], [8] from formal language theory point
of view. These grammars are interesting counterparts of context sensitive Chomsky
grammars (based on the process of rewriting nonterminals in given contexts) and of
Marcus contextual grammars ([5]) (in which contexts are adjoined to strings), as
they combine modified versions of such grammars: in Galiukschov grammars
strings are adjoined in given contexts. The formal study of these grammars is there
fore quite natural and the present paper relates the semicontextual grammars to an
extensively investigated topic of formal language theory, namely the regulated
rewriting (see [3] for a survey of the domain). Four of the most known regulating
mechanisms are considered here, the matrix, the programmed, the regular control
and the random context restrictions. Part of the results are the expected ones: all
these mechanisms increase the generative capacity, whereas when adding the appear
ance checking feature the power is more increased. However, the four mechanisms
do not lead to equivalent classes of regulated semicontextual grammars (as in the
case of Chomsky context-free grammars; the same conclusion has been obtained
for pure grammars in [2]). Some extensions of previous results about semicontextual
grammars and languages are obtained too: infinite hierarchies introduced by gram
mars degree, inclusions into context-free languages family of random context semi-
contextual languages family of degree 1 (this extends a Galiukschov theorem).

316

2. SEMICONTEXTUAL GRAMMARS

A semicontextual grammar is a system G = (V, B, P), where Vis a (finite and
nonempty) vocabulary, B is a finite language over V, and P is a finite set of rewriting
rules of the form xy -> xzy, with x, y, z e V*, x, y =)= X (V* is the free monoid
generated by V under the operation of concatenation and the null element X).

If w, w' e V*, w = uxyv, w' = uxzyv, u, v e V*, and x> -> xzy is a rule in P,
then we write w => w'. Denote by =>* the reflexive transitive closure of this relation.
The language generated by G is

L(G) = {w e V* I there is u e B such that u =>* w)

We denote

deg (G) = max { xl |there is y e V* such that xy —> xzy e P or

yx —> yzx e P}

where |x| denotes the length of the string x. This is the degree of the grammar G.
Then we define

Jk = {L| L= L(G), deg(G) ^ k} , k = 1 ,

^oo = U ^

(the family of languages generated by grammars of degree at most k and the family
of all semicontextual languages, respectively).

The following results are known from [4], [6], [7], [8]:

Jx c J2 a ... c= / M , strict inclusions,

, / j c ^ 2 ' strict inclusion ,

J2 - £f2 + 0 s

{a"/3a" | n = 1} ̂ ^ ^

(j^,-, i = 0, 1, 2, 3, denote the families in Chomsky hierarchy).

3. REGULATED SEMICONTEXTUAL GRAMMARS

A matrix semicontextual grammar is a system G = (V, B, M, F), where V is
a vocabulary, B is a finite language over V, M is a finite set of sequences of the form

(x1y1-^x1z1yi,..., xkyk -> xfezfe>-fe), k ^ 1 ,

of semicontextual rules, and E is a set of occurrences of rules in M. For vv, w' e V*
we write vv => vv' if there are vv,, ...,wk + i in V* and (x1y1 -> X J Z J V I , ...,xfe>'fe->
~* A^zA3't) 'n M such that vv = w l s vvfe+1 = vv' and for each i, 1 ^ / ^ k, either

317

w; = upcjiVi, w;+1 = w;x,z;v,r;, or w; = w, + 1, w; does not contain the substring
xiyi and x ;y ; -> x;z,r,- appears in E.

The language generated by G is defined in the natural way.

A programmed semicontextual grammar is a system G = (V, B, P), where V, B
are as above and P is a finite set of quadruples of the form

(b: xy -> xzy, E(/j), E(6))

where b is the label of this rule and E(b), F(b) are sets of labels of rules in P. A deriva
tion in G has the form (wt, /3t) => (w2, b2) => (w3, b$) => ... => (w„, /3„), where w, e B,
and for each /, 1 ^ i fg A, w; e F*, b{ are labels of rules in P and (w;, b() =>
=>(wi+i, bi+1) holds if either wi = uixiyivi, w;+, = w,-x;z;j';f;, for (&f: x^,- ->
-> XiZ-ji, E(bt), F(bi)) in P and /3 ; + 1 e E(/3;), or w; = vv;+1, vv, does not contain
the substring x ;j; ; for (Z>;: x;.y; -> x;z;>;;, E(/3;), E(/3£)) in P and bi+ , e E(6;).

A regular control semicontextual grammar is a system G = (V B, F, C, E),
where V, B are as above, P is a set of labelled semicontextual rules, C is a regular
language over Lab(P) (the set of labels for rules in P), and E is a subset of P. A deriva
tion in G has the form

where rt,...,rn are labels of rules in P, r1r2...rneC and w, =>'"'vv;+1 if either vv, =
= UiX-j^i, w;+1 = M;x;z,y,y;, r;: xji -> x;z;yi5 or w; = w;+1, w; does not contain
the substring x,j/; and the rule r;: x ;y ; -> x ;z ;y ; appears in E.

A random context semicontextual grammar is a system G = (V, B, P), where
V, P are as above and P i s a finite set of random context rules, that is triples of the
form

(xy —> xzy, E, F)

with E, E c V. Such a rule can be applied to a string vv in order to obtain a string
w' if w = uxyv, w' = uxzyv, all symbols of E appear in w, but no symbol of E
appears in w. (Note that we check the "random contexts" E, E in the whole string
w, not in uv, outside the lefthand member of the applied rules, as usual [3].)

In all the four cases, the starting set B of strings is included in L(G) — by definition
or by convention.

For all these classes of grammars we can define the degree as for non-regulated
semicontextual grammars. The families of languages generated by matrix, pro
grammed, regular control and random context semicontextual grammars of degree
at most k, k^ 1, are denoted by J/k(ac), 0>

k(ac), ^k(ac), 0lk(ac), respectively; Jijac),
0>

aD(ac), ^m(ac), 0ljac) denote the families of languages as above, of arbitrary
degree. When no appearance checking feature is present (that is E = 0 in matrix
and regular control grammars, E = 0 in rules of random context grammars and
F(b) — 0 in rules of programmed grammars), then we write Jik, 0*k,

 (€k, 0tk, Ji'co,
0>

ao,
 (£<XJ, 01^, respectively, for the corresponding families.

318

4. THE GENERATIVE CAPACITY OF NON-APPEARANCE
CHECKING CASE

The results of this section are summarized in the next theorem, proved in a series
of lemmas.

Theorem 1. The diagram in Figure 1 holds, where each arrow denotes a strict
inclusion and the unrelated families are incomparable.

Fig. 1.

Lemma 1. fi) J\ c %k, k= 1, for all 3E e {Ji, 0>, %', 0t\ (ii) SCk £ SCk(ac), k = \ .

for all I ' G J 1 , ^ , ^ 4

Proof. Obvious, from definitions. D

Lemma 2. &t - 0>k + 0, k = i.

Proof. Let us consider the language

LA = {a&V | n = /<} u {ab"fmemc" \n = k,m= 1}

u {db"c" | n ^ /<} u {db"emfmc" \n = k,m = l}

The grammar

G = ({a, b, c, d, e,f}, {abkck, dbkck} ,

{(be ~> 66cc, 0), (6c -> 6/cc, {a}), (/e ->//«?, 0) ,

(bc-+befc,{d}),(ef-+eeff,®)})

generates Lk, hence Lk e .#._.
Suppose that LA = L(G'), for some programmed grammar G' = (V, B, P). As B

is finite, only for finitely many n's we have ab"fmemc" in fi, db"emfmc" in fi. Therefore
we have to perform derivations of the form abrcr =>* ab"c", dbrcr =>* db"c", re-

319

spectively, hence we need rules for introducing symbols e, f in strings not containing
them. As B c Lk, each string in B contains the substrings bk, ck. There are infinitely
many derivations of the form

D: (abhch, tx) =>* (abhch, t2) => (abhfJleJich, t3) =>* (abhfJ2ej2cu, t4)

and of the form

D': (dbh'ch', t[) =>* (dbh'ch', t'2) => (dbh'eJl'fJi'ch', t'3)

=>* (dbweh'fh'cw, !4)

Assume j'j ^ (._; the case ix >. i'x is similar. The rules in D can be applied in the
same order to dbll'c11', thus obtaining a string of the form dbifJeJc\ which is not
in Lk, contradiction. fj

Corollary. 0tx - Jk 4= 0 for all k ^ 1.

Lemma 3. Jix - ^ 4= 0.

Proof. Consider the language

L = {a"ba"can \ n ^ 1}

It can be generated by the matrix grammar of degree 1

G = ({a, b, c), {abaca}, {(ab -> aab, ba -> baa, ca —> caa)})

Suppose L = L(G'), G' = (V, B, P) being a programmed grammar and consider
an effective derivation w =>* anbancan => ambapcaq, m + p + q > 3n. The used
rule is of the form xy -> xz>>, hence z = a1, r _t 1, hence only one of m, p, q is different
from n, that is m 4= P, or p 4= q; the obtained string is not in L, contradiction, fj

Lemma 4. ^ k <_ .>#k, k >. 1, strict inclusion.

Proof. Let G = (V, B, P) be a random context grammar of degree k and construct
the matrix grammar

G' = (V, B, {(ocx _*„!, . . . ,„_-»• a_, xy -> xzj;) | (x>- -> xzy, {al5 ..., am}) e

e P, a. e {a.b, fra; | b e V], H i ' ^ m})

Clearly, L(G) = L(G')> hence Mk £ „#k.
The language L = {a"ba"ca" | n ^ 1} considered in the above lemma is not in Mx.

For, if L = L(G"), G" a random context grammar, then, as each string in L contains
all occurrences of symbols in V, the grammar G" can be considered a usual unrestrict
ed semicontextual one. However, as we have proved, L^^x, contradiction. fj

Corollary. Jix - M^ 4= 0-

Lemma 5. &x - Ji'm 4= 0.

Proof. Consider the language

L = {a"b" I n ^ 1} u {a"/j | n ^ 1}

320

generated by the programmed semicontextual grammar

G - ({a, b}, {ab}, {(1: ab -> a2b2, {1}), (2: ab -> a26, {2})})

Suppose that L= L(G')> f o r a matrix grammar G' — (V, B, M). A matrix which
can be applied to a string a"b (leading to a string amb, m > n) can also be applied
to a string a"b", thus obtaining a string amb", m > n > 1, which is not in L, contra
diction. •

Corollary. ^ - #«, + 0.

Lemma 6. „//,. c <€k, 0>k c #fc, k>.\, strict inclusions.

Proof. In view of Lemmas 3 and 5, it is enough to prove the inclusions, and this
can be done in the standard way followed for Chomsky grammars (see [3], Chapters
2, 3). •

Lemma 7. Sk+1 - <€k + 0 for all k _ 1.

Proof. Consider the language

Lfe_ {fca2fe+1} u{a2" f e+1 |rc = 1}

generated by the semicontextual grammar of degree /c + 1

G = ({a, &},{fra2fe+1, a 2 f e + 1 , a 4 f e + 1 } ,

{afe+1afe+1 -+afe+1a2feafe+1})

Suppose that Lk = L(G'), G' _ (V, B, P, C) being a semicontextual grammar of
degree k with control language C. Clearly, the string ba2k+x must be in B: each rule
xy -» xzj; has |x[= 1, |j| = 1, hence we cannot add the symbol b in the left hand
side of a string a'.On the other hand, in order to obtain strings a

2nk+x with arbitrary
n, we need derivations of the form a2mk + x =>•* a2nk+x, for a2mk+x eB and using
rules xy -> xzv with x = a1, y = aJ, 1 = i, j = fe. The corresponding rules used
in the order imposed by a string in C can be used also starting from ba2k+x, thus
obtaining string of the form ba2rk+x, contradiction. fj

Corollary. All inclusions Mk c &k + u Jtk c ^///c+1, ^fc _ ^>fe+1, ^ c ^
proper, k >. 1.

are

A problem of interest in this context is also the relation with j5f2, the family of
context-free languages. In [7], [8] it is proved that J2 — <£2 + 0. The language
{a"ba"can \ n >. 1} in Lemma 3 is not context-free, hence Jt\ — <£2 4= 0. A similar
relation holds also for programmed semicontextual languages: the grammar ({a, b,c},
{abaca}, {(l: ab -» aa/3, {2}), (2: ba ~» 6aa, {3}), (3: ca -» caa, {1})}) generates the
non-context-free language

„n+ I
{a"ba"ca", an+xba"can, a"ba"+xca", a"ba"cď

+ xba"ca"+x,a"ba"+xca"+x \ n = 1}

321

hence SPX — 5£2 =# 0. As we shall see in the next section, Mx c $?2 (in fact, Mx(ac) c
c Sf2 too).

On the other hand, the linear language {a"ba"bam | n, m ^ 1} is not in (^00: we
need rules xy -> xa'y for modifying the suffix am; as jx| is bounded, there are such
rules with x = arbas, or x = ar, which can be applied in such a way to modify the
second substring a" in a string a"ba"bam with arbitrarily large n and m, thus obtaining
anbarbam, n + r.

5. THE GENERATIVE CAPACITY IN THE APPEARANCE
CHECKING CASE

The relationships between the considered families of regulated semicontextual
languages generated with or without appearance checking are summarized in the
next theorem.

Theorem 2. The diagram in Figure 2 holds for all k ^ 1 (the dotted lines point
out to open problems).

Є Í Л . C) - - . _ _

l - í)

Fig. 2.

We prove these relations (sometimes, stronger results) in a series of lemmas.

Lemma 8. Mx(ac) - Mk(ac) 4= 0 for all k ^ 1.

Proof. The language

Lk = {(a2kb2k)" f n ^ 1} u {6" | n ^ 2}

is generated by the random context grammar of degree 1

G = ({a, b}, {a2kb2k, b2}, {(ab -> ab2ka2kb, 0, 0), (bb -> 6/36, 0, {a})})

but Lk^Mk(ac): each matrix (rx, ..., rf) which is used in a derivation bl =>* bJ

and introduces at least a new symbol 6 can be also used for rewriting a string of the
form (a2fc62k)'+1 into a string containing at least one substring 62fc and at least one
substring 6s, s =f= 2k. •

Corollary. &k <= @tk(ac), fe_: 1, proper inclusion.

322

Lemma 9. 0g1 - 0>k(ac) 4= 0, k = 1.

Proof. We consider again the language Lk in the proof of Lemma 2. Following
the same argument and the fact that the derivation in a programmed grammar may
begin by any rule, we start a derivation from abkck using a rule which introduces
a substring ef; a string not in Lk is obtained, hence Lk $ ^k(ac). •

Lemma 10. Jix - (SPjac) u Mjac)) #= 0.
Proof. The language {a"ba"ca" | n ^ 1} is in Jix, but it is not in SPjac) u Mjac)

(the same arguments as in the proof of Lemmas 3, 4). •

Lamma 11. 0>x - Jik(ac) u Mjac)) + 0, fc = 1.
Proof. The language

Lk = {a"+1b"+k | n = 1} u {a"/jfc | n = 1}

is in ^ j (it is generated by ({a, b}, {abk}, {(1: ab -> a262, {!.}), (2:a/j -> a2/3, {2})})
but it is not in ffljac) (the random context restriction is of no use, as each string con
tains all symbols), nor in Jik(ac) (each matrix used for rewriting a

m + 1bm + k can be
used also for rewriting a"bk, thus obtaining parasitic strings. •

Corollary. Jik(ac) c <$k(ac), k— 1, strict inclusion.
Proof. The inclusion is obtained in the standard way and the above lemma

proves that it is proper. •

Lemma 12. (Ji\(ac) n Mx(ac)) - %k #= 0, k = 1.
Proof. The language

Lk = {ak"bk"c2k | n = 2} u {bk"c2k+1 | n = 2}

can be generated by the matrix grammar

G = ({a, b,c},{a2kb2kc2k, b2kc2k+'},

{(aa -> aaka, bb -> bbkb)}, {aa —> aaka})

as well as by the random context grammar

G' = ({a,b,c},{a2kb2kc2k, b2kc2k + x},

{(ab -> aafc/jfc/j, 0, 0), (/JC -> fo/jfcc, 0, {a})}

The proof that Lk £ ^k is similar to the proof of Lemma 7. •

Corollary. Jik <= J4k(ac), ^k c (€k(ac), k = \, strict inclusions.

Lemma 13. 2Px(ac) - (ik #= 0 for all k = 1.
Proof. Consider the language

L* = {a/jfccfc, a/32fcc2fc) u {/j"fcc"fc | n = 1}

generated by the programmed grammar

G = ({a, b, c}, {abkck, bkck}, {(1: be -> 66fccfcc, {2}, 0),

(2:a/3-+afc,0,{l})})

323

Suppose Lk = L(G') for a regular control grammar G' = (V, B, P, C) without
appearance checking. The strings abkck, bkck must be in B. Each derivation brkcrh =>*
=>* b"kc"k, brhcrk e B, n > r, must use rules of the form xy —> xzy, \x\ ^ k, \y\ ^ k,
and all of them are effectively used, hence these rules can be applied also to abkck,
in the same order, thus obtaining strings not in Lk, contradiction. •

Corollary. &k <= &k(ac) is a strict inclusion for all k ^ 1.

Lemma 14. All inclusions Mk(ac) a Mk+X(ac), Jik(ac) a Jik+l(ac), 0>k(ac) c.
<= 0>

k+x(ac), k >. 1, are proper.

Proof. The language Lk in the proof of Lemma 7 is not in &k(ac), the language Lk

in the proof of Lemma 8 is not in Jik(ac), whereas the language {ba2k+l} u
u [a2nk+ib | n ^ s) is not in ,<%k(ac). All thess languages are in Jk+X, hence the
relations in Lemma follow. •

Open prajbms. Which are the relations between 0>k(ac), 0tk(ac) and <$k(ac)c>
(We know only that ^\(ac) — (0^k(ac) u 0?k(ac)) 4= 0.) Are the inclusions ^k(ac) c_
c ^\+i(ac) proper?

The last problem may seem surprising, but note that the language Lk in the proof
of Lemma 7 can be generated by a regular control grammar of degree 2: ({a, b},
{ba2k+\ a2k+n

h {(/-,: baa -+ baba), (r2: aa -> aa2ka)}, {r]kr*r2}, {r,}) (each deriv
ation starts by applying 2k times the rule rx, in the appearance checking mode,
and ends by using at least one time the rule r2; if we start from ba2k+\ after 2k
applications of r,, the rule r2 cannot be applied, therefore the derivation is blocked).

Consider now the relation with families in Chomsky hierarchy. In [4] it is proved
t h a t . / , <= <£\\ a stronger result is true.

Theorem 3. Mx(ac) a if2, strict inclusion.

Proof. The language Lk in the proof of Lemma 11 is linear, hence it is enough
to prove the inclusion. For, consider a random context grammar G = (V, B, P),
of degree 1. Define the sets

B' = {ax(ax, a2)(a2, a3) ... (ak_x, ak) | axa2 ... ake B, a ; e V, 1 ^ i = k} ,

P' = {(a, b) -> (a,a1)(ax, a2) ... (afc_,, ak) (ak, b) |

(ab -> aaxa2 ... akb, E, F) e P, a,- e V, 1 ^ i fs k}

For a string x e (Vu V x V)*, denote by alph(x) the set of symbols in Vappearing
in x (possibly in couples of V x V). For a subset T _; P, take the pure grammars
GT(a, b) = (V x V, (a, b), T), (a,b)eVxV, and define the substitution s r :
(V x V)* -> 2(KXK)*, sr((a, b)) = L((Gr(a, /J)), (a, b) e V x V (the languages
L(GT(a, b)) are context-free). Moreover, for a rewriting rule r': (a, I?) -> z in P'
associated to r: (a/3 -> aw6, E, E) in P, we consider the gsm gr, which replaces one
occurrence of (a, b) by z, leaves unchanged the other symbols and checks whether

324

all the symbols in E are present, but no symbol in E appears in the processed string
(a, simulates the application of the rule r).

Consider now the subsets B(
1
0), B(

2
0), ..., B(0) of B' such that:

(i) B = U£ (0)

(ii) B^0) n B(0) = 0 for i =t= j , I = i , j ^ n0 ,

(iii) alph(x) = alph(y) for x, y e B(0), 1 ^ i fS n0 ,

(iv) if x e B^0), y e B(0), i #= j , 1 ^ /, j = n0, then a/p/z(x) #= alph(y).

For a set C of strings, denote alph(C) = U alph(x).
xeC

Starting from a family B['\ ..., B^ of sets of strings in (Ku V x V)* (initially
we have i = 0 and the sets B(0), 1 ^ j S n0, constructed as above), we consider
the following procedure:

For each B(I), 1 ^ j ^ nt, define

Tjl) = \r' e P' | r': (a, b) -* z is obtained from

r: (a/3 -»• awb, E, F) in P and alph(z) £ (fi(j)),

E c alph(B{p), F n alph(Bp) = 0}

and, for each rule r': (a, 6) -> z in P' such that alph(z) — alph(B{i)) 4= 0, consider
the set ar(sr.(i)(B(l))). The family of these sets is finite (the set P' is finite and the
family of sets B{p is finite); denote these sets, in a given order, by B[i+ n , ..., B{

n
i+ ' ' .

Some remarks about this procedure are worth mentioning:

1. alph(B{p) = alph(sTjii)(B
{p)) a alph(gr(sTj(i)(B

{p))) £ V, for all re Pas above.
2. As a consequence of the above point, we find that the procedure stops after

a finite number of steps, as no further rules r'\ (a, b) -*• z can be found such
that alph(z) — alph(B{p) + 0 for some B(,). Let t be this moment of procedure
halting.

3. All sets Bp are context-free languages: we start from finite language B(0) and
use finitely many context-free substitutions and gsm mappings (both preserve
the context-free-ness).

4. Each substitution sr.(i) corresponds to a derivation in G which does not in
troduce new symbols in the current string; moreover the Tjl) definition ensures
the fact that the random context restrictions are observed. Similarly, each
use of a gsm corresponds to using the random context rule r for one step re
writing (this rule enlarges the set alph(x) of the current string).

Consequently, the language C = [J B(p is context-free and h(C) = L(G), where
o g i g t
1 ^ 7 ' g n i

h: (Vu V x V)* —> V* is the homomorphism defined by h(a) = a, a e V, h((a, b)) =
= b, (a, b) e V x V. In conclusion, L(G) is a context-free language and the proof
is terminated. •

(Received April 4, 1989.)

325

R E F E R E N C E S

[1] G. Ciucar: On the syntactic complexity of Galiukschov semicontextual languages. Rev.
Roumaine Lingv. CLTA 25 (1988), 1,23 — 28.

[2] J. Dassow: Pure grammars with regulated rewriting. Rev. Roumaine Math. Pures Appl. 31
(1986), 8, 6 5 7 - 6 6 6 .

[3] J. Dassow and Gh. Páun: Regulated Rewriting in Formal Language Theory. Akademie Verlag,
Berlin 1989.

[4] B. S. Galiukschov: Semicontextual grammars (in Russian). Mat. logica i mat. lingv. Kalinin
Univ. 1981, 3 8 - 5 0 .

Í5] S. Marcus: Contextual grammars. Rev. Roumaine Math. Pures Appl. 14 (1969), 10, 1525 to
1534.

[6] Gh. Páun: On semicontextual grammars. Bull. Math. Soc. Sci. Math. R . S. Roumanie (N. S.)
28 (76) (1984), 1, 6 3 - 6 8 .

17] Gh. Páun: Two theorems about Galiukschov semicontextual languages. Kybernetika 21
(1985), 5 , 3 6 0 - 3 6 5 .

18] C.C.Squier: Semicontextual grammars: an example. Bull. Math. Sci. Math. R. S. Roumanie
(N. S.) 32 (80) (1988), 2, 167-170 .

Monica Marcus, Dr. Gheorghe Páun, The Computer Centre of the University of Bucharest,
Str. Academiei 14, Bucuresti 70109. Roumania.

326

		webmaster@dml.cz
	2012-06-05T21:20:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

