
Kybernetika

Ivan M. Havel
Regular expressions over generalized alphabet and design of logical nets

Kybernetika, Vol. 4 (1968), No. 6, (516)--537

Persistent URL: http://dml.cz/dmlcz/125463

Terms of use:
© Institute of Information Theory and Automation AS CR, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125463
http://project.dml.cz

K Y B E R N E T I K A ČÍSLO 6, R O Č N Í K 4/1968

Regular Expressions over Generalized
Alphabet and Design of Logical Nets

IVAN M. HAVEL

Regular expressions over the so called generalized alphabet are introduced. The symbols of
this alphabet are interpreted as sets of input states of a finite automaton instead of these states
alone. The symbols may correspond e.g. to signals on individual input channels of a multiple-
input device. A synthesis procedure using derivatives of expressions is shown. This procedure
leads from regular expressions over generalized alphabet to transition tables of abstract automata
or directly to diagrams of corresponding logical nets. These nets have a special character similar
to that of Yamada's disjunctively linear logical nets and allowing the composition of nets in
accordance with basic Kleene's operations.

1. INTRODUCTION

Because of its simplicity and algebraic character, the language of regular expressions is pre­
ferable to other formalized languages describing the behavior of finite automata. From the desig­
ner's point of view this language has, however, some disadvantages, which, even though not
fundamental, make the application of regular expressions often somewhat cumbersome. One
of these disadvanteges is the fact that with multiple-input problems an abstract alphabet of input
states is needed in all cases. In some of them the description in terms of signals on individual
input terminals would be much more convenient. (In this point regular expressions differ e.g.
from the description by means of formulas of symbolic logic.)

One of the aims of this paper is to show that the application of an alphabet containing symbols
for signals appearing on the individual input terminals, or for any other elementary input situa­
tions, not only is adequate, but yields also some novel views on the design procedure and on the
transition to the structural realization by means of logical nets. The starting point will be the
generalized input alphabet which has been previously introduced by author in [7], (Some sort
of generalized alphabet was also introduced in [6] for the special purpose of minimizing flow
tables.)

2. NOTATION AND PRELIMINARIES

Well-known notions and results of the theory of finite automata and of the algebra
of regular events are used, in particular the Brzozowski's method of finite automata

synthesis by means of derivatives of regular expressions [3]. Some basic concepts
and notations are surveyed below.

Let X = {xj, ..., x,„} be a finite nonempty set of symbols (the alphabet); let us
denote X* the set of all words over X. Algebraically X* is a free monoid with an
associative operation (concatenation; the dot is usually omitted) and A> t n e word
of zero length, as the identity; the subsets of X*, i.e. the elements of the power set
0>(X*), are called eventsoverX. Let us introduce Kleene's operations u (union of sets),
• (concatenation of sets) and * (star operation) in the set of events.

The algebra of regular events or the Kleenean algebra $T(X) is defined by means
of Kleene's operations and of the set of generators {{x j , ..., {x,„}, 0}. It is plausible
to distinguish the algebra of regular events from the language of regular expressions.
The latter is defined as a free algebra L(X) — {X, u , •, *, 0> where u and • are asso­
ciative binary operations, * is unary and 0 miliary operation. The relation of L(X)
to X(X) is determined by the interpretation of L(X), which is a mapping || : L(X) ~>
-> 0>(X*) for which |x ; | = {x,}, i = 1, . . . , m and symbols u , •, and * denote cor­
responding Kleene's operations. The mapping |] yields a relation of equivalence
in L(X), denoted by = . It is convenient to include the symbols A (= 0*) ar>d
X(— xt u ... ux,„) also as symbols of the language. The main purpose of the language
L(X) is to make possible to describe events of Cfif(X) which may be generally infinite
sets (whereas the elements of L(X) are only finite strings of symbols).

We shall also use matrices over L(X). Operations on such matrices are defined
similarly to those on matrices over number fields where addition and multiplication
(of entries) is replaced by union and concatenation.

For each x ; e l we define inductively a derivative with respect to x ; [3] as the
unary operation 3 ; : L(X) -» L(X) as follows:

(l)VxeX, 5;x = { A i f x = Xi;

[0 otherwise;

{2) dfi = 0 ;

(3) a;(a u p) = 3;a u dfi ;

(4) dfop) = (dfil) p u e (» d£ ;

(5) dp* = (dfl) a* ;

where

A if A e |a|

0 otherwise . («)-{
The derivative denotes the event \dta\ = { w e l * | x,w e |a|} in Jf(X). The derivative
closure D(a) of the expression a is defined as the set of expressions possessing the

518 following properties:

(1) a e 0 (a) ;

(2) VjS e D(a) , Vx; e X , d$ s D(u) .

D(a) can be constructed by finding repeated derivatives of a with respect to all x(e X
starting with a itself. If only mutually nonequivalent expressions are considered, the
closure D0(a) which is finite and has minimal cardinality is obtained.

A finite automaton over the alphabet X is defined as a quintuple si =
= <X, S, su 3, E>, where S is a finite nonempty set of states, Sj^e S the initial state,
5 : S x X -» S the transition function and F <= S the set of final states. Occationaly
we shall use the term "abstract automaton" in order to emphasize the cases when
the sets X and S are abstract, noninterpreted sets.

If the transition function is extended as usual to the mapping 3 : S x X* -> S, one
can attribute to any finite automaton si a set

T(si) = {w e X* | 5(su w)eF},

called the event recognized by the automaton si; individual words of this event are
said to be accepted by the automaton. By means of the event T(si) we define the
behavior of si. Two automata six, and si2 are equivalent iff* T(si^) = T(si2). We
may formulate the well-known Kleene's theorem in the following way:

V A e ^ (X *) , AeJf(x) iff 3si, A=T(si).

A procedure leading from a given expression a e L(X) to an automaten sia (i.e.
to its transition table) such, that T(sia) = |a|, will be called an abstract synthesis.
In this paper we are concerned with Brzozowski's abstract synthesis [3]. It consists
in the construction of an automaton sia = (X, S, su 3, F), where

(1) S = D0(a) (or some other finite closure of a);

(2) S l = a;

(3) V/? e S, Vx; eX, 3(0, x;) = dtp ;

(4)F = {peS\o(p) = A}.

A special case of the finite automaton is a binary automaton si(1) = <X, S, su S, F>
with X and S interpreted as sets of binary vectors X s {0, 1}P, S c {o, l}« where p, q
are some integers. (Binary vectors are denoted by bold italics.) It is useful to replace
the final set F by the output function k : S ->• {0,1} (we confine our attention to a single
binary output) where A(s) = 1 iff s e F. (The functions 5 and X may be defined
by means of equations over Boolean expressions.)

* I.e. if and only if.

Input and state assignments are two mappings f: X -*• {0, 1}P and g : S -> {0, 1}*
which determine some suitable binary automaten s4(T> to a given abstract automaton
s4 (g is generally admitted to be many-valued).

A procedure which applies to an abstract automaton s4 and yields a logical net Jf
realizing si is called a structural synthesis.

Here an abstract logical net J/" is given by its structure and internal behavior.
The structure consists of elements of certain type (in our case the idealized elements
OR-gate, AND-gate, inverter, and unit delay), which ate properly connected by
means o connections. Several input terminals and output terminals (in our case only
one output terminal) also belong to the net. The internal behavior of the net
can be described as follows: At first we associate the corresponding Boolean functions
with elements of the given types. Then we define the function 9 which assigns each
connection and each time t (t = 0, 1, ...) some value from {0, 1} (the signal), so
that the appropriate boolean relations are fulfilled for all elements of Jf. It is possible
to show that to the entire knowledge of the function 9 at any time t it is sufficient
to know its values only (1) on input terminals (the values of input variables) at all
f g t and (2) on some selected connections (the values of internal variables) at
f = 0. Then the class of all admitted functions 9 determines the internal behavior
of the given net Jf.

If interested only in the value of 9 on the output terminal (the output variable)
in dependence on values of input and internal variables, we speak about external
behavior or shortly behavior of the net.

By neglecting the structure of a net we arrive at a concept of (generally noninitial)
binary automaton describing the net. Vectors of values of input and internal variables
(shortly called input and internal states) constitute the set X and S respectively. The
functions d and A can be derived from the internal behavior of the net.

We have reviewed those principal concepts which will be used in the further text.
More thorough investigation of these concepts may be found in special literature.

3. THE GENERALIZED INPUT ALPHABET

When describing the behavior of finite automata by means of regular expressions,
the elementary symbols are those of the input alphabet X. There are, however, many
cases when some other objects would be more convenient to be taken as elementar.
One example of this type is the case mentioned previously when the behavior may be
described in terms of signals on individual input terminals. As other example let us
assume that the input alphabet is partitioned to several classes of symbols (e.g. even —
odd numbers in arithmetic interpretation of the alphabet) and that the designed
automaton is to distinguish only symbols of the different classes.

Our first step will be to generalize suitably the concept of input alphabet to include
all similar cases as well. The most convenient means of doing this proves to be the
power set ^(X) (the set of all subsets of X). The disadvantage of large cardinality

5iG of this set will not be serious becouse of the possibility of using only a small part of
it in particular cases.

Definition 1. Let X = {xu ..., xm} be an alphabet and let 3 = {£u ..., £,,} with
H _ 2m be some set of symbols. The set is called the generalized alphabet to X if an
injective* mapping <p : S -* 3P(X) is given.

The mapping (p, which is substantial for applications of the generalized alphabet,
is determined by the so called transform matrix

A = [AA,] ; A = 1, ..., \i; i = 1, ..., m
where

A _ f A if xi e cp(£x)

\ 0 otherwise .

Example 1. The input of designed automaton consists of two independent binary
channels; the alphabet X has four elements; xx = (0, 0), x2 = (0, l), x3 = (1, 0),
x4 = (l, 1). Let symbols <̂ x and <i;2 denote the occurences of 1 on the first and second
channel respectively. Then the alphabet 3 = {£u t,2} is a generalized alphabet to x
with the transform matrix

Л = ГØ 0 A Л1
Lø Л ø л j

Example 2. The alphabet x = {xu x2,..., x8} represents numbers 0 , 1 , . . . , 7.
Let symbols £j and £2 denote the numbers nondivisible by 2 and 3 respectively.
Then the alphabet 3 = {£u £2} is a generalized alphabet to X with the transform
matrix

д _ [Л Л ø A 0 Л 0 Л]
Lл л л ø л л ø л j '

We are able to define the corresponding language of regular expressions L(S) =

= (3, u , •, *, 0> for the generalized alphabet 3 in the same way as it was done for X.

The symbols 0 and A = 0* a r e assumed to be common for both languages.

To make it possible for the expressions of L(3) to denote the events over X, a trans­

lation from L(S) to L(X) is needed.

Definition 2. The translation from L(3) to L(X) is defined as a mapping T : L(3) -*
-> L(X) in the following way:

(1) T(£A) = XlAn u x 2 A A 2 u . . . u x , „ A A m ; X = 1, ..., \i\

(2) T preserves the operations u , •, *, 0 and their ordering.

* I.e. one-one into.

Remark. If at (i = I,..., k) are expressions of a given language of regular expres- 521
k

sions, we will use the notation U ai instead of a , u a 2 u . . . u a t . (The reader is
i = l

recommended to keep in mind that the symbol u is in this paper used in two dif­
ferent meanings: to denote the union of sets and as the symbol of the language of
regular expressions.)

Definition 3. A generalized alphabet S is said to have the covering property if

\fxeX 3 £ E ~ , x e ? ({) .

The generalized alphabet has to posses this property e.g. if we want tu use the symbols
S and S* in the expressions of L(S) (similarly as the symbol X and X* in L(X)) to
denote the events: "All words of the length 1" and "All words" respectively.

The following result is an immediate consequence of the covering property:

x(S) = T(U ZX) = U U *.A« = U(*i UAAi) = U*; = x.
X=l X i = l i X i

From Definition 2 we see that the transition from given a e L(S) to T(a) e L(X)
consists only in replacing each ^ which occurs in the expression a by the corresponding
expression U xp / £ { 1 , . . . , m) (or, as the case may be, in replacing of S by X).

JeJ

The operations u , •, * and the constants 0, A remain the same.

The following lemma that establishes a relationship of derivatives in L(X) and L(S)
will be needed later.

Lemma 1. For any a e L(S)

f

dt x(a) = T(U d^aA^), i = l m ,

x=i

where 3A and dt are derivatives in L(S) and L(X) respectively.

Proof. Since
a = U£A dAa u o(a)

x
(see [3]) we have

<«) = <UZx 8,a u g(a)) = U <£,.) r(d,a) u e(a) = U(U x;AAi) <dxa) u Q(a)
A X X > = 1

and thus

dtx(a) = \JAXix(dxa) = x({Jd,aAj ,
x x

Q.E.D.
The following lemma is an immediate consequence of Definition 2.

522 Lemma2. / /a = /? inL(3)then T(a) = x(p) in L(X)(note that ' = ' means only equi­
valence).

The converse, however, is not, in general, true.
We conclude this section with some comments about the features of the generalized

alphabet in practical cases. Usually the alphabet 3 follows from the character of the
problem given, and it must contain symbols for all situations which are to appear
in the design requirements. If the absence of some of such situations is required, or
a simultaneous presence of two different situations (as e.g. the occurence of 1 on
both channels in Example 1), it turns out to be necessary to introduce a new in­
dependent symbol of the alphabet 3. (The reason being that the results of this paper
are not generally applicable to a language with complement and intersection.) In
some special cases 3 must posses the covering property (Definition 3). The case that
<p(£) = 0 for some £, is not generally excluded. It causes the substitution of 0 wherever
£ appears in a given expression and it corresponds well to a situation physically not
realizable.

4. SYNTHESIS OF FINITE AUTOMATON

In this section we shall discuss the synthesis of a finite automaton, described by
an expression over the generalized alphabet. Solid arrows in the following diagram
illustrate the direction in which we shall proceed:

a 6 L(3) *-—> T(a) 6 L(X)

Synthesis in L(B) | | Synshesis in L(X)

Here s4x is an auxiliary automaton over 3, and sfzW is a desired automaton over X.
The aim of this section is to show that this direction yields a procedure which is

equally applicable (i.e. it leads to an equivalent result) as the synthesis via the language
L(X) (dashed arrows).

Let the behavior of a finite automaton be given by a regular expression a e L(3).
In order to synthesize the automaton via L(X) one must take the following way:

(1) Replace the expression a by its translation T(a);

(2) Perform the usual synthesis procedure in the language L(X).

(The result is the transition table of the automaton <s/xl(l)).

As already mentioned, the basis of the synthesis of $4^ in L(X) is the construction
of a derivative closure D(T(a)) by finding all successive derivatives of certain expres­
sions. Lemma 1 permits to express these derivatives by means of derivatives of appro­
priate expressions in L(3). It is therefore feasible to construct first a derivative closure

D(a) in the language L(E) (this closure is basically the auxiliary automaton six

over S) and only after having done this to transfer to the resulting proper automaton

Definition 4. Let a e L(E) and let siz(a) be an automaton overX for which T(j/t(o0) =
= |x(a)| . Then the automaton sia over S is called the auxiliary automaton
(to sit(a)) if T(sia) = |a|.

To avoid confusion we write automata over E as ,s/ = <S, 21, ffj, 5 l 5 <£>, using
Greek letters S, J , ax, $ instead of X, S, s„ F. The automata over X will be sometimes
called proper automata.

Remark. Some precaution in interpretation of just defined auxiliary automaton
is desirable. When calling it an "automaton" we have to consider the alphabet S
as abstract set of symbols with no interpretation. Only under this condition we can
(and we do) speak about the synthesis procedure in L(E) being performed according
to the same rules as the synthesis in L(X). However, being considered as an abstract
automaton, sia has very little in common with the corresponding proper automaton
s#x(a) (having e.g. different input alphabet and generally different — larger or smaller
— number of states).

Nevertheless, there is some informal way to describe the connection of six with
si%(a). If it were possible for more symbols of S to "occur simultaneously" on the
input of s4a and if then six were able to "occur simultaneously" in several different
states, it might display the "same behavior" as siz(a) under following two assumptions:

(1) Simultaneous occurence of all £ e S for which x e <p(£) corresponds to each
xeX.

(2) sia accepts just those words from X* which (as sets of words in accordance
with (1)) cause the transition to some set of simultaneous states, containing at least
one final state from <t>.

Now we shall show a procedure which applies to a given auxiliary automaton si
over S and yields certain automaton %(si) over X. We shall see below (Theorem 2)
that the latter is equivalent to the desired proper automaton constructed in L(X).

Procedure 1. (We begin with an automaton si = <S, I, au 5', <P> obtained as
a result of the synthesis by means of derivatives in L[E); it is described by means of
a transition table I \ having ft columns denoted by £ l s . . . ,£,, (e S) and having v rows
denoted by au ..., av (e l). In addition to it a set $ <= I is given. We shall consider
the table r \ to be a v x ^-matrix over L(S).) The transformation of an automa­
ton si to %(si) consists of two parts:

Part 1. Multiply the matrix Tx from the right by the transform matrix A.

(The result is a v x m-matrix or table F 2 = I \ . A. Denote its rows again by
au ...,av and denote the columns by xu ..., xm. Entries in the table F 2 are expres­
sions of the type U ay; I £ {1, ..., v}. Here we are justified to use the symbol u

yel

because ays may be interpreted as expressions of L(E). However, we do not pre­
suppose the familiarity with their structure and thus, comparing the entries of the
table r 2 and also T3, we will use only the associative and commutative laws for u
and the rule a u 0 = a.)

Part 2. consists in constructing the transition table T3 of the automaton n(s4)
(with m columns and n ^ 2V rows) by the following iterative procedure:

1. Denote the first row (k = l) of the table T3 by al and enter the first row of T2

into it. Put k = 2.

2. In the filled up part of the table T3 find the first expression, which has not yet
denoted any row of T3 and denote by it the fc-th row. If there is no such expression
go to step 4.

3. Let the k-th row of the table T3 be denoted by the expression U ay. Join column­
a r

wise all rows of T2 denoted by some symbol ay, y e I by the operation u and enter
the resulting expressions into the k-th row of T3 . Replace k by k + 1. Go to step 2.

4. Among the expressions denoting the rows of T3 find those in which at least
one symbol belonging to <P occurs.

5. Use new symbols for the entries of the table T3 (e.g. the symbols su ..., s„;
st for (7,). Stop.

(The table T 3 is the transition table of the automaton n(si); its entries are inter­
preted as the states, the first row corresponds to the initial state and the final states
are determined in step 4).

Remark. When considering equivalences, we did not take account of an internal
structure of expressions designated by ax; we also neglected the relationships among
the individual symbols in 3 given by the mapping (p. Thus the minimility of the result­
ing automaton n(sf) in not guaranteed even if the auxiliary automaton si is reduced.
(The finiteness of uz(si) is, however, guaranteed — cf. [3]). When applying the
procedure, it is often advantageous to take the structure of the expressions into the
consideration, especially when e.g. ax = 0 or ax = S* for some x. In many cases
it is worth while to pay attention to the set inclusion of events represented by states
of the auxiliary automaton. Such information is very useful, because if [erjj E |tr2|
then aY u a2 = a2.

New, we present an example illustrating the above procedure.

E xample 3. Let the generalized alphabet S be given by the transform matrix

A = [0 0 A A]
L0 0 A AJ

(see Example 1).

The behaviour of the automaton is described by the expression in L(S):

a = [(£. u Q £*£.]* (cj. u Q £* .

(Compare the corresponding expression in L(X):

T(a) = [(x2 u x3 u x4) (x3 u x4)* (x2 u x4)]* . (x2 u x3 u x4) (x3 u x4)*.

The synthesis of s/x using derivatives in L(3) proceeds as follows:

d1a1 = Çfaa u Cz = <r2

d2ol = <r2 ,

d\G2 = a = al

d2a2 = a2 ,

thus the transition table r x of s/x is

Ы = л),

í l «2

ffl ° 2 ° 2

ст2
°"l CT2 and <5 = {a2}.

Further step shown is the transformation of s&a to n(s/^ by Procedure 1.
(1) By multiplication

Гi A = Гff2 ff2l P л ø л]
L.т. cгзj • Lø ø л л j

we obtain the table T,

* 1 x2 * з x 4

°ч 0 "2 ° 2 <т2

0-2 0 °"i ° 2 Cтj U <т2

(2) The second part of Procedure 1 yields the table T 3 :

x l *2
*з x 4

° 1 0 °2 aг ° 2

0 0 0 0 0

° 2 0 °1 ° 2 ffj U <т2

<тx U ст2 0 °1 U ст2
ff2 CTj U <т2

(1st row of T2)
(0 contains no symbol)
(2nd row of r 2)

526 This table is already the transition table of n(stfa). We use new symbols:

xí x2 x3 X4

*! s2 sз s3 S3

s2 s2
s2 s2 s2

SЪ s2
sl s3 ч

s4 s2
s4 s3 s4

The final set is F = {s3, s4}. In this case the 7t(«s/a) is already reduced.

Theorem 1. Let a be an expression of L(E) and T(a) its translation in L(X). Let
s4a and s^r(a) be two automata over E andX, corresponding to a and T(a) respectively.
Then s/r(a) is equivalent to n(stfa), constructed by Procedure 1 from s$a.

Proof. We shall prove that the synthesis of %(s£a) from s#a by Procedure 1 in
some sense simulates the synthesis of s^T(a) by means of derivatives in L(X).

First, we briefly recapitulate the latter. It is useful to construct the derivative
closure D(T(a)) (we do not confine our attention to D0(r(a)) already in tabular form.
Resulting table is the transition table T of srfr(a). We proceed as follows:

(1) We denote the first row of T by s t = T(a). The entries su of this row will be
computed by derivatives: su = 5;SX.

(2) Assume that we have already filled up the k — 1 first rows. We find the first
expression su (I < k) which is not equivalent to any of those which denote these
rows. We put sk = sH and denote the /c-th row by sk. We compute its entries ski =
= dtsk. So we proceed further. Since D(t(a)) is finite we finish with some k = n'.
(There are no more entries nonequivalent to any sk.) The result is n' x m-table

r = [%].

Quite similar to this is the construction of D(a) over L(E) (instead of s we write a;
<T, = a). Here the result is v x jj-table T t = [ffxJ.

In the first part of Procedure 1 Yv is multiplied by A, which gives the v x m-table
T2 = [ffx'i]. Its enries are

v-
Ki = U <rxAu = \J8^xAxi.

A = l A

Now, in the second part of Procedure 1, the n x m-table T3 = [ff^] is constructed.
Its first row is the same as that of Fx (it is denoted by <s'[= a'x = ffj):

v-
°"u = ffii = U ^ffiAjK = U^a^Ai •

A = l A

Then by Lemma 1

<ffli) = 5;T(a) = 3iSj

and thus it corresponds to the first row of T. The remaining rows are constructed

quite simularly as in the case of T with the exception that, instead of computing ski

by derivation of sk, we proceed as described in step 3 of Procedure 1 (Part 2).

Let a'k denote the fc-th row of T3. We know that a"k = U ay (Ik £ { l , . . . , £(};
ysik

oy e D(tx)). The fc-th row then contains expressions

<>£ = U o-yi (' = L •••, m)
yelk

(see Step 3 of Procedure 1). We may write

T(U *;,) = u T(<T;,.) = U < U V A .) = u M*,) =
ysJTte J T ^ = 1 y

= dt U T(cry) = afT(Uffy) = dtx(ol)
y y

(we used Lemma 1 and the property that T and d "commute" with respect to u) .
Thus

T « i) = M f f *) ,

which is the same as writing

hi = dih •

Since the first rows of T and T3 are in correspondence by T we see that the construct­
ion of r 3 only simulates that of T. Recognizing equivalences of entries (expressions
in L(3)) may introduce no principal error (this is guaranteed partly by Lemma 2,
partly by the fact that overlooking some equivalences doesn't matter since we are
proving only the equivalence of automata).

It remains to show the correctness of specifying the final states (step 4 of the pro­
cedure). But it follows immediately from the properties of Q : Q(T(CC)) = Q(X) and
Q(<X U p) = g(a) u e(/J), Q.E.D.

We have shown that the synthesis procedure a -> s/a -> n(s/a) if formally equi­
valent to the procedure a -» T(a) -> ^T (a) . As for the practical applications of these
methods, it is difficult to present any general results. One may profitably use the
former when the alphabet 3 is considerably simpler then X and when numerous
derivations are not desirable. The latter, however, more reliably guarantees the
minimality of results.

5. DIRECT SYNTHESIS OF LOGICAL NET

In Section 4 we have introduced an auxiliary automaton stfx over 3 and we have
shown that it is possible to progress from it to the proper abstract automaton over X
by means of transformation n (Procedure 1). Now we shall use the auxiliary auto-

528 maton stfx for a direct synthesis of a logical net realizing s4x(*y ^ e s n a H e n *
somewhat the diagram from the proceding section:

X

ceeL(3) >z(a)eL(X)

4. Я

1 Proc. 1

1
• < («)

!

Ҷ 1 f, g-аssignment

^ 2 >

1 f, g-аssignment

^ 2 >
logicаl design

Here stf(2) is some suitable binary automaton, J/~x is a logical net realizing s4^y

We shall be concerned with the transition from s4a to the corresponding logical
net (solid arrow on the diagram). The procedure we shall describe is due, to a certain
degree, to the intuitive view on the auxiliary automaton (see Remark on page 12)
and it consists in associating some input variable (input terminal) with each symbol
of 2 and some internal variable (selected connection) with each state of I. In general
case, however, when symbols of 3 do not correspond to signals on input channels
(comp. Example 2), a suitable input decoder must be supplied. Here we shall not
be concerned with its construction.

The reader familiar with the paper of Yamada [10] will find close relationship
between our nets and the so called disjunctively linear nets. This relationship will
be studied more deeply later.

First we must concern ourselves with the connection of nets and automata from
behavioral point of view. For the logical nets there is usually no state considered as
initial and thus the binary automata describing them are noninitial. On the other
hand we have defined abstract automata as initial (which is desirable from the
behavioral point of view). A logical net may display the behavior of a given automaton
only with respect to a specified starting state.

For our purposes it will be useful to introduce the so called initial net, provided
with a special starting input. Assume that the net Jf remains in some specified quies­
cent state (e.g. all internal variables have value 0) independently on what is going
on the input terminals. But a special starting terminal belongs to the net, and only
at the moment when the signal 1 is applied to it, the net passes to the specified initial
state Sj (which, however, may be identical with the quiescent state, in trivial case).
From the subsequent instant of time the net is sensitive to input signals. In general
case the net may sometimes return both to the quiescent and the initial state.

Definitions. The logical net Jf with a starting terminal, having the described
properties is called the initial logical net.

Remark. This approach is justified by the following fact: If the behavior of the net
is to depend on certain finite sequences of input states, the net must necessarily obtain
the information at what time these sequences begin (i.e. where the origin of discrete
time is laid) and, moreover, it must be set to a difinite starting state.

Let Jf be an initial logical net wtih p input terminals and with the starting terminal
which is set to 1 just at the time t = 0. Such net is then described by unique (up to
the permutation of components) binary automaton s4(Jp, which is initial.

Let sd be an abstract automaton over an input alphabet X and let f : X —> {0, 1}"
be an input assignment of stf. We extend it by natural way to f: X* -> ({0, 1}P)*.

Definition 6. The net Jf is said to realize the automaton s/ under the input
assignment f if

V M E Z * , f(u)<zT($t(%>) iff ueT(s/).

[T(s4(^) and T(stf) are sets of words recognized by stf[P and sd respectively.)

Remark. In Definition 6 we say nothing about such sequences u e ({0, 1}P)* that
f ~ l(u) = 0. They are the so called "don't care" sequences and it is without importance
for us, whether they belong to T(s4(^) or not.

Immediately from Definition 6 we have

Lemma3. An initial logical net Jf realizing an automaton s4 also realizes
every automaton equivalent to sd (under the same input assignment).

Definition 6 is, however, purely behavioral and gives no means for the decision
whether the given net realizes the given automaton. Instead of deep investigation
of this problem we present only a comparatively weak, but for our purposes quite
sufficient result.

For this, let s4 = (X, S, s,, d, F} be an abstract automaton and let Jf be an initial
logical net with a binary automaton stf(J> = <{0, 1}P, {0, l}q, su 8, X) describing it.
Let f : X -> {0, 1}P be an input assignment of srf.

Lemma 4. The sufficient condition, under which the net Jf may realize the auto­
maton s4 under the input assignment f is the existence of a state assignment
g : S -+ {0, 1}« such that

(1) f (si) = *i ,

(2) Vx e X , Vs e S , S(g(s), f(x)) = g(d(s, x)) ,

(3) Vs G S , seF iff l(g(s)) = 1 .

Proof. Condition (2) may be rewritten as

Vu e X* , \fseS, 5(g(s), f(u)) « g(S(s, «)) ,

especially for s = s t we use (l) to obtain

VweX*. S(Sl,f(u)) = g(d(Sl,u)).

Since u e T(ss?) iff d(st, u)e F and because of (3) we have <5(s1(w) s F iff X(g(8(s1, u)) =
= 1 but A(5(suf(u))) = I iff f(u)eT(j*%>) and thus VueX*, f(«) e T(s*%>)
iff«eT(ja/),Q.E.D.

In our cases the input assingment will always be given by the definition of 3.
Let us define it more precisely:

Definition 7. Let X be an alphabet and 3 = \£u ..., ^ } some generalized alphabet
to X, specified by the mapping

q>: 3 -• ^ (X) .

An assignment f : X -» {0,1}" is said to be a natural input assignment (with respect
to 3) if

J A 7 JO otherwise

where/A is the A-th component of f, / = 1, . . . , |U.

The natural input assignment is unique up to order of symbols in 3 and may be
precisely determined by means of the mapping (p (see Definition 1) of by the transform
matrix A (written over {0, 1} instead of {0, A s ­

saying that a given net Jf "realizes an automaton stf" without specifying the input
assignment, we shall always mean that Jf "realizes srf under natural input assignment"
supposing it is clear what specific 3 is considered.

Now we shall describe the procedure leading from an auxiliary automaton sfa

over the generalized alphabet 3 to some special logical net J/"a which, as we shall
see later, realizes the proper automaton st<x} over X.

Procedure 2. (We begin with an automaton s4a, given by its transition v x /x-table
T t and by a set $ of final states.)

It will be used altogether:

v unit delays 5 , , Dv;

v x n two-input AND gates tyn,..., tyVfl;

v + 1 multiple-input OR gates S 0 , S l f . . . , ®v.

The net J/"„ will have p input terminals denoted by the symbols {..,..., £„, one starting
terminal and one output terminal n.

1. Connect for each x and X (x = 1 v; X — 1, . . . , fi) one input of ^xx to the
output of T>x and the other input of tyxx to the terminal l\k (It is convenient to arrange

the elements tyx). into a rectangular array metching the table r . - compare Fig. 1 531

below.)

2. Connect for each y (y = 1,...» v) the individual inputs of <Zy to outputs of all
such elements tyxX for which the symbol ay is in the x-th row and A-th column of
r x . Furthermore, connect one input of Z^ with the starting terminal.

3. Connect for each y (y = 1, ..., v) the input of t>y to the output of Zr

4. Connect individual inputs of <50 to outputs of all elements Zy for which ay e <£.

5. Connect the terminal r\ with the output of ®0. Stop.

(The result is the logical net Jf^.

As already mentioned the net Jf a obtained by this procedure must be, in general
case, provided by a suitable input decoder. This is a combinational network which
has \i output terminals for £ . , . . . , £„. We suppose the input alphabet (and thus the
input assignment) is already given and thus the construction of the decoder is not
concerned in the procedure (it depends e.g. on the way how signals from environment
are coming).

The construction of the net Jfa in Procedure 2 is apparent from the following
example.

Example 4. Given an automaton s/^ by the transition table T t

fl Í2 fз

<*l °3 °2 aí
az ffj CT2 ffj

°ъ aъ a2 aъ

and by the final set <P = {a2, a3). The corresponding net is shown in Fig. 1.

Remark. In particular cases it is possible to simplify considerably both the pro­
cedure and result by means of auxiliary rules, as for example:

(1) If some ay = 0 then all the elements <Zy, T>y, S$yX (X = 1,..., fi) as well as those

elements tyx>, for which the symbol 0 is in the x-th row and A-th column of Tu may

be omitted.

(2) If some ay = /\ then the elements £>y, tyyX (A * 1, . . . , /i) may be omitted.

Now we shall prove the main theorem of this section:

Theorem 2. Let a e L (3) and let si\ be the corresponding auxiliary automaton
over 3. Let j / t (a) be the proper automaton overX.

Then the logical net Jr
x constructed from s/v by the Procedure 2 realizes the

automaton s/t(X) (under natural input assignment with respect to S).

Proof. Because of the equivalence of j / t (a) and n(sJ^) (Theorem 1) it is sufficient
to show that Jf"„ realizes TI(S4^) (see Lemma 3). We shall proceed as follows:

(I) We recapitulate the features of the automaton ii(s4^) and

(II) characterize the binary automaton stf^ that describes the net Jfx; then

(III) we define some special state assignment g of n(stf^ to si^ and

(IV) conclude by showing that g is in concurrence with premises of Lemma 4.

^ Q - * » — OR gate

^X^}-*^- AND gate

Fig. 1.

(I) Let ssf, = <S, I, au 5', <*>>, where S = {£ . , . . . , Q, E = {au..., av}. Then
n(stfx) is defined as %(sd^ = {X, S, su 5, F} whereX = {xu ..., xm} is related to S
by given injective mapping q> : S -> ^>(X) (the symbols of S denote some different
subsets of X) and the set S = {s1; ..., s„} have come to being in the course of Proce­
dure 1: Each ske S may be written as the expression

sk = \Jay (lkz{l,...,v},ayeE).
ye lie

In such case we shall say that ay occurs in sk. For s t we have especially sl = at.
From Procedure 1 we may infer that some ax occurs in §(s, x) iff there exist ay and £x

such that

(a) ay occurs in s;

(b) x E cp(Q;

(c) 8'(ay, Q = ax.

Finally, s e F iff some ax e <P occurs in s.

(II) Now we specify the binary automaton s/ffi = <X, S, s1; 3, X). Here X =
= {0, l}*1, S = {0, 1}V and s t = (l, 0, . . . , 0), because J/"a contains /j. input terminals
and v delays and the starting terminal is connected just to the first delay (via the
OR-gate Sj) . For our purposes it will be useful to associate the internal states of the
net with the values on inputs of delays (instead of its outputs as is usual).

It ramains to specify 5 and X. From the internal behavior of J/\ it follows that the
input of any delay T>x (x = 1, ...,v) may have value 1 iff there exists at least one
AND-gate %x that

(a') the output of the delay Dv has value 1 (i.e. its input had 1 one step before);

(b') input terminal £k has value 1;

(c') the output of 5PyA is connected to the input of the OR-gate <5X.

Thus, for stf($, if an input vector x and a state vector s are given, the state vector
3(s, x) is always uniquely determined by (a'), (b') and (c').

The output terminal r\ has the value 1 iff the output of some OR-gate <SX connected
to the OR-gate <50 has value 1; thus we may define X(s) = 1 iff some x e{ l , ..., v}
exists, for which axe<t> and the x-th component of s is 1.

(III) We define the state assignment g : S -* {0, 1}V by the following way:

1 if ax occurs in s ;

otherwise

where gx is the x-th component of g, x = 1, ..., v.

(IV) We prove that for n(s/^), s#[P, natural input assignment f and just defined
state assignment g, the conditions (l), (2) and (3) of Lemma 4 are valid.

(1) From sx = at directly follows g(st) = (I, 0, ..., 0) = sl.

(2) Let s e S, x e X. We are to prove that

S(g(s),f(x)) = g(6(s,x))

or componentwise

3x(g(s), f(x)) = 1 iff gx(d(s,x)) = l

for all x. (5x(s, x) represents the x-th component of 5(s, x)).

Here gx(S(s, x)) = 1 iff ax occurs in 5(s, x). This holds iff 3ay 3^x such that condi­
tions (a) , (b) and (c) are fulfilled for ax. But (a) holds iff gy(s) = 1 i.e. iff (a') holds;
(b) holds iff fx(x) = 1 i.e. iff (b') holds and the equivalence of (c) and (c') follows from
the construction of J/~x (Procedure 2, step 3). The conditions (a'), (b') and (c') are
simultaneously valid for x iff the input of X>x in Jf^ has value 1 and this is the same
as 8x(g(s), f(x)) = 1 in .-/<?>.

534 (3) Let s e S. Then s e F iff 3x[<xx e $ and ax occurs in s]. This holds iff Bx[a„ e <P
and gx(s)= 1] i.e. iff A(g(s)) = 1.

Now, by direct application of Lemma 4, the proof of Theorem 2 is completed.
Q.E.D.

The complete synthesis leading from a given expression a over the generalized alpha­
bet S to the logical net Jfa realizing the desired automaton consists thus of two stages:

1. The synthesis of the auxiliary automaton sia over E by means of derivatives
in 1(3);

2. Drawing the logical net J/\ which matches (in the sense of Procedure 2) the
transition table of sfa.

This straightforward procedure of synthesis is comparatively very simple and easy.
On the other hand, the resulting net is often not so economical as the net constructed
by the usual method, which realizes an automaton by using ari appropriate state-
assignment procedure and logical design.

Our nets possess, however, some special features, which makes them very attractive.
These features will be discussed in the following.

We already mentioned the paper [10] of Yamada concerning disjunctively linear
logical nets (DL-logic nets). We do not intend to recapitulate here the Yamada's
results and we only point out some similarities. Roughly speaking the nets yielded
by the Procedure 2 belong to the class of DL-logic nets with the following two
stipulations:

(1) The timing in our nets is slight different from that of Yamada, the starting
signal being applied at the time immediately preceding the first significant signal
on the nput. This enables us to represent also star events, especially {A,}- (In this
point, our approach is due to Arden [1] and Brzozowski [2], whereas Yamada
accepts that of Copi, Elgot and Wright [5]).

(2) DL-logic nets include a special input decoder (one-out-of-2'' code in the case
of k input terminals). In our nets, this decoder is replaced by a quite general decoder;
the most important case being the absence of any decoder at all. This generaliza­
tion is of great theoretical as well as practical significance.

On the other hand, by the structure of the logic unit (in fact Procedure 2 yields
only the logic unit of a net), our nets are special enough, and resemble those which
Yamada calls the MM-logic nets (Sect. IV of [10]). The latter, however, differ in the
property the only one delay element in the net is in state Y at any time, which cor­
responds to the state-assignment by one-out-of-n code. For completeness let us
mention that similar nets are also presented in [8] (for asynchronous logic) and in [9],

From behavioral point of view, the most significant property of DL-logic nets is
the so called disjunctively linear behavior. We shall present a slightly modified
definition of it, to comply with our timing (accordingly it is the same as the definition
of reccurent realization given by Brzozowski and Poage [4]).

For this, let Jf be an initial logical net and jtf(-2) its describing binary automaton.

Assume that the starting signal may be applied repeatedly at arbitrarily chosen times,

and not only once at t = 0 as earlier.

Definition8. The initial logical net Jf is said to have the disjunctively linear

behavior if it has the following property: The output terminal of Jf has value 1 at

time t iff there has been a signal 1 on the starting terminal at some time t' (0 g (' ^ f)

and the segment of the input sequence from t' + 1 to t (for t' = t it is A) belongs

to T (^ (2)) .

Now we may state

Theorem 3. Any logical net Jf constructed by means of Procedure 2 and supple­

mented by arbitrary input decoder has disjunctively linear behavior.

Si S„

f i »«,

П
JTmu,

Fig. 2.

fi s„

Fig. з.

fi 6. п
<ГI Si п

Fig. 4.

P r o o f will be omitted for it would entirely imitate that of Yamada (Property 2

in [10)]. The usage of the general decoder in our case has no influence on the

proof.

It is the property of disjunctively linear behavior, what enables us to carry out

compositions of nets in accordance whith basic Kleene's operations u , •, *. (See [4]

for the proof.) These compositions, used at first to illustrate the proof of Kleene's
theorem (see [5]; for our modification see [l] and [2]), are best demonstrated by
diagrams.

The net is generally represented by a square with its input terminals on the upper
side, the starting terminal on the left and the output terminal on the right side.

The operation u is represented by the parallel composition shown in Fig. 2. The
operation • is represented by the cascade composition (Fig. 3). The operation * is
represented by the feedback loop (Fig. 4).

In practical design of logical nets it may be useful to combine these compositions
with the synthesis described previously.

6. CONCLUSION

We have concerned ourselves with the application of the generalized alphabet S
and of the regular expressions over this alphabet to the description of the behavior
of finite automata and to their synthesis. Our method has some advantages, e.g. that
it enables us to synthetize the logical nets quickly and directly. It is obvious, that
these advantages do not apply in all particular cases to the same degree. There are
some reasons to recommend it, namely when dealing with multiple-input problems,
where the behavior of automata depends more on the sequences of signals on indivi­
dual inputs than on their instantaneous combinations; and still more if we are
interested in simplifying more the method itself than its result.

Some restrictions accepted in this paper (e.g. the restriction to Moore automata
with a single binary output) are not principal and the application of the method to
more general cases should not prove to be too complicated. There is, however, one
restriction which may not be omitted: the method of synthesis is not applicable to
expressions of the extended language of regular expressions (with operations
denoting the intersection and complementation of events).

Finally, another possible application of the generalized alphabet should be mention­
ed. There exist behavioral languages for finite automata, using formulas of symbolic
logic (see e.g. [7] for details). These languages may be often useful because of their
connection with the informal word description of the finite automata behavior.
However, the synthesis procedure in logical languages is complicated and it is desirable
to translate such formulas into another formalized language. The language of regular
expressions over generalized alphabet is in this respect applicable.

Acknowledgment. The author wishes to thank to J. S. Haskovec, CSc. for his careful guidance
and interest in this work.

(Received March 12th, 1968.)

REFERENCES

[1] D. N. Arden: Delayed Logic and Finite State Machines. In: Theory of Computing Machine

Design, Univ. of Michigan Press, Ann Arbor 1960.

[2] J. A. Brzozowski: A. Survey of Regular Expressions and Their Applications. IRE Trans-

actions EC-11 (1962), 324-335.

[3] J. A. Brzozowski: Derivatives of Regular Expressions. Journal of the ACM 11 (1964),

481-494.

[4] J. A. Brzozowski, Poage: On the Construction of Sequential machines from Regular Expres-

sions. IEEE Transactions EC-12 (1963), 4, 402-403.

[5] I. Copi, C. Elgot, J. Wright: Realization of Events by Logical Nets. Journal of the ACM 5

(1958), 2, 181-196.

[6] M. A. Гaвpилoв: Cинтeз тaблиц пepexoдoв мeтoдoм oбoбщeньгx cocтoяний вxoдoв. Aвто-

мaтикa и тeлeмexaникa (1967), 1, 89—99.

[7] I. M. Havel: Jazyky zápisu o zadání konečných automatů. Thesis. Praha 1966.
[8] P. R. Low, G. A. Maley: Flow Table Logic. Proceedings of the IRE 49 (1961), 221-228.
[9] K. Šiler: Některé způsoby logického návrhu kontrolní jednotky číslicového počítače.

VÚMS, Praha 1965.
[10] H. Yamada: Disjunctively Linear Logic Nets. IRE Transactions EC-11 (1962), 5, 623 — 639.

Regulární výrazy nad zobecněnou abecedou a syntéza logických sítí

IVAN M. HAVEL

Je zaveden jazyk regulárních výrazů nad zobecněnou abecedou, jejíž symboly jsou

interpretovány nikoliv jako vstupní stavy konečného automatu, nýbrž jako jisté

množiny těchto stavů. Symboly této abecedy mohou např. odpovídat signálům na

jednotlivých vstupních kanálech automatu s více vstupy.

Dále je ukázána metoda syntézy pomocí derivací výrazů, vedoucí od regulárního

výrazu nad zobecněnou abecedou k tabulce přechodů abstraktního automatu nebo

přímo ke schématu příslušné logické sítě.

Logické sítě vytvořené touto procedurou mají speciální charakter připomínající

Yamadovy disjunktivně lineární sítě a umožňující kompozici automatů dle základních

operací Kleeneho algebry.

Ing. Ivan M. Havel, Ústředí pro rozvoj automatizace a výpočetní techniky, Loretánské nám. 3,
Praha 1.

		webmaster@dml.cz
	2012-06-04T17:21:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

