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KYBERNETIKA-VOLUME 77 (1981), NUMBER 5 

NECESSARY CONDITIONS FOR DISCRETE 
DYNAMICAL SYSTEMS WITH DELAYS 
AND GENERAL CONSTRAINTS 

JAROSLAV DOLEZAL* 

A fairly general class of discrete systems with delays is studied and necessary optimality con
ditions (a discrete maximum principle) are derived. Both state and state-dependent control 
constraints are considered. After a suitable reformulation of the original problem it is possible 
to establish the desired necessary conditions within the framework of the existing discrete control 
theory. A special case having the mentioned constraints described explicitly by systems of equa
lities and inequalities is studied separately. An alternative possibility to obtain necessary con
ditions in this case is also pointed out and briefly discussed in the connection with a maximum 
principle formulation. 

1. INTRODUCTION 

At present time there exist fairly deep results dealing with necessary optimality 
conditions for discrete systems. Let us recall at least some of them described in 
references [1 — 4]. All these formulations admit a general structure of constraining 
sets which are then included into the statement of necessary conditions with the aid 
of a certain "conical approximation". Common feature of practically any approach 
to the study of discrete optimal control systems is an application of mathematical 
programming theory. The obvious reason for this is the fact that, after all, a discrete 
control problem can be regarded as a special case of a mathematical programming 
one, and the existing results in the theory of mathematical programming are then only 
worked out in the appropriate way to conform with a discrete control problem. 

In many practical applications of control theory one can also encounter discrete 
control systems involving the so-called time delays (lags). Typical problems of this 
kind arise in mechanical and chemical engineering, management sciences and eco-

* The final version of this contribution was prepared when the author was with Department 
of Electrical and Computer Engineering, Oregon State University, Corvallis, Oregon. 
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nomics. This type of control problems was mentioned already by Fan and Wang 
in [5] when dealing with some applications of discrete control theory in chemical 
engineering. However, some general conclusions stated in this book were erroneous. 
Later, problems with delays were studied by a number of authors, e.g. see [5—11]. 
Various classes of systems with delays were thus investigated from a point of view 
of necessary optimality conditions. Recently the class of systems introduced in [9] 
was considered also by the author in [12] in more general setting on applying the 
results of [4]. The respective existence theory for discrete systems is given in [13] 
and [14]. Especially the reference [14] pertains to the case involving delays. 

In [7] certain type of explictly described discrete control problems was studied 
and necessary optimality conditions were formulated for this special case of problems 
with delays. As pointed in [9] and [10], also this class of problems can be treated 
in a quite general way invoking the methodology of [4]. Our aim in this contribution 
is to give a precise derivation of necessary optimality conditions in a form of the 
maximum principle for this case of problems. As it is to be expected the incorporation 
of time delays in the formulation of a discrete control problem will cause certain 
difficulties when trying to derive the corresponding necessary optimality conditions. 
On the other hand, discrete-time control problems with delays can be ususally 
reformulated, at the expense of higher dimensionality, in such a way that the resulting 
equivalent discrete control problem does not contain any delay. Then the results 
of [1 — 4] are immediately applicable. Some general considerations in this respect 
were given in [14]. This is, however, not the case if one have to deal with continuous-
time optimal control problems involving delays. Then necessarily a more sophisticated 
approach is to be applied, e.g. see [15] and [16]. 

After formulation of the studied problem in the next section, some assumptions 
of a technical character will be imposed to be able to apply the theory given in [4]. 
As this reference is generally accessible, only a minimum of definitions and results 
will be repeated here. For convenience, also the notation introduced in [4] is widely 
preserved. For the formulated problem some existence results are briefly included. 
Finally, the more explicit case of state and state-dependent control constraints is 
considered more in detail together with a discussion of some aspects regarding to the 
necessary conditions. In our convention, if not otherwise stated, all vectors are as
sumed to be column-vectors, however, as usual, the gradients of various functions 
are treated as row-vectors. Then more efficient matrix notation can be used. 

2. DISCRETE CONTROL SYSTEMS WITH DELAYS 

Discrete control systems involving various delays in state equations, objective 
functional and constraints were studied by Mariani and Nicoletti in [7]. Only 
explicit description of the constraints (inequality-type mixed state and control 
constraints) was assumed and necessary optimality conditions were obtained on 
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applying a mathematical programming approach. A maximum principle formula
tion of necessary conditions was given only under rather restrictive linearity and 
convexity assumptions. As suggested by the author in [11] also this type of problems 
can investigated within the general framework of [4]. In this way it was possible to 
include also state constraints in our formulation of the problem. 

The following statement of a discrete optimal control problem with delays thus 
stems from those given in [7] and [11]. State and state-dependent control constraints 
are assumed to be described implicitly as general admissible sets. In this way our 
formulation will include those of both mentioned references. For the sake of 
notational simplicity, only one delay in the state and control variable is always 
assumed. The extension of the further obtained results to a case of more delays is 
straightforward. 

Now let a discrete nonlinear dynamical system be given the behaviour of which is 
described by a set of equations (index k always denotes the current stage of the system) 

(1) x*+i =f(xk, xk-x, uk, uk-n), fc = 0 , 1 , . . . , _ . - 1 , 

where the positive integer K denotes a given number of stages, xk e E" is the state, 
uk e £m is the control and /* : E2n x E2m —> E". The aim is to find a control sequence 
u0, Wj,..., iifc-i and a corresponding trajectory x0, xlt ..., xK, determined by (1), 
satisfying the state constraints 

(2) (xk,xk-d)eAkczE2n, k = 0,l,...,K, 

and the state-dependent control constraints 

(3) uk e Uk(xk, xk-„, «„_.) «= E"> , k = 0,\,...,K-\, 

such that the objective functional 
K- 1 

(4) J = __ hk(xk, xk-al uk, «„_„) 

is minimized. Here Uk : E
2n x Em -> 3f(Em) is the so-called multivalued mapping 

with ^(Em) denoting the collection of all nonempty subsets of £m, and hk : E2n x 
x £2m -* E1. The numbers a, /?, 5, ^, E, a, 9 are positive integers less then K repre
senting various delays in (1) —(4). The case having these numbers negative can be 
handled in a quite analogous way. Finally, let the initial conditions (history) be 
given as 

(5) X-i, x-j + 1, ..., X-t , i = max (a, <5, JJ, a) , 

u-j, w-j+i, ..., u-i , j = max (fi, e, 9). 

This fact is to be kept in mind when interpreting the constraints (2)-(3) in an 
appropriate way. Otherwise more complicated notation would be necessary. Also 
taking into the account a possible terminal part of J given as g(xK) would result 
only in additional notational difficulties without any substantial gain. 
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To apply the theory developed in [4] the following assumptions have to be 
postulated for the above problem. 

(a) The functions fk and hk, k — 0 , 1 , . . . , K — 1, are continuously differentiable 
on £2" x £2m. 

(b) For any (xk, xk-a) e Ak, k = 0, 1, ..., K, there exists a conical approximation 
(of the second kind), denoted C(xk, xk-d; Ak), to the set Ak at the point (xk, xk_s), 

(c) For any xk, xk-~, uk and wt_£ with uk e Uk(xk, xt__, wt_£), k = 0,1, ...,K — 1. 
there exists a continuously differentiable function cok : N(xk, Xj.__, wfc_E) -> Em such 
that cok(x, x, u) e Uk(x, x, u) for (x, x, w) e N(xk, x t_-, wfc_£) and cos(xk, xt__, wt_E) = 
= uk. Here as _V(xt, x,_„, wt_E) denoted a neighbourhood of (x t, x t_„, wt_E) in 
£2" x Em. 

(d) Let e 0 e £ 1 + " be a vector (—1, 0, 0, ..., 0) and define multivalued mappings 
4>k : E4" x £3 m -. _?(£1+") as <_>*(•) = %(**, x t_-, **_,-, Uk(xk, x,__, w,_£), a*.,, 
wfc_e), where cpk = (hk,fk), k = 0,1, ...,K — 1. It is assumed that the sets _>*(•), 
~ = 0, 1, ...,__. — 1, are e0-directionally convex for any value of the argument of $ t . 

More details concerning various concepts used to formulate these assumptions 
can the interested reader find in [4]. Assumption (c) is alternatively called as the 
existence of "local sections" in [2 — 3] or of the "programs" in [16]. Anyway, 
this type of assumption cannot be avoided when dealing with state-dependent 
regions of admissible controls. The question of a directional convexity and that of 
a conical approximation was discussed in [ l ] in detail. The above assumptions make 
it possible to apply the basic result of [4] to the following equivalent problem in 
a straightforward way. 

3. EQUIVALENT PROBLEM 

Define variables y1, ..., yl e £" and v1, ..., vJ e £m by the equations 

J/t+l = xk ' Jo = x-l ' 

(6) yk+i = yk > J7. = x-2 > 

vk+i = uk, V0 = W_x 

v2
k+i - vl , í>0 = U - 2 

vi+i^v^ , VJ
0 = Û-j yi+i = yl , y'o = *-_ . 

where k = 0, 1, ..., K - 1. Then introducing an augmented state variable z = 
= (x, y\ ..., y\ v1, ..., vJ) belonging to Ein+1)i+mJ = E, and denoting Fk(zk) = 
= (f(xk, xfc_„ uk, uk-p), xk, yl,..., yl'1, uk, v\, ..., v{~x), hk(zk) = hk(xk, xk-a, uk, 
wfc_s), it is possible to write 

(7) zk+1 = Fk(zk,uk), fc = 0, 1,...,K - 1, 

(8) zkeAkaE, k = 0,l,...,K, 

(9) ukeUk(zk)czEm, k = 0,l,...,K-l, 
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(Ю) J = I %*> и„) 
fc = 0 

This form of a discrete optimal control problem was studied in [4]. The postulated 

assumptions guarantee the application of the basic result of [4, Theorem 3] to 

(7) —(10). It has to be realized that thanks to a rather special structure of this problem 

some simplifications of general conditions are to be expected. For example, the 

conditions zk e Ak only means that (xk, xk-s) = (x^, y6

k) e Ak, and other components 

of zk are not bounded by any constraint. In a similar way also the constraints (9) 

should be understand. So one can finally conclude that by the indicated construction 

the problems (l) —(5) and (7) —(10) are equivalent. 

Moreover, the problem (7)-(10) suggests a straightforward application of [13] 

to deal also with an existence problem. On the other hand, the existence theory of 

[14] enables to treat directly the original problem ( l )-(5) . Let us only summarize 

the final result. 

Proposition 1. Let the discrete optimal control problem (l) —(5) satisfy the following 

assumptions. 

(a) The functions fk and hk, k — 0, 1,..., K — 1, are continuous on E2" x E2m. 

(b) The initial set A0 is compact and the sets Ak, k = 1,...,K, are closed. 

(c) The multivalued mappings Uk, k = 0 , 1 , . . . , K — 1, are compact-valued and 

upper semicontinuous on E2" x Em. 

(d) There exists at least one admissible control process i70, ult..., «x_ x and 

x0, x t , ..., xK in the given system. 

Then the discrete optimal control problem with delays ( l ) - ( 5 ) has a solution. 

4. NECESSARY OPTIMALITY CONDITIONS 

The mentioned theorem of reference [4] requires that the sets Ak, and therefore 

also Ak, are such that they admit the so-called conical approximation of the first 

kind [1, 4]. However, if one compares the given derivation of this result it is easily 

seen that this restriction was evidently superfluous. Thus a more general character 

of possible state constraints is assumed here, see the assumption (b) earlier. 

Now let w0, ut, ..., H X _ ! and a corresponding z0, zu ..., zK be an optimal solution 

to (7)-(10). Then, according to [4], there exists a number ju ^ 0, row-vector 

multipliers Ak 6 E, k = 1,..., K, and row-vectors bk e C'(zk; Ak) — the dual cone to 

C(zk; Ak) in E, such that the following conditions are satisfied. 

(i) If (i = 0, then at least one of the vectors Ak is nonzero, 

(ii) The row-vectors Ak satisfy the adjoint equation 

(11) Ak^^k+1(zk)-bk, fe = 0 , 1 , . . . , _ _ , 
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where we formally define A0 = 0 and s#,K+1 = 0 to obtain the respective boundary 
conditions. Here 

(12) yfk + 1(zk) = tfk+ \zk, cbk(xk, y\, »«)), k -= 0,1 K - 1 , 

with 

(13) .Wk+1(zk, uk) = hh
k(zk, uk) + Ak+1F

k(zk, uk), k = 0, 1, ..., K - 1 , 

and <£>k, k = 0, 1, ..., K — 1, being the functions the existence of which is guaranteed 
by assumption (c) and which correspond to the optimal solution. 

(iii) The maximum condition 

(14) J?k+1(zk, iik) = max M'k+1(zk, u), k = 0, 1, ...,K - 1 , 
ueOk(zk) 

is satisfied along the optimal solution. 

Now one has to realize that the vectors b~k have nonzero components only on the 
places corresponding to xk, y6

k, and let us denote these parts of bk as b'k e £" and 
b"k e £". Further, if Ak = (Xk, X\, ..., X'k, Xk, ..., XI), with Xk, X\, ..., )}k e £", X\,... 
...,XJ

ke £'", one can easily write the corresponding adjoint equations for all of the 
indicated constituents of Ak. Because of a special structure of this problem finally 
only equation for Xk is deduced. These calculations are rather straightforward, 
however somewhat lengthy, so let us omit them for short. Then (11) implies the 
equation 

(15) Xk = Hk+» + Hk;1+" + Hk;1+" + Hk
x;

 1+"-b'k- bl+i, 

fc = 0, 1, ...,K - 1, 

with boundary conditions X0 = 0 and XK = — b'K. Here 

(16) Hk+1(zk) = Hk+1(xk, x*_-, *,_., &k(xk) xk.n, uk.c), uk-,„ uk.g), 

k = 0, 1, . . . , K - 1 , 
with 

(17) Hk+1(xk, xfc_a, xk-a) uk, u^p, uk_e) = 

= nh\xk, x t_-, uk, «,_„) + Xk + Jk(xk, xk-x, uk, uk-p), k = 0 , 1 , ...,K - 1 . 

Implicitly it is assumed that in the above expressions H" = 0, b"x = 0 for any x > K. 
This convention will be maintained throughout the paper. It should be also pointed 
out that in a case of some delays being equal, certain precautions are to be observed 
to include the appropriate number of members on the right-hand side of (15). 

In a quite analogical way also the maximum condition (14) can be brought to 
a more familiar form. Apparently only those terms should be taken into the account 
which explicitly depend on uk, i.e. schematically denoted 

(18) _T*+1 = Hk+1 + Xl+1uk+ Wk, fc = 0, 1 X - l , 
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where Wk does not depend on uk and where 

(19) A>+1 = Hk,;i+e + Hk;1+° + Hk;1+°, k = 0,l,...,K-l, 

with the right-hand side again evaluated along the optimal solution. Then for an 
optimal control sequence w0, ux, ..., itK_x one has that 

(20) uk = arg max [Hk+1(xk, xk_a, xk.„, uk, uk-f, uk_e) + 
UkeVk(Hk,Xk-n,uit-c) 

+ (Hk;i+" + Hk
u;

i+e + Hk
u;

i+°)«j, k«o, 1 , . . . , K - 1 . 

It is not difficult to realize that either in (15) or in (20), H can be sometimes replaced 
simply by H, as far as the indicated differentiation does not influence function 6)k, 
e.g. Hk.;i+X = Hk;i+a, etc. Anyhow, to preserve a uniform notation only the symbol 
H was used in the mentioned expressions. These considerations are summarized in 
the following theorem. 

Theorem 1. Consider a discrete optimal control problem with delay:. (1) —(5) and 
let the assumptions (a) —(d) be satisfied. If u0, ux, ..., uK~x is an optimal control 
sequence and x0, xx, ...,xK a corresponding trajectory, then there exists a number 
fx = 0, row-vector multipliers kk e E", k = 0, 1, . . . , K, and row vectors b'k, b"k e En, 
with (b'k, bk) e C'(xk, xk_s; Ak) - the dual cone to C(xk, xk.s; Ak) in E2n, such that 
(all expressions are to be evaluated along the optimal solution and set to zero if the 
stage index exceeds the indicated range) 

(i) if n = 0, then at least one of vectors kk is nonzero; 

(ii) the row-vectors kk satisfy the adjoint equation (15) with the indicated boundary 
conditions; 

(iii) the maximum condition (20) holds along the optimal solution. 

5. CASE OF EXPLICIT CONSTRAINTS 

Let us assume a more concrete form of (2) and (3). Namely, let these sets be given 
as systems of equalities and inequalities 

(21) Ak = {(xk, xk_d) e E2n | Sk(xk, xt.s) = 0 , sk(xk, xk.t) ^ 0} , 

k = 0, 1,...,K, 

(22) Uk(-) = {(xk, xfc_„ uk, «*_„) E E2n x E?m | Q\xk, xk_n, uk, uk_t) = 0 , 

qk(xk, x k . „ uk, uk_t) ^ 0} , k -- 0, 1 , . . . .K - 1 , 

where Sk : E2n -> E", sk : E2n -> En, Qk : E2n x E2m ~* Ey and qk : E2n x E2m ^Ez. 
The inequality sign for vectors is to be taken componentwise. In the same way as in 
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[4, Theorems 4 and 5] one can handle also this discrete control problem with 
delays and explicit constraints. Some results in this respect appeared in [11]. 

Also now let the assumptions (a) and (d) be satisfied. For (c) to hold it is suf
ficient that gradients of active constraints in (22) with respect to the vector (xk, x t_-, 
Mfc_c) are linearly independent. This easily follows when comparing the equivalent 
problem (7)-(10) with a general scheme of [4]. It is not necessary to assume anything 
more as the state constraints (21) are concerned. However, to avoid a trivial satisfac
tion of the conditions presented further it is sometimes convenient that also gradients 
of active constraint in (21) with respect to the vector (xk, xk^d) are linearly independent 
Let us formulate only the final result which is not not very difficult to deduce on 
combining the mentioned theorems of [4]. 

Theorem 2. Consider a discrete optimal control problem with delays, where the 
constraints are given as in (21)-(22), and let the above indicated assumptions be 
satisfied. If u0,u1,...,uK_i is an optimal control sequence and x0,xu ...,xK 

a corresponding trajectory, then there exists a number n = 0, and row-vector 
multipliers 

Xk e E", ij/keEe, vkeE", k = 0,l,...,K, 

£keEy, £keE\ k = 0, 1, . . . , / _ - 1 , 

such that (all expressions are to be evaluated along the optimal solution and set to 
zero if the stage index exceeds the indicated range) 

(i) if /i = 0, then at least one of vectors Xk and \[/k is nonzero; 
(ii) the row-vectors Xk satisfy the adjoint equation 

Xk = / _ k + 1 + Hk+l+° + Hx;
l+° + {kQ

k
Xk + £kqXk + Ck+,Qi:" + 

+ . _ + - _ £ • + -AkS
k
Xk + vks

k
Xk + ^k + dS

k
x
+* + vk,ss

k
xZ>, k = 0, 1, ...,K - 1 , 

where Hk+l is defined by (17), with boundary conditions 

X0 = 0 , XK _. «AKS*K + vKsK
K • 

(iii) the maximum condition (20) with Uk(-) given by (22) holds along the optimal 
solution; 

(iv) v, g 0, vks
k = 0, k = 0, 1, ...,K; 

(v) _„ __ 0, &.J- = 0, k = 0, 1 , . . . , _ _ - 1. 

One can see that trying to preserve the maximum principle formulation not too 
much is gained by this explicit formulation of the constraints. If instead of (20), 
while taking into the account (22), one writes down a necessary condition for the 
indicated maximum, one obtains that 

(23) < + i + Hk+^ + < + i + e + uQk
Uk + u k + c_+ .sr + ^ c = o, 

k = 0,l,...,K- 1 . 
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However, this condition can be derived using only a mathematical programming 
approach, e.g. to the equivalent problem (7)-(10), and no assumption regarding 
to the required directional convexity is then needed. On the other hand, if the aim is 
to formulate the maximum principle type necessary conditions, this assumption 
cannot be avoided. As also observed in [1], it is no important difference of these two 
alternative ways of formulation of necessary conditions when applying them to a solu
tion of practical problems. 

6. CONCLUSIONS 

For a general class of discrete optimal control systems with delays a set of necessary 
optimality conditions (the discrete maximum principle) was derived on applying the 
results in this area, being of sufficient generality. Thus some practical problems of 
this type studied in [8 — 9] can be now treated in a more general setting involving 
the considered type of state and state-dependent control constraints. 

On the other hand, one has to aware of possible numerical difficulties during 
practical applications as the dimensionality of a respective equivalent problem can 
be prohibitive from a computational point of view. Especially in this respect the 
obtained conditions can be of reasonable benefit as the higher dimensionality of the 
equivalent problem resulted only in more complicated relations, while the number 
of equations to be solved remained the same as in a case without delays. 

(Received February 4, 1981.) 
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