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K Y B E R N E T I K A - VOLUME 26 (1990), NUMBER 3 

SEMIRECIPROCAL WAVE PROPAGATION 

VÁCLAV ZIMA, OTTO SCHWELB 

Distributed four-port network is a valid model for two coupled waves propagating in linear 
media. This paper deals with nonreciprocal, physically realizable wave propagating systems. 
In the past such systems have been applied to construction of circulators with ferrites for reaching 
one way propagation of signal power in microwave communication and radar systems. Now the 
main interest in research in nonreciprocal phenomena is caused by the needs of progress in 
integrated optics and in improving Fabry Perot resonators for semiconductor lasers. For optical 
systems it is necessary to deepen the old theory. The results will be presented. We are now 
able to synthesize the optimum nonreciprocal distributed parameter four-port tailored to given 
requirements. The methods of synthesis of semireciprocal wave propagating systems are described 
in a detailed form. The signal propagation of two wave modes with different phase and group 
velocities in anisotropic reciprocal or nonreciprocal media may be solved in an exact explicit 
form. The technologists get clear instructions for developing materials for exploring new interest­
ing applications in photonics. 

1. INTRODUCTION 

The theory of two coupled homogeneous lines is well established [1]. The results 
have been applied to the analysis of slotted coaxial lines in GUIDAR systems [2] 
and for underground communications [3, 4]. Recently the theory has been im­
proved and applied to the design of special bandpass filters with space distributed 
resonators [5]. All of the mentioned objects represent reciprocal systems. In this 
paper the concept of nonreciprocity is discussed with the aim to reach nonevanescent 
wave propagation in lossless media. Such condition permits the signal transfer 
to infinite distance. Nonreciprocity is found neither in lumped parameter networks 
nor in coupled transmission lines. On the other hand, the passive nonreciprocal 
systems are physically realizable and bring no contradiction to the laws of nature. 
It is well known that a broad class of interesting phenomena is based on gyromagnetic 
effects in anisotropic materials for integrated optics [6]. 

Our investigation is based on a very detailed study of the chain matrix A of a genera* 
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linear four-port with space distributed parameters. The losslessness, reciprocity or 

nonreciprocity are directly reflected in the form of its secular equation. The eigen­

values determine in a unique way the type of wave propagation (evanescence or ability 

for space unrestricted propagation). The eigenvectors appear in various proportions 

in the four constituents of the matrix A. They contain altogether 64 complex constants. 

The numerical values of the entries of any constituent are mutually coupled by 72 

constraints. The knowledge of all these conditions simplifies substantially the solu­

tion of a set of four first-order differential equations in a closed analytical form. 

Using our method we have developed procedures, algorithms and computer programs 

for the synthesis of reciprocal and nonreciprocal four-ports with distributed par­

ameters. 

2. GENERAL LOSSLESS NONRECIPROCAL FOUR-PORT 

The admittance matrix Y of a linear lossless four-port fulfils the condition Y + 
+ Y+ = 0, where asterisk denotes a Hermitean-conjugate matrix. On its main 
diagonal there are four imaginary entries. Above the diagonal we find 6 complex 
numbers yik = gik + }mik (i, k — 2, 3, 4, i > k). Under the diagonal there are 
numbers yki = —gik + ]mik. Thus, Y consists of the symmetric imaginary part 
and of the real antisymmetric part. The chain matrix and its inverse have the form 

(i) 

-1 r l c l °l ' b* -rj d* 

дi bi si &i 
c2 o2 a2 r2 

, A ' = -9*i 

d* 
a*i 

-o* ь! 
s2 à2 g2 b2_ sì cì -ň 

(2) 

The matrices A and Y define the following linear transformations 

V = A.W, I = Y . U , 
where 

V = [uu iu u2, i 2 ] T , W = [u3, - i3, u4, - i 4 ] r , 

/ = [it, i2, i3,i4]T, U = [uu u2,u3, w 4 ] T . 

The physical meaning of all these variables in the two possible system descriptions 
of any linear four-port explain the circuit diagram in Fig. 1. 

O 1 1 o 

' O 1 

Fig. 1. Circuit diagrams for the four-port description either by the admittance matrix Y or 
by the chain matrix A. 
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-h = «ibi - r i # i . A2 = ^ 2 ^ 2 - ^ 2 0 2 » 

* i = cxdx - oxsx , ô2 = C2t*2 C>2S2 » 

« 1 = axdx - gxox , a2 = « 1 ^ 2 - # 2 ^ 2 » 

i»l = bxcx - rxsx , ßг - 0 2

c 2 ~~ l*2S2 » 

1-1 = -cxgx + axsx , R2 = -c 2б/ 2 + a 2 s 2 , 

The chain matrix A determines two wave propagation modes. Unfortunately 
the constants for the losslessness are more complicated. We define the following 
values of subdeterminants 2 x 2 

(3) 

Gx = -dxrx + bxox , G2 = -d2r2 + b2o2 . 

All these variables fulfil the fundamental constraints 

_._ = A* , dx = <5* , ax = - j5 2 , 

Pi = - « * , Gi = -G* » ^ i = -R* • 

These conditions for A are equivalent to the condition Y + Y+ = 0 for Y which 
guarantiees the losslessness of the four-port. They are necessary but not sufficient. 
The consequence is that no power is absorbed by the four-port from external voltage 
or current sources. If no power is absorbed in the network the power flowing into 
the two inputs equals the power flowing out from the two outputs. 

The power Px flowing into and the power P2 flowing out of the four-port are 
expressed in the relations [8] 

(4) 

p 1 = _ £ V + . p . y , p 2 = £ v v + . P . v v 

where P is the permutation matrix of the form 

"0 1 0 0~ 
1 0 0 0 
0 0 0 1 
0 0 

_ 
1 0 

(5) 

(6) 

Using the first of the linear matrix Eqn's (l) we derive that the input power Px 

is a function of the output vector W. We get the relation 

Pl = AW2. (A+ . P . A ) . W . (7) 

The matrices P and A+ . P . A are Hermitean. Comparing Eqn's (4), (6) we get 
the condition for the equality of the input and output powers in the form 

P = A+ . P . A . (8) 

It is easy to prove that the entries of A fulfilling (7) satisfy the following constraints: 

a*bx + rxg* + c*d2 + o2s* = 1 

a*b2 + r2#* + c*dx + oxs* = 1 

g*ax + gxa* + s*c2 + s2c* = 0 
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g*a2 + 92

a* + s*cx + sxc* = 0 (9) 

r*bx + rxb* + o2d2 + o2d* = 0 

r*b2 + r2b2 + o*dx + oxd* = 0 

0*Cl-+ 9lC*2 + s\a* + s*ai = 0 

a*dx + b2c* + r2s* + g*ox = 0 

bxc* + a*d2 + r*sx + g2o* = 0 

We open the question how to synthesize the matrix A fulfilling all the constraints 
specified in (4) and (9). For the lossless nonreciprocal matrix Y, 

Y = 

yi y2 y3 y4 

y$ >'
6
 y-j y& 

y9 y\o vn v
12 

>'l3 >' l4 >*15 >16_ 

which fulfils the condition Y = — Y+, the following notation is practical: 

0 Є\ e2 eъ Л Л Л Jъ 
Є\ 0 eĄ e5 

+ j 
Л jb j4 j5 

eг 
~eA 0 e6 

+ j 
12 Л jc jб 

Єъ -es 
~e6 0 jЗ j5 Л Л 

(10) 

The simplest way to find A is to select six real constants ei9 i = 1, 2, ..., 6, four 
diagonal constants/ a ,/ b ,/ c ,/ d and 6 off-diagonal constants ft. 

We introduce eight 2 x 2 matrices containing all entries of A and Y: 

Y i = 
У\ Уг 

Уs Уб 

Һ Ч в-["s'l, ғ-[''Я. 
L°2 r2J LS2 g2j \ýг Ь2\ 

= Һ У 4 1 ү3 = P9 H , ү4 = p " H . 
(U) 

Then we get the transformation Y => A by simple manipulations with matrices 
of a low order. The resultant formulae have the form 

E = - Y 3 \ Y 4 , R = Y 3 \ G = Y2-Y1.Y3-1 
Y, F = Yi 

As an example we choose the values of 16 entries of A: 

ex - 13 , e2 - - 3 , e3 = - 7, e4 = - 5 e5 = - И , 

(12) 

1 , 

h - 53 , f2 = 37 , / 3 = 43 , f4 = - 4 1 , / 5 = - 4 7 , / 6 = 31 , 

/ . = - 2 3 , /„ = - 2 9 , / c = 17 , / d = 19 . (13) 

Using Eqn's (12) we calculate all entries of A and from Eqn's (4) we determine the 
constraints of A. The numerical results are shown in Table 1. During computation 
the remaining energetic constraints (9) have been checked. To complete the review 
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Table 1. General lossless nonreciprocal four-port. Entries of the chain matrix A and its 
constraints. 

ax = -0-99272767 - j 0-95548043 a2 - 1-75527959 + j 0-809299943 

bx = 4-76703941 - j 0-431720258 ô2 — -0-466342992 - j 3-98991253 

CÍ = 1-0924063 - . 1-81166417 c2 = -0-780605978 - j 0-976151372 

dx = 3-63216467 - j 0-328086647 </2 = -0-417001629 - j 5-23035874 

rx - 0-118009583-j 0-079678806 r2 — -0-067665392 + . 0-086094976 

gí = 42-5505638 - j 2-0432786 ^2 _ -126-754860 - 43-568206 

ax - -0-09299758 + j 0-07871822 <т
2
 _ 0-0710335742 - . 0-107098405 

sl = 45-6742913 + j 114-73157 s2 = 3-711488290 - . 44-2411094 

ïÇ> = 42-8006479° 

Constraints: 

(Aj = 1-00000004 

Ax = jf _ 9-91744728 + j 0-584073146 

őv = ÿf = -9-91744727 + j 0-135693613 

(-j- — _j5* = 7-08852642 + j 0-25663815 

«2 == - Æ * - 8-70505259 - j 1-63717543 

Gx = - G f - 14-097042 - j 232-393342 

Д - ^ - R f - 0-0383482527 + j 0-156342862 

of the main properties of A we mention the value of its determinant, which is 

det (A) = exp (j<p) . (14) 

It means that the absolute value of the determinant of A of a linear lossless non-
reciprocal four-port equals unity. In contradiction to linear two-port the condition 
(14) is necessary but not sufficient for the definite decision of the character of a linear 
four-port. 

Let us assume zero value of all six constants et, i = 1, 2, ..., 6 in the anti­
symmetric part of Y. Then we get a lossless reciprocal four-port. All 16 entries of Y 
are imaginary. We use transformation (12) to derive A. As an example we use identical 
parameters/^, i = 1, 2, ..., 6 a n d / a , / b , / c , / d of Y as specified in (13). The results of 
computation of all entries of A are shown in Table 2. 

We can see that the parameters ax>2, bx>2, cx>2, dx>2 from the main and second 
diagonal of A are real. The remaining parameters rx>2, gx>2, ox>2, sx>2 are imaginary. 
The subdeterminants of A relevant for the formulation of constraints (4) are defined 
in (3). The values of Ax, A2, 5X, 52, ccx, cc2, f}x, $2 are real and Rx, R2, Gx, G2 are 
imaginary. The sum of the subdeterminants Ax = A2 and 5X = b2 of the lossless 
reciprocal four-port equals unity: 

•đ, + åi = 1, Á2 + S2 = 1 (15) 

This is the consequence of the validity of the energy constraints defined in the first 
four equations in (9). In Fig. 2, the linear four-port consisting of 10 linear one-ports 
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Table 2. Lossless reciprocal four-port and its constraints. One half of the entries are real 
and the other are imaginary. 

ax = - 19-66666666 Û 2 -= 26-25 
bx = 49-916666 b2 = - 45-8333333 
cx = 28-25 c2 = - 17-3333333 
dx - - 42-4166666 d2 = 51-83333333 
rx - - j 1-95833333 /•2 = j 1-54166667 

§1 = - j 429-333333 #2 = j 688-999999 
ax = j 1-70833333 a2 = - j 1-79166666 

•Ч = j 784-499999 J 2 = —J 580-666666 
i 0° 

Constraints: 

| A | = 1 

Лx = J 2 -= - 140-916666 
J t = ô2 = 141-916667 
« . = - / ? 2 = 100-75 
y?L = - a 2 = - 126-83333 
Gx = G2 = -J3299-83333 
R. = R2 = j'2-20833331 

Fig. 2. The useful circuit model for a general lossless reciprocal four-port is the network consist­
ing of 10 reactance one-ports. 

is shown. The entries of its matrix Y, defined in (10) have the values 

>a = mx + mX2 + m 1 3 + m 1 4 , >b = m2 + m 1 2 + m 2 3 + m 2 4 

>c = m3 + m 1 3 + m 2 3 + m 3 4 , yd = m 4 + m 1 4 + m 2 4 + m 3 4 

>2 = >5 ~ !«i2 > >3 = >9 = - w 1 3 , >4 = > 1 3 = - m 1 4 , 

>7 = >10 = - ^ 2 3 . >8 = >14 = -m24. , >6 = J l S = ~ ™34 • (16) 

If all ten one-ports with admittances mt and mik are lossless, then m^ are imaginary 

and the four-port is also lossless and reciprocal. Similar network representation is 

never possible in case of general linear nonreciprocal four-port. 

The 4 t h degree secular equation of the chain matrix A of a general linear passive 
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or active four-port is a fourth-degree polynomial. Nevertheless the losslessness 

simplifies the solution. The equation has the form 

X4 + K3A
3 + K2X

2 + KXX + K0 = 0 (17) 

where K,-, i = 0, ..., 3 are simplex constants, K0 = exp (j</>). We multiply all entries 

of A by a complex constant exp (—j<p/4) to get a modified matrix A. Its determinant 

equals unity. The form of its characteristic equation is identical to (17) but Kl5 

K2, K3 may be easily calculated. The following equations hold 

K2 = Ax + A2 + dx + 52 + (ax + bx) (a2 + b2) - cxc2 - dxd2 + 

+ sxo2 + s2ox , 

K3 = - ( a , + bt + a2 + h2), Kx=Kt, K0 = 1 . (18) 

where K2 is a real constant (see (3)). Solving numerically (17) we get the four eigen­
values Xx, X2, A3, A4 of A. 

We shall find the 4 constituents A j 5 A2, A3, A 4 of the modified A. Then the Nth 

power of the original A may be simply calculated using the formula 

A-v = Ax . XN

X + A2 . Aj + A 3 . XN

3 + A 4 . A* (19) 

The real continuous variable N represents the length of the line which we are modell­

ing by a fourth-port with distributed parameters. Such a model is useful to study the 

properties of nonreciprocal anisotropic coupled lines which are perspective in modern 

optics. To reach unrestricted wave propagation for any length of N, the absolute 

value of all four eigenvalues A,-, i = 1,2,3,4 should be equal to unity. In the opposite 

case the evanescent wave propagating modes arise. To calculate all four constituents 

the knowledge of four different powers of A is required. We choose N = 0, 1, — 1, 2. 

and derive a set of 4 linear matrix equations with unknowns A ;, i = 1, 2, 3, 4 in 

the form 

(20) 

where I is a unit matrix. 

After solving this set of equations we are able to analyze the flow of waves and 

signals in a lossless nonreciprocal four-port with distributed parameters. Unfortunately 

the selection of the four-port by an arbitrary choice of 16 real parameters (13) to 

define the admittance matrix Y gives no practical chance for realizing A with 

satisfactory signal transmission. This is the reason why in the next sections we shall 

develop procedures for synthesizing A with prescribed nonevanescent wave pro­

pagation. 
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+ A2 + A3 + A4 = 1, 

A, . Xx + A2 . л2 + A3 .A3 + A4 . • л 4 
= A, 

A, Лlx + A2 лï + A3 . A 3 - 1 + A4 .AГ = A 

A, . X\ + A2 • x2 + A3 л\ + A4 Л\ = A2 



3. SEMIRECIPROCAL FOUR-PORT 

We shall introduce a nonreciprocal network which has similar properties as 
reciprocal system [10]. Let us define a four-port which has the chain matrix A 
satisfying the conditions 

a2= a* , b2 = b* , c2 = c* , d2 = d* , (21) 

r2 = ~r* , 02 = -9* , o2 = -o* , s2 = -s* . 

After a complicated, time-consuming derivation we find the secular equation to be 
of the form 

X4 - 4a0X
3 + K2X

2 - 4a0X + 1 = 0 (22) 
where 

a0 = (ax + bx + a2 + b2)J4 , 

K2 = 8a0 — 2a02 , 

and 4a0 and 4a02 are the traces of A and A2, respectively. The pairs of the roots 
Xx, X2 and A3, A4 of (22) are mutually reciprocal: 

X2 = l\Xx , X4 = 1/A3 . (23) 

The 4th degree equation (22) is the product of two quadratic equations 

(X - Xx) (X - 1/Aj) = X2 - 2ZlX + 1 , (24) 

(X - X3) (X - I/A3) = X2 - 2ZlX + 1 . 

Here we have introduced two new variables zu z2. They are relevant for the determin­
ation of the type of the two propagating modes. They are mutually related by the 
additive form 

zl = a0 + c0 , z2 = a0 - c0 . (25) 

Comparing Eqn's (22), (24) we get the square of the new parameter c0 

4 = (1 + a02)l2 - a2
0 . (26) 

The value of c0 may be real or imaginary depending on the sign of the right-hand 
side of the last equation. The propagating modes differ in these two possible cases 
significantly. After computation of zx, z2 we get all four eigenvalues from the relations 

xx = Zx + (z\ - iy2 

x2 = Zx- (z\ - iy2 

X3 = Z2 + (Z\ - I)"2 (27) 

x, = Zl- (4 - iy2 

Let us suppose that the following conditions hold: 

|«o + c01 < 1 , \a0 - c01 < 1 • (28) 

In this case we have also \zx\ < 1, |z2j < 1 and the absolute values of all four eigen-
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values equals unity. The complex quantities Af in (19) change only the phase depen­
ding on the variable N. It represents the length of the coupled lines where two 
"free wave propagating modes" may exist. 

In all other cases at least one of the two wave propagating modes is "evanescent". 
The limit of the corresponding quantity Af for N -> GO is either zero or infinity. 
The signals carried by the evanescent mode are rapidly attenuated in the space. 
If c0 is real and either \a0 + c0\ > 1 or \a0 — c0\ > 1 then either \zx\ > l o r j z 2 | > 1. 
As a consequence, at least one pair of the eigenvalues is real. The wave propagating 
mode is then "exponentially evanescent". In this paper we are introducing the 
"oscillating evanescent wave propagating mode". It occurs if c0 is complex (see (26)). 

Fig. 3. Dependences of Nth power of the absolute value of the eigenvalues of semireciprocal 
four-port. Only two types of evanescent modes are shown for which X = z + (z2 — l)1!2, 

\X\=* 1. Curve a: a0 = 0-97, c0 = 0-05; curve b: a0 = 0-97, c0 = j 0-05. 

In Fig. 3 the dependences of \ t for two types of evanescent modes are shown. The 
qualitative difference is apparent. Many phenomena of the evanescent modes are 
well known from electromagnetic theory and optics. In our analysis the explanation 
is based on exact methods of circuit and system theories. 

Let us note that we are dealing with lossless systems. To describe also the pheno­
mena of "leaky modes" our procedures may be modified with respect to space 
distributed losses. 

Having the possibility of calculating the eigenvectors and mode variables zx, z2 

in analytically simple and closed form, we are able to derive similar procedures for 
calculating the matrix constituents A ;, i — 1, 2, 3, 4. We choose low powers of A 
again. The following equations hold 

A, + A2 + A3 + A4 

AJAJ. + A2/Ai + A3A3 + A4/A3 

A./A, + A2A< + A3/A3 + A4A3 

AtA
2 + A2/A

2 + A3A
2 + A4/A

2 

AJA2 + A2A
2 + A3/A2 + A4A

2 

I , 
A , 

A 1 

= A 2 , 

= A 2 

(29) 
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Solving this set of linear matrix equations in variables Ax + A2 and A3 + A4 

and using (25) we get the expressions 

A. + A2 = I z2\(z2 - Zl) + (A + A~1)l(2z2 - 2zx), (30) 

A3 + A4 = I . zx\(zx - z2) - (A + A-1)/(2z2 - 2Zl) . 

We introduce new supporting variables 

qx = (z\ - 1)V- , q2 = (z
2 _ iy/2 . (31) 

For N = 2 the following relations hold 

(X\ + l/A2)/2 = 2z2 - 1 , (A2 + l/A2)/2 = 2z2 - 1 , (32) 

(A2 - l/22)/2 = 2q l Z l , (ll - l/A2)/2 = 2q2z2 . 

We may write another set of two linear matrix equations. To this end we subtract 
the second and the third equation in (29), and use similar relations for N = + 2 

(A, - A2) qi + (A3 - A4) q2 = M , (33) 

(A. - A2) qlZl + (A3 - A4) q2z2 = L , 

where M = (A - A_1)/2 , L = (A2 - A~2)/4 . 

We substitute the parameters a0, c0 into the mode variables z l5 z2. The solution 
is of the form 

A i - A2 = [ -M(a 0 - c0) + L]/2q lCo , (34) 

A3 - A4 = [ M(a0 + c0) - L]/2q2c0 . 

Now we shall introduce the matrix C and decompose L defined in (33): 

C = (A + A_1)/2 , L = C . M . (35) 

Using parameters a0 and c0 defined in (25) instead of mode variables Zl, Zl and 
solving Eqn's (30), (33) we get the 4 constituents multiplied by the scalar number 4c0: 

^ A , = C + C, . M/cZi , 4c0A2 = C, - C, . Hjqx , (36) 

4c0A3 = C2 + C2 . M/q2 , 4c0A3 = C2 - C2 . M/q2 , 

where C 1 2 = I . a0 + (I . c0 — C) . 

In diagonal entries of C also appears the parameter a0 which will be subtracted 
from the elements of I . a0. On the diagonals C 1 2 remain the linear functions of the 
wave parameter c0. We introduce them in the form 

<P = c0 + }x , V = c0 - }x, (37) 

where x = [(ax — a*) — (bx — /3*)]/2j. Using these expressions and the definition 
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of C in (35) we get the simple description of 

0 

C^ 

where 

v 
0 
Ф 
G 

C, = 

¥ - R — V 0 
G Ф 0 — V 

V* 0 ¥ R 
0 — V * G Ф 

(38) 

R = (r1 + rt)/2, G = (g1 + g*1)\2, 

v - (c, + d*2)\2 = ( C l + dx)\2 . 

The final form of matrix constituents is 

4c 0A 1 > 2 = C, + Bjq,, (39) 

4c0A3 > 4 = C 2 + B2/q2 , 

where B1 = Cx . M, B2 = C 2 . M and M is defined in (33). The last equations may 
be used directly for computation of theN t h power of a given semireciprocal matrix A. 
In synthesizing A the matrix multiplications C1 . M and C 2 . M are too complicated 
to find an efficient design algorithm. Nevertheless these multiplications show the 
simple structure of the matrices B1 > 2 belonging to both wave propagating modes. 
They contain only 10 different complex parameters. The following relations hold 

(40) b 4 4 = - b l t , b 3 3 = - b 2 2 , b34. = b 1 2 , 

/343 = b21 , b24=-b13, b42--b13. 

We shall now specify the procedures and constraints for selecting the entries of both 
matrices B l 9 B2 as a base for synthesizing A of a semireciprocal four-port. 

All four constituents are composed of the four eigenvectors of A multiplied by 
different scalar parameters. The matrices Ak are singular since their determinants 
are equal to zero. All subdeterminants 2 x 2 of Ak, k = 1, 2, 3, 4 should be zero, 
too. As an example we show the expression for the subdeterminant A1X of A 1 in (39) 

A1X ~ (<?> + blx\qx) (¥ + b22\qx) - (R + bX2\qx) (G + b21\qx) (41) 

The mode parameters qx2 are defined in (31). They may be either real or complex. 
To guarantee that Axx = 0 we have to fulfil two conditions 

(4>¥ - RG) q2 + bxxb22 - b12b21 = 0 (42) 

&b22 + ¥bxl - Rb21 - Gb12 = 0 

Similar consideration leads to 36 constraints among entries of any Ak. In 21 of 
them the wave propagation variable q2 = z2 — 1 (see (31)) plays its role. In 15 of 
these conditions only the relations between the elements of the matrices (38) take 
place. Fortunately the wisdom of nature causes that the validity of a restricted 
number of conditions guarantees the validity of the remaining ones. The method 
simplifies the synthesis substantially. The constraints are formulated in Tables 3 
and 4. 
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Table 3 . 21 conditions for the entries of the constituents A l 5 A 2 , A 3 , A 4 of the chain matrix A 
of a lossless semireciprocal four-port; q is the mode variable which depends on the eigenvalues 
of A according to (31). 

(ФЧ>- RG)qг + bІXbz2~bx2b2x-0 
(ФЧ>-vv)q2 - bІXb22 - bІЪbЪІ = 0 

(GR + vv)q2 — bi2b2l — bІЪbІX = 0 

vФq2 - bL1bІЪ - b21bl4.= 0 

vфq2 - ЪxxЪгx - bx2b4x- 0 
vЧ>q2 + b12bІЪ - bí2b2ъ = 0 

vWq2 + b22bъi- b21bi2 = 0 

Ф V -ь2

ІX - l>14l>4i = o 

v V - l Л l -l>32l>41 = 0 
W2q2 - bЏ - bЪ2b2i - 0 

v2q2 - b\ъ - lJ14l>23 = ° 
vGq2 - bilblъ + blъb21 = 0 

vGq2 - b22b41 - bЪib2x — 0 

ФGq2 г l>13l>4i - l>lll>2i = 0 

Ч>Gq2 ~ Ьъ2b2Ъ- b22b21 = 0 

G2q2 - b\x + b21b4i = 0 

vRq2 - b22b14— bІЪbi2 = 0 

vRq2 - blxbi2 + bъlbi2 = 0 

ФRq2 + bixЪX4r- Ъxxbx2 = 0 

Ч>Rq2 -biъbъ2-b22bi2 = 0 

R2я2 - b\2 - b14bi2 = 0 

Table 4. 15 conditions for the entries of the constituents Ax, A 2 , A 3 , A 4 . There is no depend-
dence on the eigenvalues here. 

4>bxl + b22 --Rb2i - Gbi2 = 0 

WbІX- b22- bІX- vblъ = 0 

Gbi2 - Rb21 - Ъòl + vbІЪ = 0 

vbix — ФbІЪ — Gbi4 = 0 

vbxx - ФbІX- RbĄ1 = 0 
vb22 + Ч>bІЪ - Rb2ъ = 0 

vb22+ Ч>bІX-Gbi2 =0 

vb21 — Фb2i + GbІЪ = 0 

vb2i — Фb41 — Gbъl — 0 

vbĄ1 — Фb21 + Gb{i — 0 

v ! > 2 3 - 4>b21 + Gb22 =0 

vbx2-WbІĄ-RbІЗ =0 

vbi2 — Фbi2 + Rbъl = 0 

vbi4- Фb12 + Rblx = 0 

vb>7 - 4>bl? + Rb77 = 0 
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4. SYNTHESIS OF THE CHAIN MATRIX OF SEMIRECIPROCAL 
FOUR-PORT 

First of all we choose the constants a0, c 0 to determine the type of wave propaga­
tion. Doing this, the mode variables z_, z 2 and all 4 eigenvalues are determined. 
Then we choose 8 remaining "free" parameters to get semireciprocal or reciprocal 
four-port. Let us go back to the method of designing a general nonreciprocal four-port 
explained in Section 2. We had the freedom to choose 16 real parameters specified 
in (10). If the four-port should be semireciprocal the choice is restricted to only 10 
parameters. The following relations hold 

e5 = -e2 , e4 = -e_ , f5 = f2 , (43) 

j4 = j3 > jb = ./a > Jd = Jc • 

The validity of such conditions ensures the symmetry of the entries of A, expressed 
in the next equations 

b2 = b* , c2 = 

Гj = — r« -9i , o-, = 

>* d -
1 > " 2 — 

S 7 = 

dì, (44) 

These conditions are not satisfied for the lossless reciprocal four-port with entries 
shown in Table 2. The reason is that the conditions f_ = fb, fs = f2, f4 = f_ have 
not been respected. It means that not all reciprocal four-ports belong to the class 
of semireciprocal networks. 

Our first task will be to synthesize a semireciprocal four-port with prescribed 
wave propagating parameters. We select 8 quantities a0, c0, R, G, a, x, bl4 for modes 
1, 2. The first 6 are real, bi4 may be complex. Altogether it represents 10 real numbers. 
It is equivalent to the design based on selection of the constants necessary for con­
struction of Y. Let us remind that the specification of c0 and x determines the value 
of 4>, V. We have to respect the other constraint which binds the entries of C in (37) 

$¥ - vvvv* - RG = 0 , (45) 

where vv = 1 for c0 real, w = — 1 for c0 imaginary (see (26)), v = (vv* exp (ja))1/2 

and a is one of 10 starting parameters. Using Table 4 we get the set of 3 linear equa­
tions with unknown variables b__, b22 b__ written in the matrix form 

v 0 Ф~ ~ь_; 
0 v* 0 b22 

= 
y ф — y* Aз_ 

G bы 

G b_2 -V b__ 
v b ' 3 1 

(46) 

For inversion of the coupling matrix we have used with advantage the constraint 
(45). The final solution has the form 

b__ = m_ + k_b31 , 

b22 = m2 + k2b31 , (47) 

bi3 = m_ + k_b_x , 
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The complex constants are of the form 

mx = ($2Gb32 - v*2GbX4)jv*RG , kx = <2>/v* 

m = GЬ32/v* , k2= - Wjv* , (48) 

,* m 3 = -(WGbx4 + vGb32)jv*RG , k3 = -v/v" 

To complete the solution we use the first equation in Table 3 to find directly the value 
of b3X. We get a quadratic equation 

b\x - 2bb3X + c = 0 (49) 
where 

b = (mxk2 + m2kx + m3)jm4 , c = (RGq2 — mxm2)\m4 , 

iTl A —— K3 \ 2. * 

After solving (50) the remaining entries of B are computed from other relations in 
Table 4. We get the results 

b14 = (vbxx - <PbX3)/G, b32 = -b*X3, 

b23 = ( v 6 2 2 + Vb13)lR , b41 = -/3*3 , (50) 

b2l = (<Pb23 - GbX3)jv, b43 = -b*x , 

bx2 = (WbX4 + RbX3)lv, b34= -b*X2. 

Performing all these computations for both mode variables qx, q2 introduced in (25), 
(31) open the way to find B l 5 B2 and finally, all powers N of the chain matrix A 
from (42) and (19). 

The proposed design does not work if the matrix in (46) is singular. In this case 
it happens that either R = 0 or G = 0. We restrict our explanation to the most 
important case when R = 0 and G = 0. The remaining starting parameters are 
a0, c0, v, x, bX2, b2X for mode 1 and 2. We suppose that c0 is real and bx2, b2l are 
imaginary [Re (lj12) = 0, Re (l321) = 0] for both modes. We have the freedom 
of selecting only 8 constants at the beginning. If we satisfy (28) than two nonevanes-
cent wave modes may propagate to unlimited distance in space. According to our 
choice w = lit follows from (47) that 

(PT = vv* (51) 

We use Table 3 and 4 to derive formulae for computation of all entries of the matrices 
B l 5 B2 in (42). They have the form 

bXi=+$k. b22=+x¥k, bX3=+vk, b3x = ±v*k, 

b14 = bx2v*IW , b32 = bX2v*l& , Z>23 = b2xV\v* , (52) 

b4X = b2X4>lv* , k = (q2 - bX2b2Xjvv*Y12 . 

If R = 0 and G = 0 then the constants mx, m2, m3 in (48) equal to zero that may be 
easy proved. This fact explains the relations of proportionality between the entries 
on the main and second diagonal of B3, B2. 
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Now we are able to design chain matrices of various semireciprocal four-ports. 
Let us turn our attention to the problem of synthesis of chain matrices of the semi-
reciprocal four-port with space distributed parameters based on the specification 
of some restricted number of immitance parameters of B l5 B2, e.g. r1>2, g1>2, o 1 2 , 
s 1 2 . It represents 16 constants. But we have at most 10 degrees of freedom to design 
a physically realized semireciprocal A. It was shown in the last example that if G = 0 
and R = 0 the number of free parameters is reduced to 8. We choose more, nine 
parameters c0, complex b12, b21, ox, s1 for one mode only. The last constant a0 

which together with c0 determines the character of both wave propagating modes 
will complete the choice. The synthesis procedures are different for c0 real and c0 

imaginary. Let us begin with the design of A with c0 imaginary. We shall use the 
symbol jc0 for c0 imaginary. Using Table 4 we are able to write the following equations 

b13 = b11b23\b21, b22 = bxl\h, b31 = bxxb12\bx^, 

&4i = b21\b23 , b32 = b12\b1A , # / y = -h, (53) 

h = b21b1A\h12b23 , 

The key to the solution is the knowledge of the ratio $\x¥. Let us suppose that if h 
belongs to the mode 1 then ljh belongs to the mode 2. Since the change of modes 
causes mutual change of <P and W, the following equations hold 

(c0 + x)l(c0 - x)= h. (c0 - x)l(c0 + x) = \\h . (54) 

These equations are identical. Using one of them we derive the expression 

x = c0(h - \)\(h + 1). (55) 

For h we get x, for \\h — x. It confirms that our supposition was correct. The signs 
of x in $ and W in C in (37) are different for modes 1, 2. If the quantities c0, x should 
be real then h has to be real, too. It implicates the new constraint on the phase of 
complex quantities /314, b23, b12, b21. 

<P21 + <Pl4 ~ <Pl2 ~ (P23 = 0. (56) 

It reduces the number of free parameters to 8. Using Table 4 and (55) we get 

v = $b23\b21 , v = xPb21\b23, 

b22 = -bltWl<P , b13 = btlvl$ , b31 = btlvl<P . (57) 

Using these relations and Table 3 we derive the quadratic equation 

vvq2 - b2
uW\cP - b12b21 =0 (58) 

where q2 = a0 — (jc0)2 — 1 + 2ja0c0 , (see (31)), which enables to determine the 
value of bn for both modes and with the help of (57) the remaining quantities b22, 
bi3, b31. The problem is solved up. Let us remind that after a simple derivation 
from (22), (23), (31) the eigenvalues may be expressed in the form 

^i,2 = zi ± 4i , ^3,4 = z2 ± q2. (59) 
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" l l ( 2 ) = h* 
" 2 2 ( 1 ) » 

" 2 2 ( 2 ) = Һ* " 1 1 ( 1 ) ' 

" l З ( 2 ) = Һ* 
° 3 1 ( 1 ) ' " 3 1 ( 2 ) = - Һ * 

" 1 3 ( 1 ) ' 
" 1 2 ( 2 ) = Һ* " 1 2 ( 1 ) ' " 2 1 ( 2 ) = Һ* 

" 2 1 ( 1 ) ' 
" l 4 ( 2 ) = Һ* 

" 3 2 ( 1 ) > 
" 3 2 ( 2 ) = ь* 

" 1 4 ( 1 ) > 
" 2 3 ( 2 ) = Һ* " 4 1 ( 1 ) ' " 4 1 ( 2 ) = 

L * 

" 2 3 ( 1 ) » 

Using (42), (19) for N = 1 we express the chain matrix in the explicit form 

A = l(c0 + ]x) + D + (B, + B2)/2c0 (60) 

where D is sparse and contains nonzero parameters v, v on its second diagonal only, 
and B l 5 B2 are constituent matrices for modes 1, 2 we have just derived. 

For c 0 imaginary the entries of B l 5 B2 are mutually coupled by the relations 

(61) 

where the number in brackets corresponds to the modes 1, 2. Let us turn our atten­
tion to the case when c0 is real. If the conditions (28) holds we get two free propagat­
ing modes. We choose 7 starting parameters a0, c0, \b21wjb22lW\, and <pl2, <Pi4,<p2u 
(p23 (i.e., 4 phases of b12, b14, b21, b23). We satisfy the condition 

|"12(1)/"14(1)| = |"21(1)/"23(1)[ ("-•) 

In the consequence, the module of h introduced in (53) equals unity. If c0 was imaginary 
the h was real. Now c0 is real and h is complex. It is of the value 

h = exp (j£) (63) 

where 3 = i(cp21 + <p14 - <p12 - <p23) . 
Using (55) we derive the equation 

x = c0 sin (S)/cos ($) (64) 

The change of the mode causes the change of the sign of x. As a consequence the 
argument d of the exponential function in (63) should change the sign at the time. 
Therefore the relevant entries from the matrix C in (37) are already known. Their 
value are 

<P = c0 + ]x , T = c0 - jx , 

v = <Pb23jb2i, v = Wb21lb23, (65) 

V = v* , vv = c0 + x2 . 

After solving (58) we get bn, b22, b13, b31 with the help of (57). The constant q2 

in (58) are real and have the values 

q2 = a\ + c0 + 2a0c0 - 1 . (66) 

The entries of the matrices B l5 B2 in (60) are not coupled by the relations similar 
to (61). If we already know Bj we have to repeat the procedure for mode 2. For the 
entries !312, b21 the following relations hold 

"21(2) = — " 2 1 ( 1 ) ' "12(2) = —"12(1 ) ' (67) 
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The conditions for b12, b21 guarantee that a12, a34, a21, a 4 3 of A are imaginary 

(R = 0, G = 0, see (60)). For the calculation of the remaining immittance parameters 

the knowledge of b12, b21, bu, b22, b13, b31, is required. 

The calculations for both modes are based on the equations in the Table 3. The 

expressions are 

b23 

Ъл, 

b13b21\bu (68) 

blil 

b14. = -b13b12\b22 , 

bu = b2

l2\b14. . 

N o w we are ready to compute all the entries of A using (60) and to check its con­

strains (4) and (9). A more detailed explanation and description of the software 

may be found in the report [11]. 

Let us show one possible application of the synthesis procedure described for the 

solution of the set of partial differential equations describing the wave propagation 

in reciprocal or nonreciprocal anisotropic media [9, 10]. In most cases t h e 

anisotropy may be described by permittivity and permeability tensors s and p. In some 

cases they have in addition to the diagonal elements only one pair of nonzero off-

diagonal elements. In a stratified geometry these represent one of three orientations, 

namely polar, equatorial and longitudinal. It depends on whether the optical axis 

lies in the plane of the interface, incidence or is perpendicular to both, respectively. 

The tensors have the form 

s = 

0 0 " 

&yy £yz , P = 

^zy ^ZZ 

ßxx 
0 

0 

0 0 

fiyy Hyz • (69) 

fizy P-zz_ 

The only restriction placed on the elements of s and /i is caused by the requirement 

that the material is passive and lossless. Then all diagonal elements should be real 

and positive, the off-diagonal elements have to be mutually complex conjugate. 

Consider a homogeneous slab geometry in which the interface lies in the y — z 

plane. The field components contain the common phase factor 

exp [)(cot - pyy - (Jzz)] . 

The propagation constants fiy, fiz are normalized to the vacuum constant 

f} = co(e0jx0)
112. Using four of the six Maxwell's equations the set of four coupled 

differential equations was derived in the form 

dUjdx = - K . U (70) 

where U = [y0 Ey(x) z0 Hz(x) y0Ez(x) -z0Hy(x)f, z0 = (Z0)^
2, y0 = (Y0)

1'2,. 

Zo = (li0\z0Y
l2,Y0 = 1/Z0 ,and 

"0 r, 0 c 

K = 9i 0 ^ i 0 
0 o2 0 r2 

s2 0 9i 0 

(71) 
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The entries of the incremental matrix K have the values 

> i = J ( - / - „ + Pyl^xx) , r2 = j (-fly, + /?2
2/e.vx) » 

0i = J ( - e y , + flfe), 02 = J ( - « « + #/•" .«) , ( 7 2 ) 

oi = j ( Hzy + PyPzlsxx) , o2 = j ( / v + £.,&/«*-) , 

Sl = j (-£yz - PyPzlVxx) > S2 = J (-£-y - PyPzlVxx) • 

The final solution of the set of linear differential equations (72) should have the form 

U. = A U2 (73) 
where 

u i = b o £
y(*i) zo Hz(xx) y0 Ez(Xi) z0 Hy(x1)Y , 

U2 = [y0 Ey(x2) z0 Hz(x2) y0 Ez{x2) z0 Hy(x2)Y • 

If all diagonal elements of the tensors (69) are real and positive, the off-diagonal 
ones are real and the tensors are symmetrical (sxy = eyx, fixy = /iyx). Then all elements 
of K are imaginary and therefore the system is LOSSLESS and RECIPROCAL. 

If all diagonal entries of the tensors (69) are real and positive, the off-diagonal 
ones are complex conjugate: sxy = syx, fxxy = /iyx. Then the elements of K satisfy 
the constraints (22). The system is LOSSLESS and SEMI RECIPROCAL for all 
real py, pz. 

Let us consider the differential dx in (70) as small but definite difference 5x. We 
get the difference equations (U2 = U t + U) 

U2 = U, - K . U2 , Ut = (I + K) . U2 . (74) 

Comparing Eqn's (73), (74) we may write the identity 

A = I + K . (75) 

The off-diagonal elements of K in (71) are zeros. In this case we may synthesize the 
remaining entries of A by the methods described in the last section. We want to 
obtain two nonevanescent wave propagating modes (c0 should be real). For the 
beginning we know 6 real parameters r1 = r2 (imaginary), ol (complex), st (complex). 
To realize A we need 16 parameters of B l5 B2 defined in (39) and we can use the free­
dom of choosing two arbitrary real parameters, completing the number of starting 
parameters to eight (R = 0, G = 0). The freedom is not absolute if we want to reach 
two nonevanescent wave propagating modes. 

The equation (62) is valid not only for the elements of partial constituents Bt, B2 

but also for the chain matrix A 

K ^ i / W i l = \a2ia14lai2a23\ = 1 . (76) 

It follows from equation (62) that the parameters /t(1), /i(2) introduced in (53) and 
corresponding to modes 1, 2 have the values 

" ( 1 ) = ^ 2 1 ( l ) ^ 1 4 ( l ) / ^ 1 2 ( l ) ' : , 2 3 ( l ) > ( ' ' ) 

fc(2) = (a2i - b2H1))(a14. - b14.w)j(a12 - bl2{l))(a23 - b23{i)) . 
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The x in (66) calculated for one mode changes to — % for the other one. To fulfil 
this requirement the phases of the complex quantities /z(1). Ii(1) should have opposite 
signs. After solving two quadratic equations we derive the values of the unknown 
^i4(i,2)- b2H1>2) as functions of /31 2 ( 1 ; 2 ) , l321(1)2)- They have the form 

V ( i , 2 ) = a14(l + (l-4/312(1)fe12(2)/a
2

4)1/2)/2 , (78) 

&23(i,2) = a23(l + ( l-4/j2 1 ( 1 )&2 1 ( 2 ) /a2 3)1 / 2)/2. 

We choose an arbitrary value of the real wave parameter c0 < 1. The entries r1 = a12, 
#x = «21 are imaginary (a12 = jrm, a21 = jqm). Using (62) we suppose that the 
primary entries of B l9 B2 have the values 

^i2(i) = r + jc0rm , /31 2 ( 2 ) = - r + jc0rm , (79) 

&2i(i) = 9 + }Co9m , b2H2) = -g + ]c0gm . 

The arbitrarily chosen real parameters r, g have no influence on the values a12, a21 but 
guarantee the correct values and signs of phase angles of /i(1), /i(2). Also the condition 
h(i)h(2) = 1 holds. But we need more to satisfy the condition /z(1) = h*2). To reach 
this goal we are allowed to choose one parameter of the couple of real parameters 
r, g only. The other one is determined by a simple numerical evaluation. 

Let us turn our attention to the question how to satisfy (76) for the system with 
parameters (72). To fulfil equations (21) valid for any semireciprocal four-port the 
elements of the tensors and the propagation constants py, /3Z have to fulfil the con­
ditions 

hy = £zz = £2 = £3 , \hy = A-« = !^2 = ."3 > Py = Pz = P- (80) 

If the absolute values of /J (1 ), h(2) in (77) equals one then the bicubic equation in 
variable /? should hold: 

f + pAC2 + P2CX + Co = 0 , (81) 
where 

C2 = (A2 - B2)I(A3 - B3) , Cx = (Ax - BX)I(A3 - B3), 

C0 = (A0 - BQ)I(A3 - B3) , 

A3 = 2[ex Re (n4) - ^ e j , B3 = 2[/t1 Re (e4) - exfi2] , 

A2 = nxe2 + e^Re (ii4)
2 + Im (ii4)

2] - 4Ju1e1e2 Re (ji4) , 

B2 = e 2 ^ + /*i[Re (e4)2 + Im (e4)2] - Ae^^ Re (e4) , 

A1 = 2e1n1e2{n1e2 Re (^4) - e ^ R e ^ ) 2 + Im (fi4)
2]} , 

Bt = 2ii1e2ii2{e1ii2 Re (e4) - ^1[Re(e4)2 + Im (e4)2]} , 

A0 = (niz^z)2 [Re (ii4)
2 + Im (fi4)

2] , 

B0 = ( e ^ / z , ) 2 [Re(e4)2 + Im (e4)2] . 

After we have found at least one real zero /?2 of (81) we are able to calculate all 
entries of Bx, B2 with the help of (78), (79). Before that step we determine x from 
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(55), and #, W from (37). In Table 5 one numerical example is shown. The final step 

is to find all entries of A specified in (60). The wave propagation constant a0 will 

be determined on the base of numerical evaluation of the first or second equation (9). 

Table 5. The relevant steps to the synthesis of the matrix A for nonevanescent plane wave 
propagation in linear reciprocal or semireciprocal media, described by permittivity tensor e and 
permeability tensor fi. 

e< = 1-5 s2 = єз =
 3 £з ~ 0-5 + j 0-3 

џt = 2 џ2 = џъ = 2-2 џ4 = 1-4 — j 0-21 

C0= -46-1005314 Ct = -26-3391562 C
2
 = 2-79399218 

ßy= ßz= 2-1828143 
aí2 = j 0-976452161 a21 = -j 0-617660878 
a14 = 0-21 + j 4-57645216 a23 = - 0 - 3 - j 2-88233912 

Matrix Bx 

bí2 = 2-3 + j 0-390580865 b21 = 4-29724854 - j 0-370596527 
b14 = 0-647872668 + j 2-31710899 b2Ъ = -4-21246019 - j 1-42904667 

ІЛil = 0-999999999 ArgCÄj.)-- 41-0727538° 

Matrix B 2 

Ă12 = -2-3 + j 0-585871297 b21 = - 4-29724854 - j 0-247064351 
b14 = -0-437872668 + j 2-25934317 b2Ъ = 3-91246019 - j 1-45329244 

\h2\ = 1-00000004 Arg(/г 2 )= -41-0727542° 

In other directions fiy + f$z the system becomes general lossless nonreciprocal four-

port described in Section 2. If the tensor elements e4, /n4 are real, then the four-port 

is lossless and reciprocal. In the last case similar method of design may be derived 

and the solution will indicate the whole range of directions (f!y, fiz), where non-

evanescent wave propagation may exist [11]. 

5. CONCLUSION 

In this paper the theory of a general lossless nonreciprocal four-port is presented. 

The method enables to synthesize various systems with prescribed nonevanescent 

wave propagation modes. For the description of the system behaviour the chain 

matrix representation is used. The advantage is the easy solution of the wave propaga­

tion in space in the form of the Nth power of the matrix A. The transformation to the 

scattering parameter representation may be easily found by simple linear transforma­

tion as a final step of the procedure described. For the design of the most general 

system we have the freedom of choosing 16 starting real parameters. Great attention 

has been paid to the semireciprocal system introduced in [10], which is fully deter­

mined by 10 (R + 0, G + 0) or 8 (R = 0, G = 0) real parameters. 

(Received December 1, 1989.) 
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