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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 3 

A SUPPLEMENT TO GOTTWALD S NOTE 
ON FUZZY CARDINALS 

MACIEJ WYGRALAK 

We supplement the review of fuzzy cardinality definitions placed in [3]. To be exact, we pre
sent approaches in which cardinality of a finite fuzzy subset is expressed by a fuzzy natural 
number and indicate the most appropriate one. 

S. Gottwald placed in [3] a comparative review of approaches to the problem 
how to define fuzzy cardinality, i.e. how to count elements of a universe which are 
in its fuzzy subset. In accordance with the concepts presented in [3], cardinality 
of a fuzzy subset was defined either as a non-negative real number or as a family 
of usual cardinals. In this note we shall present and compare such approaches in 
which cardinality of finite fuzzy subset is expressed by means of a fuzzy number. 
To this end, we must introduce some notation and terminology. 

Throughout this note, by a fuzzy subset A of some fixed universal set U we shall 
mean a function A : U -> / , where I := [0, l ] with := standing for "equals by the 
definition". Membership grade of an element x e U in A will be denoted by A(x). 
The classical subset {x : A(x) > 0} will be called support of A and denoted supp (A). 
If support of a fuzzy subset is finite, then that subset is called finite, too. Throughout 
the paper we shall assume that A is finite and card (supp (A)) = n, where card (M) 
denotes the usual cardinality of a classical subset M of U. The subset A, : = 
:= {x : A(x) S; t], where t el0 and I0 := (0, l ] , is called «-level set of A. The 
sequence 

a0 — fll = a2 = ••• = °n > an + l ~ an + 2 = °n + 3 = ••• 

is defined in the following way: a0 := 1, a( ( l _ i <[ n) denotes the ith element 
in descending sequence consisting of positive membership grades in A, at := 0 for 
i > n. 

Let N := {0, 1, 2,...}. If F : N - » I (i.e. U := N), the F will be called fuzzy-
natural number (in short, fn-number). F is said to be convex iff F(j) ^ min (F(i), 
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F(k)) for each triplet i = j g k (cf. [4]). Let © denote addition of fn-numbers. 
Then the fn-number F © G is defined by membership grades 

(F © G) (k) : = sup min (F(i), G(j)) . 
i + j=k 

As a chronologically first fuzzy approach to cardinality of finite fuzzy subsets, 
we shall consider the fn-number FGCount° (see [1, 7]) with membership grades 

F G C o u n t ° ( / c ) : = ( m a X ^ G / ^ : ^ d , ( ' 4 , Ay ' [0 if card (A,) =t= k fc for each / 

The values FGCount^(fc) may be considered degrees to which cardinality of A equals 
k. One can easy notice (see [ l ]) that FGCount" 

(a) is always normalized, i.e. there exists a natural number h such that FGCount°1(h) = 
= 1, 

(b) is strictly decreasing on its support, 
(c) is a non-convex fn-number, 
(d) does not fulfil the additivity property 

FGCount° © FGCount^ = FGCount°nB © FGCount°uB , 

where A n B and A u B denote (resp.) intersection and union of A and B, i.e. 
(A n B) (x) : = min (A(x), B(xj), (A u B) (x) : = max (A(x), B(x)). 

In order to avoid the lack of convexity, an important modification of the definition 
of FGCount° was proposed in [2] and [8]. As a consequence, we get then a new 
fn-number defining fuzzy cardinality, namely the FGCount^ where 

FGCount (k) - JmaX {' e / ° : Card M = fc} • FGCount,(/c) . - | 0 . f ^ ^ ^ < k f Q r e a c h f 

Let T be a finite fn-number such that T(0j = g0, T(l) = gv ..., T(s) = gs and 
T(r) = 0 for r = s+1, s + 2 , . . . . In such a case we shall use the following "vectorial" 
notation T= (g0, gu ••-, gs). 

It is easy to prove (see e.g. [2], [6], [8]) that the following propositions are valid: 
(a) FGCount^A;) = max FGCount°(j). 

jzk 
(b) FGCount^ = (a0, au ..., a„). Hence FGCountA is convex. 

(c) If A <=• B, then FGCount^ c FGCountB (monotonicity). 

Remark. Y <= Z := (Y(x) ^ Z(x) for all x e U). 

(d) FGCount^ © FGCountB = FGCount^nB © FGCount^uB (additivity). 

Let D denote a classical n-element subset of U. Then, contrary to expectation, 
we get FGCountD = (1, 1, . . .A ) with support of FGCountD consisting of n + 1 
elements. This result is sensible provided that FGCountA(/c) defines degree to which A 
has at least rather than exactly k elements. Thus FGCount, as definition of fuzzy 
cardinality, is unsatisfactory. Namely, for classical subsets it does not collapse to 
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usual cardinal number. That is why a next definition of fuzzy cardinality was introdu
ced in [2]. To be exact, the new definition is again a simple modification of the pre
vious one. 

Let S£k(A) denote the family of fe-element classical subsets (of U) containing At. 
Then fuzzy cardinality of A will be defined by the finite fn-number Crd^ with member
ship grades 

r max min A(x), 
Crd^(fe) : = )zej?k(A) x<=z 

10 if Sek(A) is empty 

(if Aj is empty, what implies Sf0(A) = {0}, we additionally put min A(x) := 1). 
xe0 

One can consider Crd^(fe) to be degree to which cardinality of A equals fc. It is 
easy to verify that (cf. [2], [6]) 

(a) Crd^ = (0, 0, ..., 0, 1, am+1, am+2, ••-, a,), where m := card (Ax) and the con
stant sequence composed of zeros is m-element one. Thus Crd̂ , is always convex. 

(b) CrdD = (0 , . . . , 0, 1) with the figure one placed at the (n + l)th position and D 
as previously. 

(c) Crd^ 0 CrdB = Crd^nB ® C r d ^ B . 
(d) Crd^ = FGCounty iff card (A,) = 0. 

Unfortunately, the monotonicity does not hold for Crd-cardinality. But it is quite 
obvious that property (b) excludes, in principle, monotonicity. On the other hand, 
property (b) is, from the practical as well set-theoretical points of view, more import
ant than monotonicity. 

This is well-known that the theory of fuzzy subsets is closely connected with the 
Lukasiewicz many-valued logic (see e.g. [5]). Indeed, it suffices to interpret each 
membership grade A(x) as representing the truth-value of the statement "x is in A". 
Therefore, the next approach is based on that logic. 

Let 3?k(A) denote the family of all the fe-element classical subsets of supp (A). 
Moreover, let p -* q := min( l , 1 — p + q) (Lukasiewicz implication operator) 
and p*-* q : = min (p ~» q, q -> p) for p,qel. Then deg (R, S) : = inf (R(x) <-» S(xj) 

xeU 

for arbitrary fuzzy subsets R and S of U. One can consider deg (R, S) to be degree 
to which R equals S. Let us define finite fn-number Cd^ by means of membership 

g r a d C S
 C d (k) . = /max {deg (A, Y) : Ye 0>k(A)} , 

A } ' [0 if 3Pk(A) is empty. 

Then Cd^(fe) will be considered degree to which A has exactly fe elements.'This is, 
in fact, a quality of the best (using the criterion deg (A, Y)) approximation of A by 
elements from SPk(A). One can easy verify (see [6]) that 

(a) Cd^(fe) = mm (ak, 1 - ak+1) for k = 0,1,2, .... 
(b) For the classical n-element subset D of U we get CdD(n) = 1 and CdD(/) = 0 

fory # n. 

242 



(c) Cd^, = (1 - ai, 1 — a2, •••, 1 — ap, ap, ap+l, ..., a„), where p := min {': a, + 

+ fl, + i ^ 1}. Hence Cd ,̂ is always convex. 

(d) At most one cardinal number is "favoured", i.e. there exists at most one natural 

number kf such that CdA(kf) > 0-5. 

(e) FGCount^ = 2Cd0.5X, where membership grades in 0-5A and 2Cd0.5/< are 

defined as follows: (0-5.4) (x): = 0-5A(x) and (2Cd0.5j4) (k) : = min (1,2Cd0.5A(kj). 

(f) Cd^ © CdB = Cd^nB © Cd^uB. 

(g) Let Ac denote the complement of A, i.e. Ac(x) := 1 — A(x). If U is finite and 

card (U) = m, then C d ^ j ) = Cd^(m - j) for ;' = 0, 1, . . . , m. 

One can easy give counterexamples that both the important properties (d) and (g) 

do not hold for FGCount^ and Crd^. Obviously (g) is a counterpart of the elementary 

law card (Dc) = m — card (D), where D denotes now a classical subset of m-element 

universe. 

To summarize the discussion, it seems to be more suitable to define cardinality 

of a finite fuzzy subset as a fuzzy natural rather than positive real number (or 

a family consisting of usual cardinals). Then the fn-number Cd^ is, from the set-

theoretical point of view, defined in a most natural way and fulfills many natural 

postulates (see e.g. properties (b), (f), (gJJ except the monotonicity (what is, however, 

explicable). 

(Received March 3, 1983.) 
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