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K Y B E R N E T I K A — VOLUME 16 (1980), NUMBER 2 

Epsilon-Rates, Epsilon-Quantiles, and Group 
Coding Theorems for Finitely Additive 
Information Sources 

STEFAN SUJAN 

Finitely additive information sources are investigated with a countably infinite alphabet having 
the structure of a free finitely generated abelian group. The epsilon-rates that determine the opti­
mum encoding rates for group codes associated with finite factor groups of the alphabet are 
related with the epsilon-quantiles of the corresponding entropy functions. The resulting group 
coding theorems are formulated. 

1. INTRODUCTION 

As well-known, the entropy fails to be an effective measure of uncertainty for 
stationary non-ergodic information sources [9, 12, 13]. Moreover, the optimum 
encoding rates for such sources depend on the error probability [10]. In the present 
paper we analyze the conditions under which the ideas of [10] work in the more 
general case of finitely additive sources [9]. Accordingly, much place is devoted to 
the concept of entropy in the finitely additive setting that has been introduced in [9] 
rather formally. 

2. BASIC NOTATIONS 

Throughout the paper the symbols CA and FA will be used as abbreviations for 
"countably additive" and "finitely additive", respectively. CA is assumed to be 
a special case of FA. 

Let A be a countable set. A set E <= A1 (I = integers) is said to be a finite-dimen­
sional cylinder (in symbols, E e jfA) iff there are J <= I with 0 < card (/) < co 
and C c i J such that 

£ = { z G A ' : ( z , L , , e C } . 



106 Especially, if C = {x}, xeAJ, E is said to be an elementary cylinder (in symbols, 
E £ f A ) . As well-known, A1 is a Polish space in its product topology derived from 
the discrete one in A. The sigma-field !FA = atfA (= afA) consists precisely of all 
Borel subsets of A1. We shall use the notations: 

(1) [C] = {zeA':(z0,..., z , . , )eC} for C c A"'; 

(2) [*]-=[{*}] f o r * e A", neN = {1,2,...} . 

Let SA denote the shift in A1: 

(3) (^Az)i — zi+i f°r z e A z and i e / . 

Any S^-invariant FA probability on Jf A is said to be a source. The set MA of all 
sources is non-empty, convex, and contains extreme points (= ergodic FA pro­
babilities, cf. [4] and [9]). Let 3SA be the sigma-field on the set WA of all ergodic 
elements of MA defined by 

(4) <8A = <r{{l*eWA :n(E)St}:EeJrA,0=t<l}. 

To every source m e MA there corresponds a unique CA probability m0 on 88A 

such that 

(5) m(E)= f p(£)m0(d^), EeXA. 
JwA 

For the proofs of these and other results from FA ergodic theory see [4] and [9]. 
Let RA denote the set of all regular points in A1 [5], [13]. Let \iz denote the SA-
ergodic CA probability on !FA determined uniquely by z e RA [13]. We can identify 
ext (MA n CA) = WA n CA with RA and 38A with RA n &A = {RA n E :Ee ^A), 
respectively. Thus, for m e MA n CA, (5) becomes the usual ergodic decomposition 
formula 

(6) m(E)= [ »z(E)m(dz), Ee^A. 
JRA 

Finally, notice that MA = MA n CA in case card (A) < oo. 

3. THE NOTION OF ENTROPY 

Let Z(?FA) designate the set of all finite partitions £ of A1 such that £ c !FA. Let 
n ^ £ mean £ refines n. The partial ordering ^ gives rise to a lattice structure in 
Z(tFA). Let, for £, r\ e Z ^ ^ ) , £ V 1 denote the (least with respect to :<.) common 
refinement of £ and»?. The set Z(HFA) is filtered to the right by means of =\. Analogous 
conclusions apply to all lattices of partitions met in the sequel. If m e MA n CA 
then define 



(7) lUC) - I m(C) |log m(C)\ for ZeZ(^A). 107 
C e C 

The base of the logarithm is fixed but unspecified. Let exp denote the corresponding 
exponential. Let hm(SA, C) denote the entropy of the shift SA with respect to C- Since 
m is S^-invariant we have 

(8) (l!n)hm(\/S7t:)ihm(SA,C) 
i = 0 

as n -» oo. The quantity 

(9) hm(SA) = sup {hm(SA, £):Ze Z(^A)} 

was proposed by Sinai [7] as the definition of the entropy of the shift. In our ter­
minology, hm(SA) = h(m) — the entropy of the source m e MA n CA. 

Let Z(jrA) = {C e Z(&A) : C c tfA}. Further, let Z(A) denote the lattice of all 
finite partitions of the alphabet A . Z(A) can be thought as a sublattice of Z(tfA): 

£•-»[£] = { [ C ] : C e £ } for CeZ(A) (cf. 1)). 

Let 

(10) f = { l c J : I = I 1 x ... x X,„ X, e C, 1 ^ i ^ n} . 

The above correspondence yields the assignment 

cTH-VVtel 
i = 0 

so that h^S^, [£]) (cf. (8)) is well-defined. Let yA = {{a} : ae A}. The general 
arguments due to Sinai [7] imply the following way of the computation of h(m): 

(11) h(m) = \imhm(SA,[Q) 

where {{„, neN} a Z(A) is any sequence such that C„ ^ £„+i(« e !V) and lim £,„ = 
n-»oo 

= yA. The formula is valid even if hm(yA) = + oo (cf. (7)). For the proof see [7] or 
[6]. It involves the following two identifications: 

(12) h(m) = sup {hm(SA, C) : C 6 Z(tfA)} ; 

(13) h(m) = sup {hm(SA,lZj):$eZ(A)}. 

The reduction from Z(JTA) to Z(A) is a consequence of the structure of the space A1 

and not of the properties of the source m. Therefore (13) was accepted as the de­
finition of entropy in case when m e MA — (MA n CA) in [9]. 

On the other hand, the entropy in the CA case has the following desirable and 
important property. Given m e MA n CA, h(n7) as the function of variable z is an 



108 almost everywhere mod m defined random variable on (A1, & A). Actually, h^S^ [£]) 
can be easily shown to possess this property and the rest follows from (11). Let 

(14) h(n) = sup{hli(SA,^J):£eZ(A)} 

for n e WA. Is h(-) a ^-measurable function on WA1 The next example shows that 
(11) fails to work in the FA case. 

Example. Let A = N, let 

£„ = {{1},...,{«}, N- {1, . . . ,n}} for neN. 

Clearly £„ ^ £„ + 1 and lim £n — yN. Now let m be a (memoryless) FA source given 

as the product of its one-dimensional marginals mt = m0 (i e I), where m0 is a FA 
probability chosen below. The infinite products are well-defined even in the FA case 
(cf. [2], Chapter III). Let m0 correspond to the model of a randomly chosen natural 
number (cf. [1] for the basic ideas and [9] and [11] for a rigorous treatment of this 
model). As well-known, 

hm(SA, [{]) = hmo(t) 

so that 

h(m) = sup{hmo(£):£eZ(A)}. 

Let ^n be the partition of N into residue classes mod n. Then hmo(n„) = log n so that 
h(m) = + oo and this properly reflects our idea of infinitely many equally likely cases. 
On the other hand, 

m0{l} = ... = m0{n} = 0 , m0(N - { 1 , . . . , n}) = 1 

so that hmo(£,n) = 0 for any neN. Hence, (11) does not apply. 
Since Z(A) cannot be reduced to a sequence, the J^-measurability of hM(Sx, [£]) 

does not entail the ^A-measurability of h(fi) on WA, in general. Of course, it will 
suffice if Z(A) will contain a confinal sequence. But this is apparently not true. Fol­
lowing [14] we add some algebraic properties to A. 

Let A be a free abelian finitely generated group. Let Z0(A) denote the lattice of all 
finite factor groups of A. For £, e Z0(A) by G? is denoted the kernel of the natural 
homomorphism A -*• £,. We say that t, e Z0(A) is a divisor of n e Z0(A) iff G5 <= Gn, 
and write ^ ^ £ because, if £ and n are considered as partitions, ^—\£, means simply 
that t, refines ^. As shown in [14] a sequence (r\n, neN) exists in Z0(A) such that 
1n+i h 1.(neW) and to every £, e Z0(A) there is n0 with w„0 _: £ (hence, t]„ ^ £, 
for all n = n0). In other words, («„, n e N) is a sequence cofinal with Z0(A). 

Definition 1. Let A. be a free finitely generated abelian group. The entropy h(m) 
of a source m e MA is defined by 



(15) h(m) = sup {hm(SA, [«?]) : { e Z0(A)} , 

where Z0(A) is the lattice of all finite factor groups of A. 

4. THE GENERAL CONSTRUCTION OF RANDOM VARIABLES 

By rephrasing the properties of a cofinal sequence in Z0(A) and by taking some 
elementary properties of measurable functions into account we get the following 
general principle that will be used to construct the relevant entropy functions below. 

Proposition 1. Let (/«; £ e Z0(A)) be a net of ^-measurable non-negative functions 
on WA. If, for any fixed n e WA, the net (/»(/*); £ e Z0(A)) is monotonically increasing 
then its limit /(/i) = sup {/«(/*) : £ e Z0(A)} is a non-negative number (possibly 
+ oo) for which 

/.„(<") t / ( / i ) as n -> oo . 

Consequently, / = (/(/i), n e W )̂ is a non-negative, extended real-valued, im­
measurable function on WA. 

Now let us concern the reduction from (12) to (13). Now the lattice Z(jf A) has 
to be replaced by Z0($rA) that contains precisely all £ e Z(jf ^) such that there are 
neN and a finite factor group rj of A" with £ = [?/] = {[Y] : Ye n} (cf. (l)). 

Proposition 2. Let ?/ be an arbitrary finite factor group of A" (n e N). Then there 
exists £ e Z0(A) such that £" ^ */ (cf. (10) for the symbol £"). 

Proof. Due to the direct sum structure of A" it suffices to explain the idea in case 
A = I and n = 2. So let r\ be a finite factor group of / © J. Then there are (linearly 
independent) generators ax and a2 of the group I ©I and non-negative integers qt 

and g2 such that Gn is the free abelian group generated by the set {qial,q2a2} 
(cf. e.g.) [3]. At least one of the numbers qv and q2is positive and at least one of 
them is greater than 1. If both are positive then we can always choose them in such 
a way that q2 is divisible by ql — this is obvious if qt = 1. If both qY and q2 are 
greater than 1 then we get finite factor groups with at least four elements. We illustrate 
only the first two possibilities that are less straightforward: 

G = {(0, 2i) : i el} — the group generated by the set 

{0.(1,0) , 2 . (0,1)}; 

G = {(x, y) e I2 : 3i e I, x + y = 2i} - the group 

generated by the set {1 . ( - 1 , 1), 2 . (1, 0)} . 

Consequently, the things can always be arranged so that 



Gn - q2{l © J) = {«2* : x 61 © J} = {(«2i, q2j) : i, jel}. 

Hence, J © J/q2(J © J) =: >;. Let £ = J/<z2J. Since ^2 > 1, § e Z0(A) [14]. Now 
a straightforward verification yields 

G{J = {(*, y) e J2 : It, jel, x = «2i, y = q2j\ = g2(J © J ) . 

Thus G{2 c G„ so that £2 j> r\, QED. 

5. THE BASIC QUANTITIES 

Let us.start with the concept of a finite memory source. Let £, e Z0(A). We can 
consider £ as a new alphabet and define a mapping T{ : A7 -» £J by the property that 

(T{z)i =X iff S^z e [X] , X e £ . 

Then T ^ X { _ Jf ^ so that, given m s M^, we can define a CA source m{ on #"{ = 
= o-Jf { by means of the relations 

(16) m{(_) = m(Tf * _ ) , £ e / { . 

A source m e MA is said to be Markov of order k (k 2: 0 integer) if, for any £ e Z0(A), 
m{ corresponds to an S{-stationary finite Markov chain of order k with the state space 
£ and m{(£) > 0 for all _ e f {. A source m e MA is of finite memory (m e MA(FM)) 
iff there is k 2; 0 such that m is Markov of order k (cf. [9] for the examples). 

Following the relation (8) and using the fact that [£]" = [£"] if [£]" is interpreted 
as V{S_'[£) : i = 0 , . . . , n — 1} we easily see that 

hm(SA,[t;-]) = h(ms) (cf.16)). 

Let 

(17) .ff fy) - n(/.{) ; £ e Z 0 ( A ) , M e ^ . 

For any pair of sources (m, m) e MA x M^(FM) we define 

(18) k(m{, m{) = - lim (1/n) log m^z^ ..., z j m{(dz) . 

Let 

(19) ft\n) _ *fa, m{) ; £eZ0(A), , ieH_. 

Finally, let 

(20) d(m{, m{) _ k(m{, m{) - h(m{) - lim (l/n) f log w c [ - i » - » - J m?(dz) . 
J i f t<[z1 , . . . ,zj 



We denote 

(21) ffty) = dfo, *<) > £ e Z 0 ( A ) , {isWA. 

Let 

(22) f(i\n)= s u p j f ( / . ) , i = 1 .2 ,3 . 
teZ0(A) 

Remark 1. We can formally define also the quantitiesj(,)(m) ((' = 1, 2, 3; m e MA\ 
These quantities were called in [9] the entropy rate (i = 1), the K-entropy (i = 2), 
and the I-entropy (i = 3), respectively. We can prove that 

j ( » = íf(t\n)m0(dn) (i = l,2,3) 

(cf. the relation (5); the proof of the above integral representation formula is given 
in [8] for the case i = 1, the proofs in the remaining cases follow the same idea). 
These quantities, however, differ from those ones introduced in [9] because we are 
using a different lattice of partitions. 

Proposition 3. The functions f(i) defined by (22) are non-negative extended real-
valued random variables on the probability space (WA, SSA, m0) for any m e MA 

0 = 1,2,3). 

Proof. In order an application of Proposition 1 be justified we must show 

(I) The funct ions^ 0 (i = 1, 2, 3) are non-negative and ^-measurable on WA for 
any £ e Z0(A). 

(II) Given /i e WA, the net (f\l\n), £ e Z0(A)) is monotonically increasing (i = 
= 1, 2, 3). 

(I) Measurability. Case i = 1. We know that 

ff(n) = «</..) = hll(SA, [Q) = lim (l/„) /.„([<]") = 

= lim(l/„) l KC)|log/<c)|. 

Now 

{»eWA:f?\»)^t} = 

= U Fl {(* e WA : X n(C) |log /i(C)| = nt) e ®A 
m = l n = m C e m „ 

Case i = 2. By definition 

fc(/i., m?) = lim (l/«) f hog m ? [ Z l ) . . . , z„]| /^(dz) = 
J 



= lim (i/n) X /•«[*] |log m4[x]\ . 
n^oo Se[j.]» 

Since [i_[x_\ is measurable as a function of the variable /., the sum is also measurable 
so that fc(/i4, m:) is ^-measurable as well. By (20), d(n_, rh_) is a ^-measurable 
function of the variable /i e WA, too. 

(II) Monotonicity. We shall treat the three cases separately because through the 
proofs new quantities will arise of importance in the sequel. 

Case i = 1. Let m e MA, £ e Z0(A), n e N, and 0 < e < 1, respectively. Let 

(23) L„(e, m_) = min {card (A) : A c £", m£A\] > 1 — e} . 

If m e MA n CA then 
L»(e> ™yJ = L*(e> "») 

in the notation of [12] and [13]. If fie WA then /z4 is an Srergodic source on (£', J ^ ) 
and/^1}(/z) < log card (£) < co so that Lemma, p. 10 of [14] applies and we get 

( l / n ) l o g L „ ( e , ^ ) - j f > ( / i ) 

as n -» oo for any e, 0 < e < 1. For fixed e, n r^ £ implies L„(e, /.:) ^ L„(e, /.,.) 
(<!;, ?/ e Z0(A), /i e W ,̂ n e N) so that the desired monotonicity follows. 
Case i = 2. Let (m, m)eMA x M^EM), £ e Z0(A), n e N, and 0 < e < 1, re­
spectively. Let 

(24) L„(e, m?, m:) = min {]T m^x^m^x]] : A <= £", m4[zl] > 1 — e} . 

If card (A) < oo then 

L„(e, my^, m y J = L„(e, m, m) 

in the notation of [9]. Especially, if /. e WA, then 

( l / n ) l ogL„ (e , / ^ ,m , ) -> j fV) 

as n -> oo for any 0 < e < 1 (cf. [9], Corollary 21.11). For fixed e, n ^ £, implies 
L„(e, nn, m„) g L„(e, /.., m:) (£, n e Z0(A), n e WA, neN). Hence the net (f_2)(n), 
£, e Z0(A)) is monotonically increasing for any p. e WA. 
Case i = 3. Let (m,m)eMA x MA(FM), £ e Z0(A), rceiV, and 0 < e < 1, re­
spectively. Let 

(25) J„(e, m?, m«) = min {m4[J] : A cz £", m_\\A~\ > 1 — e} . 

If card (A) < oo then 

In(e, my__, myA) = In(s, m, m) 



in the notation of [9]. Especially, if /x e WA, then 

(-l/n)log/„(e,^,m,)-/PV) 

as n -» oo for all 0 < e < 1 (cf. [9], Corollary 22.11). Let n ^ t, (£, n e Z0(A)). Then 
there is /c e TV such that card (£) = card (n) + k. The inequality 

- l o g J„(e, nn, m„) < - l o g J„(e, /i4, m{) 

follows by induction on /c from Lemma 23.3 of [9], QED. 

6. EPSILON-RATES AND - QUANTILES 

Let m e MA, m e MA(FM), £ e Z0(A), respectively. Let 

V£(m.) = lim (1/n) log L„(e, m.) . 
Jn-co 

Definition 2. The quantity 

(26) Ve(m) = sup {Vc(m{) : { e Z0(A)} 

is said to be the epsilon-rate of the source m. 
Similarly, let 

V£(m4, m.) = lim (1/n) log L„(e, m?, m{) , 

I£(m^, m{) = lim (-1/n) logI„(e, m{, m.) , 

respectively. 

Definition 2 (continued). The quantity 

(27) Vim, m) = sup {Vs(m., m{) : { e Z0(A)} 

is said to be the epsilon-K-rate of the pair (m, m) of sources. The quantity 

(28) I£(m, m) = sup {J.(m4, m4) : £ e Z0(A)} 

is said to be the epsilon-I-rate of the pair (m, m) of sources. 
Let / be a non-negative, extended real-valued, ^-measurable function defined on 

WA. The (lower) epsilon-quantile of/ with respect to a source m e MA is defined as 

(29) (2(8, m, / ) = inf {t : m0{p e F^ : f(fi) S t} ^ 4 , 

where m0 corresponds to m e M^ by (5). The function Q(., m,f) is left-continuous 
in 0 < e < 1 so that it is defined also for e = 1 and 



114 (30) 6(1, m, j) = inf [t: m0{fi e WA :f(p) < t} = 1} = ess. s u p / ( » . 
neWAlmot 

Proposition 4. Let meMA and m e MA(FM), respectively. Let j ( 0 (i = 1, 2, 3) 
be the random variables defined by (22). Then 

Q( l ,m, j ( 1 ) ) = limV£(m), 
£.0 

6(1, m, j ( 2 )) = lim Vt(m, m) , 
£ .0 

6(1, m, j ( 3 )) = l im/ . (m,m) , 
£ .0 

Proof. In case / = 1 see [9], Theorem 15.3. In cases i = 2, 3 cf. [9], (23.1) and 
(23.3). Even the proofs are identical, Proposition 4 represents a different assertion; 
see Remark 1. 

As we already know, 

j|°0t)=j(Ota) ^ r £ e Z 0 ( A ) and /. e WA. 

Since \i^ is S^-ergodic, 

(31) nt{z s J . , : ^ . - ^ } - l 

(cf. [12], [13]). Consequently, we can define the functions j ( i ) on R^ (£ e Z0(A)) by 
the properties 

(32) j(%)=j(i)(^)=jW) 0 = 1,2,3), 

where \i e WA is such that, for ^ , the relation (31) takes place. By definitions (cf. [13], 
Lemma 5 and (1.8) in case i = 1; [9], (21.1) and (21.3) in the remaining cases) the 
functions j ( i ) are almost everywhere mod m^ defined (for any m e MA), ^ -measur ­
able and S^-invariant. 

Lemma 1. Let m e MA, m e MA(FM) and £, e Z0(A), respectively. For any real 
number t we have 

m0{n e WA -.ftXn) < t} = m^z e R4 : j ( i )(z) < t } 

for i = 1, 2, 3. 
For the proof see [8] or [14]. 

Theorem 1. Let 0 < 5 < e < 1. Then for any finite factor group £, of the alphabet 
A we have 

lim sup (1/n) log L„(e, m^) g 6(1 - <5, m, j ( 1 )) ; 



lim sup (1/n) log L„(e, m(, rh4) < Q(l - 5, m,/(2)) ; 
B-+CO 

lim sup (-1/n) log 7„(e, m4, m«) ^ g(l - <5, m,/ ( 3 )). 
n-»oo 

Proof. Case i = 1. Let f = Q(l - 5, m,/(1)). By definition, 

m0{,xeWA:f1\^)<t} = l~d 
so that 

m0{neWA:fs1\fi)<t} = l-d 

for any S, e Z0(A). By Lemma 1, 

m?{zeR?:/
(1)(z) = f} 2: 1 - <5. 

Let I> = {z eR ? :/(1)(z) ^ f}. Then J ) s ^ and D is Srinvariant so that the rela­
tions 

m'(E) = m4(E n D)\m4(D) , £ e F { 

define a new source m' e M? = M,* n CA. Let m" e Ms be such that 

m((E) = (1 - a) m'(£) + a m"(£) , 

where 1 — a = m4(D). Then l - a = l - < 5 > l - e so that a < e < 1. Con­
sequently, Lemma 7 of [13] applies: 

lim sup (1/n) log _„(e', m() <, lim sup (1/n) log L„(e' — a, m') 

for a < e' < 1. At the same time, m'(D) = 1 so that Lemma I of [13] applies to m': 

lim sup (1/n) log L„(e', m') < f, 0 < e' < 1. 

Now let e > <5. Since <5 ^ a, we have e > a and so both obtained inequalities work 
and give, by the definition of t, the desired assertion in case i — 1. 
Case i = 2. Replace Lemma 7 of [13] by a similar assertion for L„(e, m(, m?) (the 
elementary proof is omitted). Use [9], Lemma 21.7 in place of [13], Lemma I. 
Case i = 3. The proof is the same using now Lemmas 22.4 and 22.7 of [9], respec­
tively, QED. 

Theorem 2. Let 0 < e < <5 < 1, let t < Q(l - <5, m,/(0) (i = 1, 2, 3). Then there 
exists a finite factor group of the alphabet A such that 

lim inf (1/n) log _„(e, m() = t (i = 1); 
n-»oo 

lim inf (1/n) log L„(e, m4, m?) = t (i = 2) ; 



lira inf ( - 1/n) log 7„(e, m{, m{) > i (i = 3) . 

Proof. Case i = 1. Let t < Q(l - §, m, j ( 1 )) . Then 

m0{fieWA:f1\^)=t} <l-S 
so that 

m0{neWA:f(1\n)>t} £d. 

Since j(1)(^) = sup {/^(n) : I e Z0(A)}, we can find <* e Z0(A) such that 

m0{/x e WA : j f f y ) > r} = m{{z e R{ : j ( 1 )(z) > t) = 5 . 

Let D = {z e R{ : j ( 1 )(z) > r}. Then D e ^ and D is S{-invariant so that the rela­
tions 

m'(E) = m{(£ n D)/m{(D) , £ e / § 

define a new source m' e M{. Let m" e M{ be such that 

m{(E) = a m'(iB) + (1 - a) m"(E) , 

where a = m{(£)). Then a > 5 > e > 0, so that [13], Lemma 8 applies and we get 

lim inf (l/n) log Ln(e', m{) S: lim inf (1/n) log L„(e'ja, m') 

for 0 < e' < a. At the same time, m'(D) = 1, and so Lemma II of [13] applies for 
m'\ 

lim inf (1/n) log L„(e', m') > f, 0 < e' < 1 . 

Now let e < 8. Since <5 < a, we have e < a so that for any e, 0 < s < 8, both ine­
qualities work and together yield the desired assertion in case i — 1. 
Case i = 2. Repeat the proof of case i = 1, Lemma 8 of [13] being replaced by 
a similar assertion for the quantity L„(e, m{, m{) and Lemma II of [13] being re­
placed by [9], Lemma 21.8. 
Case i = 3. The same using now lemmas 22.5 and 22.8 of [9], QED. 

Corollary 1. Let 1 - e (0 < e < l) be a continuity point of Q(., m, j ( i )) (i = 
= 1,2,3). Then g( l — e, m,j ( l )) equals the corresponding epsilon rate (cf. (26) 
and the relations following it). 
The p roo f follows immediately from Theorems 1 and 2. 

7. GROUP CODES AND CODING THEOREMS 

In the preceding sections we introduced different criteria by means of which we 



characterized the sets A <= £" exhausting the space of messages up to a prescribed 
error probability e: 

mc[/d] > 1 - e . 

Following the usual notions of group coding theory we shall call any set A with the 
above properties an n-dimensional s-code associated with the finite factor group £, 
of the group alphabet A. Then we can restate the results of Section 6 in the language 
of coding assertions: 

Theorem 3. Let m e MA, m e MA(FM). Let 1 — g be a continuity point of the 
quantile function Q(., m,j ( i )) (i - 1,2, 3). 

I. Let t' > Q(l — e, m, j ( 0 ) (i = 1,2, 3). Then for every finite factor group £ 
of the alphabet A there is a natural number n0 such that, for n > n0, there is an 
n-dimensional e-code A associated with £ such that 

(33) 

card (A) < exp (nf) (i = l) ; 

£ m?[x]/mc[x] < exp (nf) (i = 2) ; 
xeA 

m4[J] > exp (~nt') (i ~ 3), 

respectively. 

II. Let t" < Q(l - £, m,j ( i )) (i = 1, 2, 3). Then there are a finite factor group £0 

of the alphabet A and a natural number n0 such that, for any divisor £ of £0 and 
for any n >. n0 every n-dimensional s-code A associated with £ satisfies 

i
card (A) > exp (nr") (i ~ 1) ; 

_Z m^jmlx] > exp (nr") (i = 2) ; 

m?[zl] < exp (~nt") (i - 3) , 

respectively. 

The assertion I represents the direct part of the coding theorem while II represents 
its converse. The dependence on s in II is essential. Nevertheless, if m = fi 6 WA 

then we can easily deduce the next assertion that represents the strong converse of the 
coding theorem. 

Corollary 2. Let us suppose that the general assumptions of Theorem 3 are satisfied. 
If m = n e WA and if t" < Q(l, m,/ ( i )) (i = 1, 2, 3) then assertion II of Theorem 3 
is valid for any e, 0 < e < 1, if n is large enough. 

The p roo f follows from the fact that, given E, e Z0(A), the functions j ( i ) on R^ are 
constant mod fi% (since they are Sc-invariant and /^ is Sc-ergodic, respectively). 

It is intuitively clear that the limits of the epsilonrates as e I 0 should provide us 



with an asymptotic characterization of the n-dimensional e-codes uniformly in 
0 < e < 1. Formally, we have the following. 

Corollary 3. Let us suppose that the general assumptions of Theorem 3 are 
satisfied. If t' > 6(1, m, / ( i ) ) (in case when 6(1 > ™>fw) < co) then the assertion I 
of Theorem 3 is valid for any e, 0 < e < 1, provided n is sufficiently large. 
Indeed, if t' > 6(1 , m, / ( i ) ) then for all 0 < e < 1, t' > 6(1 - 8, m, / ( i ) ) so that 
Theorem 3,1 applies. 

One can easily see that if m is an indecomposable source then 

Vc(m) = 6(1 - £, m, / ( 1 ) ) = h(m), 

the entropy of the source m which, according to [8], can be expressed as the mean 

h(m)=í / ( 1 )(д)m0(dд). 
Jwл 

Since the above relations do not depend on e, we have 

(35) 6 ( l , m , / ( 1 ) ) = n(m). 

In order to make our investigations complete we have to specify that subclass of MA 

for which (35) is valid. As shown in [9], Theorem 18.2 this is the subclass consisting 
precisely of all so-called strongly stable sources. For the details as well as for non-
trivial examples of such sources the reader has to refer to [9], Section 18. 
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