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K Y B E R N E T I K A — VOLUME 16 (1980), N U M B E R 2 

A Note on Fuzzy Cardinals 

SlEGFRIED GOTTWALD 

We compare different notions of fuzzy cardinals and discuss which is the most appropriate one. 

In last years, a variety of papers on fuzzy sets and other fuzzy topics was concerned 
with set-algebraic operations for and properties of fuzzy sets. However, only few 
remarks are devoted to fuzzy cardinals. 

In classical set theory the cardinality of a set is a measure of its size or "power". 
In the fuzzy case one has to differentiate: there are measures of fuzziness and measures 
of power. 

Here measures of fuzziness are not our main concern. The interested reader may 
consult e.g. [1], [2], [5], [9]. 

Fuzzy cardinals as measures of power of fuzzy sets are considered e.g. in [2], [3], 
and [6]. To describe and compare these definitions needs some notation. 

A fuzzy set A over some universe of discourse X is a function A : X -> [0, 1]. 
Instead of A(x) for x e X we write also x e A for this membership value of x in A. 
The universe of discourse X shall be fixed throughout the paper. By ^(X) we denote 
the class of all fuzzy sets over X; for every A e ^(X), the support |A | of A is the 
classical set 

|A | = {xeX\(xzA) 4=0}. 

As a first, but very rough measure of power for fuzzy sets one can consider for 
each A e 

card0A =df |A | , 

with M for the classical cardinality of the classical set M. 
For fuzzy sets A with finite support |A | one has in the book [6] of A. Kaufmann 

as further cardinalities for fuzzy sets 



c a r d 1 A = d f £ A(x)m V ( X E i 4 ) , 
xe\A\ xe\A\ 

c a r d 2 A = d f X A2(x) = £ ( x S A ) 2 . 
« M I xeMl 

A. DeLuca and S. Termini [2] consider cardi A also for fuzzy sets A with de-
numerable support, in which case £ A(x) can be a divergent series in the sense of 

xe\A\ 

analysis; but in case of convergence it is absolutely convergent. 

To explain also the essential points of the definition of fuzzy cardinals in the authors 
paper [3], we introduce for every A e ^(X) and every 0 + / e [0, 1] the level sets 

A' = d f {x e X | (x s A) = /} , 

which themselves are classical sets. Furthermore, put W+ = (0, 1]. Obviously, every 
fuzzy set A can be characterized by the family (A')i6ir+ of its level sets. 

Now, [3] leads to the definition 

card^A = d f (A'),w+ , 

which is independent of the cardinality of |A |. Hence, card^A is a family of usual 
cardinals of usual sets. 

It is easy to see that, given card^ A, one can get any one of card^ A for k = 0, 1, 2. 

Put always at = A'. Then clearly 

card0 A = £ at 
ieW* 

with summation understood as usual addition of cardinals. In case of a finite support 
|A | there is a finite subset / = [iu ..., *„} S W+ such that: at ± 0 iff i el. Further
more, with the finite cardinals as the natural numbers, in this case each of at is 
a natural number. Hence now 

cardx A = £ i. a(, 
ie/ 

card2 A = £ i2 . at 
ieJ 

for Kaufmann's [6] notions of fuzzy cardinals. Because of at = 0 if i e W+ \l, we 
write by abuse of language 

card ; A = Y, iJ • «.-
ieW* 

for j = 1, 2. To do the same thing with denumerable supports as deLuca/Termini 
[2], we have to add oo as a "real", which can be done e.g. as sketched in [4] (giving 
oo already as an "integer"). Now, there exists a countable subset/ = [ilt i2, is, • •.} S 
S W+ such that at = 0 for / eW+\l, and [2] leads to 



card! A = £ i. a; 
iel 

(a,- always a natural number or oo). Again by abuse of language we can write: 

cardj A = £ i . a,-. 

In the same way it is possible to understand the entropy d(A) of a fuzzy set A 
(cf. [2]), and also other measures of fuzziness (cf. [5]). In general, the structure of 
such definitions is 

f(A) = 0(caTdw A), 

A any fuzzy set, O some operator. 
Hence, to choose card^ A as the fuzzy cardinality of a fuzzy set A e 3F[X) seems 

to be the most promising variant. The essential idea behind that definition is also 
independent of the choice of the set [0, 1] as set of generalized membership grades — 
it does work equally well also in the case of L-fuzzy sets (cf. e.g. [8]). Furthermore, 
almost the same idea applied to the set W = {0,1/2, 1} as set of membership grades 
was used by D. Klaua [7] to give a set-theoretical construction of interval numbers. 

As a further advantage, from the set-theoretical point of view adopted in [3], 
cardwA is the result of a fuzzification of the usual definition of cardinals in any one 
of the standard systems of set theory. 

(Received May 23, 1978.) 
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