
Kybernetika

Friedrich Liese
Estimates of Hellinger integrals of infinitely divisible distributions

Kybernetika, Vol. 23 (1987), No. 3, 227--238

Persistent URL: http://dml.cz/dmlcz/125609

Terms of use:
© Institute of Information Theory and Automation AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125609
http://project.dml.cz


K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 3 

ESTIMATES OF HELLINGER INTEGRALS 
OF INFINITELY DIVISIBLE DISTRIBUTIONS 

FRIEDRICH LIESE 

It is shown that the/-divergence is a lower semi-continuous functional on the space of prob
ability measures if this space equipped with a topology similar to the weak topology. This state
ment is used for estimating Hellinger integrals and the variational distance of infinitely divisible 
distributions. 

0. INTRODUCTION 

Hellinger integrals are useful tools of evaluation a distinction between two prob
ability distributions. They are applied to many problems both in information theory 
and statistics. Hellinger integrals are closely related to the variational distance [3]^ 
[11] and to error probabilities in the problem of testing statistical hypotheses [1], 

m 
Up to the sign Hellinger integrals are special /-divergences introduced by Csiszar 

[2]. /-divergences behave monotonously if the distribution laws are transformed 
by a stochastic kernel. This and the fact that the Hellinger integral of product measu
res is the product of the Hellinger integrals of product components give the possib
ility to estimate the Hellinger integral of the distributions of statistics connected 
with independent observations. 

A further common method to investigate observations is to study the limit be
havior of the corresponding distributions. Although j-divergences are continuous 
with respect to increasing sequences of sub-cr-algebras [12] they are, in general, 
not continuous with respect to the variational distance. On the other hand it is 
known [5] that the Kullback-Leibler /-divergence, being an j-divergence for j = 
= x In x, is lower semi-continuous with respect to the setwise convergence of the 
distributions on all sets. In the first part of this paper we introduce a concept of weak 
convergence of probability measures which includes as special cases both the setwise 
convergence and the common weak convergence on metric spaces. In Theorem I S 
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it will be shown that /-divergences are lower semi-continuous with respect to the 
weak topology introduced in this paper. In the second part Hellinger integrals of 
infinitely divisible distributions are considered. Theorem 1.8 gives the possibility to 
estimate Hellinger integrals of distributions which can be approximated by compound 
Poisson distributions in the sense of weak topology. These estimates are applied to 
infinitely divisible distributions on Hilbert spaces enabling to estimate variational 
distance of these distributions in terms of their characteristic triplets. Practical 
importance of such estimates in the statistics of stochastic processes, in particular 
in the non-stationary signal detection, is evident. 

1. /-DIVERGENCES AND WEAK CONVERGENCE 

Denote by U the real line. Le t / : (0, oo) i-* U be a continuous convex function. 
Then the limits Iim/(V) and lim/(«)/« exist and take on values in ( —oo, +oo]. 

«.0 „-oo 
We introduce a function f: [0, oo)2 i-»( —oo, +oo] by 

fv'и, v) = 

f is a convex function which is lower semi-continuous on [0, oo)2 and continuous 
on (0, oo)2. 

Let (X, 3£) be a measurable space. Denote by £^x, 2F-& and 3P-& the set of all cr-finite, 
finite and probability measures on (X, X), respectively. 

Given any real valued function h we set h+ = max (h, 0), h~ = —min(h, 0). 
Suppose fi,ve Sf^ and denote by y e y s any dominating measure. Put 

du Ay 
p = y q = T 

ay ay 
and set 

J / ( M = J"f(i>,<z)dy 
if the integral on the right hand side is well-defined, i.e. if at least one of the integrals 

j-[f(p,<?,rdy, J[f(p,g)]-dr 

is finite. \f(/i, v) is called the /-divergence of p and v. The definition of \f(n, v) is 
independent of the choice of the dominating measure y. The functional \f has been 
introduced by Csiszar in [2]. As / is a convex function there are constants a, b 
so that / (M) — au + b and consequently f(M, v) >, au + bv. This means that \f(fi, v) 
is defined for every (i,ve J^s. Taking special convex functions / one obtains a large 
number of information measures. 
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1.2. Example. Put for 0 < x < oo 

ЛM = 
• (x* - ax - (1 - a)), - oo < a < oo , a + 0, a =f= 1 

a(a - 1) 

lnx + x — 1 a = 0 

I x l n x — x + I a = l 

The family L is constructed in such a way that/, depends continuously on a. Further
more the convex functions /„ are non-negative. Hence J/„(/., v) is defined for every 
fi,ve Sfx. We set 

'-(/-» v) - J/I!t> v ) • 
For fi,ve0>x it holds 

•i(/A-o) = J(j»-n( Jp/«3)-p + 9)d? 

= J p l n (j?/t7)d-y 

i.e. Ij is the Kullback-Leibler /-divergence. 

1.2. Example. Consider the family ha(x), — o o < a < c o , a + 0, a #= 1 of convex 
functions defined by 

hx(x) = sign (a(a — l)) x*, 0 < x < GO . 

Ha(/i, v) = sign (a(a — 1)) }K(n, v) is called the Hellinger integral of order a. Put 

1 

Чv, v) -
In (Hj/j., v)) — oo < a < oo , a #= 0 , a =f= 1 

a(a - 1) 

\0(n, v) a = 0 

UiO*.v) a = 1 

where the conventions In 0 = — co, In oo = oo are used. The functional Ra has been 
introduced by Renyi in [9]. 

We need a simple convexity property of/-divergences. 

1.3. Lemma. Suppose fi{, v; e J 5 ^, a ; 2: 0, i= 1,2,..., Z a i = 1 a r*d assume 

f > ; p ; ( X ) < oo, £ a ; v ; ( Z ) < oo. 
i = l i = l 

Then oo oo 

J/( Z «./*.. £ a.vi) = Ia . - J/(/*.> vi) • 
i = l i = l i = l 

Proof. Let y e£^x be a measure which dominates /*,-, v;, i = 1, 2 , . . . . Put p; = 
= dp;/dy, qt = dv;/dy and choose constants a, b so that f(t) ^ at + b. Introduce / 
byf(t) = f(t) — at — b. Then f is a non-negative convex function. Hence 

J/( I *Vi, Z W) = /?( Z a,P,-3 Z «.<?.) dy ^ 
i = l i = l i = l i = l 

= f Z «i l\Ph id dy ^ Z ai J/ft. vi) 
/ = i i = i 
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where the last relation follows from the theorem of Fubini. To finish the proof 
we note that m m oo » 

J/( E a;^;> I a;v;) = J/( E «;/J;> E a;v;) + 
i = i i = i ; = i ; = i 

+ a £ a, MiW + & E «/ V/X) • • 
i = 1 i = 1 

In the sequel we also make use of the fact that the Hellinger integral of product 
measures is the product of Hellinger integrals of product components. 

1.4. Lemma. Suppose (Xt, X;), i = 1, ..., n, are measurable spaces and nt, vt e ^ , , 

Denote by TJ /t;, F] v, the product measures. Then 
i = l i = l 

( o H . ( ri IH, f i v,) = n H^, . , v.) « * o, <- * 1 
i = i ; = l i = l 

(2) l.(n*.flv.) =E'^i,v;) « = 0, «=1. 
i = l i = l i = l 

/-divergences have a large number of properties useful for applications in probability 
theory and statistics. They do not increase under a transformation of fi and v by 
a stochastic kernel [2]. Furthermore they are closely related to the variational distance 
[3]. This means that for strictly convex/the variational distance of the probability 
measure P and Q is small provided Jy(P, Q) — / ( l ) is small. The converse implication 
holds only if lim/(w) + lim/(u)/w < oo, see [11]. 

u\0 tl-oo 

Consequently, in general )f is not continuous with respect to the variational 
distance. But we will show that \f is lower semi-continuous even with respect to 
topologies weaker than that generated by the variational distance. 

Denote by R" the n-dimensional Euclidean space and by £" the a-algebra of Borel 
sets of W. C(R") denotes the space of all real valued bounded continuous functions 
on R". The weakest topology T[C(R„) ] for 0>Sn for which all mappings P i-> jV dP, 
<p e C(R"), are continuous is referred as to the weak topology for 0>&n. It is well-
known that t[C(R")] is metrizable by the Prokhorov metric Q and (0>&„, g) is a Polish 
space (cf. [9] Theorem 1.11). Given any measurable real valued functions <pu <p2,... 
. . . , cpn defined on (X, X) we introduce the mapping 

T,i.-,.....*.: * . . • - - * * . 
by 

( T - ^ , fcP)(B) = P({(<Pu...,<Pn)eB}), BeZ". 

Next we generalize the concept of weak converegence in such a way that different 
concepts of convergence as the weak convergence of measures on metric spaces, 
the setwise convergence and the weak convergence of finite dimensional distributions 
are included as special cases. 

230 



1.4. Definition. Let O be a set of real valued measurable functions on (X, X). 
The weak topology T [ 0 ] for 0X generated by O is the weakest topology for which 
the mappings 

T„...., ( /,„:^^(^,T[C(R")]) 

are continuous for every choice q>u ...,<pneQ>. T(<&) is said to be complete if the 
smallest cr-algebra <r(<D) for which all <pe<& are measurable coincides with X. 

Going back to the definition of T[C(R") ] we can also say that T [ 0 ] is the weakest 
topology for 0>% for which the mappings Pi-* \(p(<pu ..., <pn) dP are continuous 
for every (pt, ..., tpn g <D and every cp e C(R"). 

1.5. Example. Let X be a metric space and X the cr-algebra of Borel sets. Denote 
by C(X) the space of all real valued bounded continuous functions on X and put 
<D = C(X). Since the system 

{ i / / : i/> = (p(<pu ...,<pn), (pee®, <peC(U"), n = 1,2, . . . } 

coincides with C(X) we see that T [ C ( X ) ] is the common weak topology for ^ s . 
T[C(J£)] is complete as in a metric space X the cr-algebra of Borel sets is generated 
by functions from C(X). 

1.6. Example. Suppose T is any non-empty set. Denote by RT the set of all real 
valued functions on T. Let O = {<pt, t e T] be the family of all projections. Denote 
by fiT the cr-algebra generated by «I>, i.e. flT = cr(O). Obviously T[<D] is complete. 
It is clear that the convergence with respect to T [ 0 ] means the common-sense weak 
convergence of finite dimensional distributions. 

1.7. Example. Let (X, X) be a measurable space and X0 c X is a subalgebra of X. 
Denote by §(X0) the set of all functions <p of the form 

<P = YJ
cilAi, A-,eX0, c ; e R , 77 = 1,2,.. . 

; = i 

where \A denotes the indicator function of A. It is easy to see that T [ S ( £ 0 ) ] is the 
weakest topology for ^ $ for which every mapping P i-» P(A), A e X0, is continuous. 
T [ S ( X 0 ) ] is complete iff X0 generates £. 

It is known (cf. [5]) that the Kullback-Leiber/-divergence is lower semi-continuous 
with respect to T [ S ( £ ) ] . This property is employed in the theory of large deviations 
[5]. We will show that this property continuous to hold for every ]f and every weak 
topology which is complete. 

1.8. Theorem. Let / be a continuous convex function on (0, co) and T[<&] a weak 
topology for gP% which is complete. Then the /-divergence \s is a lower semi-conti
nuous function on (0>x x 0>t, T [ 0 ] X T[*I>]). 

Proof. Let A be a directed index set and (P ;, Q^), XeA be a net which tends 
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to (P, Q) in the sense of T[«D] x T [ 0 ] . This means 

(3) lim Px = P , l i m Q i - Q 
XEA XeA 

in the sense of T [ ® ] . Put R = £(P + Q) and 

3T0 = {A :Ae3* there exist ne{l,2,...}, Bef i" 

«j>.e<D, i - 1, 2 , . . . , n, A - T-*<„>.JB), R^;1 . , . , J d B ) = 0} 

where <5B denotes the boundary of B. It is clear that A s 3t0 implies Ac e 3"0. Assume 
A,, e 3*o, . = 1, 2, 

t . = T;,:. p, in.(B,), B , e £ " ' , ? , t E $ 

and put B = By x B2. Then 

K T ; , : , , . . . . ^ , , . , ^ , , ,2,„,(5B)) =g R(T-:,....,V2,„,(((aB1) x R»-) u (W> x (dB2))) g 

= R ( T - : , „ . . » ) + ^ - . . . . " . . .w jaB , , ) = o 

Hence At n A2 e 3*0. This means that 3"0 is a subalgebra of 3*. For every Q e .^8„ 
and a(€ R it holds 

(0S((-oo, ax) x ... x ( - c o , o,,)) g £ Q,<{a;}) 
; = i 

where Q ; is the ith marginal distribution of Q. Since there are at most countably 
many a-v such that the right hand term is non-zero we see <T({B: B e fi", Q(dB) = 0}) = 
= £". Puting Q = R o T~* ^ we obtain that the system of sets 

{B:Bef i " ,R(T; : . . . j JaB)) = 0} 

generates £". As it is assumed 3* = CJ(O), 3*0 generates 3". The weak convergence 
of probability measures on (R", £") implies the convergence of the values of the 
measures on every Borel set with boundary of limit measure zero. 

Consequently, by (3) and P ^ 2R, Q ^ 2R, 

lim PX(A) = P(A), lim QjL4) = Q(A) 
XEA XeA 

for every A e 3"0. Denote by 2? the set of all partitions of X into sets of 3*0. A simple 
modification of the approximation theorem for/-divergence (see Theorem 5 in [12]) 
shows that 

J /(P,Q) = supI f (P(A ) ,Q(A ) ) . 
A 

where A is taken from Z and sup is considered for all Z e 2S. f is a lower semi-conti
nuous function. Hence 

lim inf ]f(Pk, QA) = lim inf (sup £ f(PA(A), QA(A)) ^ 
Ae/l Aeyl ,4 

"2 sup (lim inf J ^ QA(A)) ^ sup VT(P(A), Q(A)) = J,(P, Q) 
As/1 A A 

which proves the lower semi-continuity of ) f . Q 
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2. INFINITELY DIVISIBLE DISTRIBUTIONS 

Suppose (X, + ) is a commutative semigroup with zero element 0. 

2.L Definition. Let X be a er-algebra of subsets of X. (X, X) is said to be a measur
able semigroup if the mapping 

f- (x, y) i-> x + y 
is X ® X — X measurable. 

Denote by B the Banach space of all real valued finite measures on (X, X) equipped 
with the total variation norm ][ ||. For every / i . v e B w e introduce the convolution 

/x*v = (fi x v)oX~1 

where /.i x v is the product measure. Denote by Sx the ^-distribution concentrated 
at x. Similarly as in 1.4, 1.5 in [6] one can show that (B, *, Q ||) is a real Banach 
algebra with the unit element <50. 

Denote by /»"* the convolution powers for n = 1,2,. . . and put fi° = <50. 

2.2. Definition. Let (X, X) be a measurable semigroup. P e 0>s is called infinitely 
divisible if for every n = 1,2,... there exists P„ e 0»t such that P = P£*. 

It is easy to see that for every \i e #" s £ B the series £ /U**/fc! converges in the 
norm of B, i.e. in variational distance. Put * = 0 

«, ** 
U„ = e-*(X) Y - - - . 

*=o lc! 
Then UM e &>%. As in the case of complex valued power series one obtains the func
tional equation 

U„ * Uv = U„+v. 

Hence V'„ = (U„/„)"* which shows that U„ is infinitely divisible. 
We now deal with Hellinger integrals or with other R^-related functional of the 

distribution laws approximable by distributions of the type UM. 

2.3. Theorem. Let (X, X) be a measurable semigroup and T[<&] a complete weak 
topology for ^ 2 . For P, Q e &>x it is assumed that there are ft, v e ^ j , a net xx eX 
and a net AxeX such that (J.(AX) < oo, v(A;) < oo and 

P = lim Sxx * UM.nA;, • Q = lim Sx> * Uv(.n/0) 
XeA ;.s/l 

in the sense of ~[<D]. Then it holds 

R0!(P, Q) < \a(ji, v) for every - oo < a < oo . 

2.4. Corollary. Under the assumptions of Theorem 2.3 

| | P - Q | ^ V [ 4 ( l - e x p { - i . l ] / 2 ( A ( , v ) } ) ] . 

Proof. Put nx = fi(- n Ax), vx = v(- n A;). For every xeX the mapping i/V: 
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i 

v K-* y + x is X-measurable and for every Q S # " S it holds Q ? ij/'1 = Sx* Q. Since 
j-divergences do not increase under measurable mappings [2] we get 

(4) J/./A, * tfju- --* * ^v,) = J * i ^ . ^v,) • 

We consider at first the case 0 < a < 1. Then by Ha = — jhx and (4) 

(5) HJK * U„, 5X> * UVJ = H/U^, UVJ 
In view of Lemma 1.3 

Ha(U,„, UVJ = t e~x - H > ' ~"'m !4*>e' ~VA(J° V D • 
k = o k\ 

It holds HJcn, dv) = c*dl ~" Hjn, v) , c, d > 0. This means 
(6) Ha(U/u, UVJ Sjexp{- m(X) - (1 - a) v,(X)} £ i H«^f, v f ) 

fc=o fc! 
As Ha = — J/m 0 < a < 1, the functional Ha increases under the measurable mapping 
( x j , . . . , x„) i—• Xj + ... + x,„ Xj e X. Hence . 

Hj/4*, Vf) = H / f t . X ... X /( ; , V;, X ... X V,) 

and, by Lemma 1.4, 

H//,f, vf) = (H//(, v))* . 

Inserting the term on the right-hand side into (6) we arrive at 

(7) HjU^, UJ = exp {-«// , (*) - (1 - a) vjx) + Hjfix, v„)} = 

^ exp{<a - 1) \Jpk, vA)} . 
j a ^ 0 implies 

Ufa* v,) = J/JM- n A,), v(- n /I,)) = J,//*, v) = l//t, v). 

The inequalities (5) and (7) yield 

lim inf RJA* * U^, <5VA * UVJ = lim inf -~-^ -In H/<5^ * U^, 8XA * UVJ ^ \J/x, v). 
z.sA ' ' isA Ot?Ct — 1) 

Ra is lower semi-continuous in accordance with Theorem 1.8. As dxx * Uw and 
dXj * UVA tend to P and Q, respectively, in the sense of the complete weak topology 
T[<E>] Theorem 2.3 is proved for 0 < a < 1. The case a$ (0 , 1) may be treated 
analogously. G 

The corollary follows from H1/2(/i, v) = exp {-£R]/2(/*, v)}, Theorem 2.3, and 
the inequality 

(8) | | P - Q | | = V [ 4 ( 1 - H ? / 2 ( P , Q ) ] 

established in [11] 

We apply Theorem 2.3 to infinitely divisible distributions on separable Hilbert 
spaces. 

Let X be a real separable Hilbert space with the scalar product (•, •). Denote by 3£ 
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the ff-algebra of Borel sets. Then (X, 3£) is obviously a measurable semigroup 
in the sense of Definition 2.L Put O = X, i.e. <6 is the family of mappings y i—•(y, x), 
x eX. As X is separable one easily concludes that X = a(X). Hence the weak topology 
x[X~\ for 0>t is complete. Convergence in the sense of x[X~\ means the weak con
vergence of all finite-dimensional distributions. 

Put 
S = {xeX: |*|| < 1} . 

The characteristic functional of P e SP-^ is defined by 

tpp(x) = J exp {i(x, y)} P(dy) , xeX . 

If P is infinitely divisible then (pP admits a Levy-Khintchin representation [4]. This 
means that there exist an element a e X, a nuclear operator A and a tr-finite measure /x 
with 

(9) J (||xf ls(x) + 1XNS(*)) Kd*) < oo , n({0}) = 0 

such that 

<pp(x) = exp {i(a, x) - \(Ax, x) + J (exp {i(x, y)} - 1 - i(x, y) ls(y)) p.(dy)} . 

/i is called the canonical measure and (a, A, fi) the characteristic triplet. If the canoni
cal measure fi is the zero measure then the corresponding infinitely distribution is 
a Gaussian distribution with expectation a and covariance operator A. This distribu
tion is also denoted by N(a, A). 

In order to prove the next theorem we need a technical lemma. 

2.5. Lemma. Suppose t h a t f t y e ^ j fulfil condition (9). If l1/2(/U, v) < oo then 

(10) J ls<*) ||*1 \p(x) - q(x)\ gdx) < co 

where g = /x + v, p = dp/dg, q = dvjdg. 

$ls(x)\\x\\\p(x)-q(x)\e(dx) = 

= j is(x) 1*11 V(p(*)) - M*))\ \ VW*)) + M*))\ s(dx) 
and by the Schwarz inequality 

< (!U(p(*)) - VW*))2 e(^))112 ( j i s(*) ||*||2 W(p(x)) + j(q(x)y Q(dx)y~ 

Using the relation J(>/(p(x)) — yj(q(x)))2 g(dx) = \ l1/2(/U, v) and the simple ine

quality (y/(u) + N/(u))2 = 2(M + u)> "> u = ° w e § e t 

J is(*) |*|j P(x) - d(*)| e(d*) < ( i i1/2(„, v))"2 (2 Ji s(*) | |xp e (dx)y 1 2 . 

In view of l1/2(/U, v) < oo and (9), for both p and v, the stated inequality holds. Q 

If the conditions of Lemma 2.5 are satisfied then there exists an element a^^eX 
such that 

(11) (*, O = J l5(-) (x, *) (;>(*) - 3(z) e(dz) 

for every x e X. Put a ^ = 0 if l1/2(p, v) = oo. 
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2.6. Theorem. Let P, Q be infinitely divisible distribution laws on the Borel sets 
of the separable Hilbert space X. If (a, A, n) and (b, B, v) are the characteristic 
triplets of P and Q respectively then 

K(P, Q) < R8(N(a, A), H(b + a„;V„ B)) + \a(^i, v). 

2.7. Corollary. Under the assumptions of Theorem 2.6 the inequality 

1P - Q|| < [4(1 - exp {-i(R1/2(N(a, A), N(6 + «„v , B)) + \1/2fa, v))})]"2 

holds. 

Proof. It is easy to see that for every — oo < a < oo there exists a constant 
ca such that 

fi/2(u) ^ cafa(u) for every w e R . 

Consequently, if l1/2(p, v) = oo then IJji, v) = oo for every - o o < a < co and the 
stated inequality is trivially fulfilled. Assume now I1/2(,M, v) < oo and put C„ = 
= [n"1 ^ | |x |} . Condition (9) implies JlS n C n(x) | x | /.(dx) < oo. Consequently 
there exists a„eX with 

(x, a.) = - J lSoC„(z) (x, z) n(dz). 

Let Q e J^j be given. The characteristic functional of UQ is 

(12) <pvJx) = exp { J(exp {i(x, y)} - 1) Q(dy)} . 

Denote by \j/„ and x„ the characteristic functionals of 5an * U^(.nCn) and 5„n * Uv(,nCi). 
Then, by (12), 

«A„(x) = exp {JCn(exp {i(x, y)} - 1 - i(x, y) ls(y)) n(dy)} 

X„(x) = exp { - JCn i(x, y) ls(y) (ji - v) (dv) + JCn(exp {i(x, y)} -

- 1 - i(x, y) ls(y)) v(dy)} ., 

Let P' and Q' be infinitely divisible distributions on (X, X) with the characteristic 
triplets (0,0, fi) and (-a„ , v , 0, v), respectively. Inequality (10) and property (9) 
which holds for both JX and v yield 

lim \}/„(x) = cpp.(x) , lim ^„(x) = <pQ/x) 

for every xeX. Consequently 5an * U,l(.ncn)
 a n d <̂ „ * *f(.nc„) converge to P' and Q' 

in the sense of the topology r[X]. 
Using Theorem 2.3 we get 

(13) Ra(P',Q')<\a(n,v). 

/-divergences do not increase under measurable mappings. The definition of R, 
shows that this property remains true for Ra. Hence 

K(Pi * p
2 , Qi * Q2) = *«(pi x P2J Q. x Q2) 

and, by Lemma 1.4, 

(14) K(P, * P2, Q. * Q2) < Ra(P1; Q.) + R fP2, Q 2 ) . 
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Put P. = N( f l, A), P2 = P', Q. = H(b + «„,„, B), Q 2 = Q'. Then P. * P2 = P, Q, * 

* Q 2 = Q and our statement follows from the inequalities (13) and (14). • 

Corollary 2.7 follows from Theorem 2.6 and inequality (8). The calculation of the 

first term on the right-hand side of the inequality in Theorem 2.6 requires to answer 

the question under which contitions N(a, A) and N(6 + a,,,,, B) are mutually 

singular or equivalent. We refer to [4] for details. For normal distributions on the 

real line, however, the values of Ra can be easily calculated. 

Put for y, z ^ 0, x e U, 

1 x = 0 , max (y, z) = 0 

0 x 4= 0 , max (y, z) = 0 
ФÁ.X, V, Z) = 

exp J - a(l — a) i , max (y, z) > 0 
l «- + ( ! - « ) У) [az + (1 - a) y 

Denote by N(a, a2) a normal distribution on the Borel sets of the real line with 

expectation a and variance a2 >, 0, where N(a, 0) = 5a. In order to avoid a complicat

ed formulation we restrict ourselves to the case 0 < a < 1. An easy calculation 

of the corresponding integrals shows 

(15) H^(N(a1, a\), N(a 2, a2)) = ^ a . - a2, a\, a2) . 

Corollary 2.7 and related (15) yield 

2.8. Proposition. Suppose P., P2 are infinitely divisible distribution laws on (U, 2) 

with the characteristic triplets (ah a], /»,-), i = 1, 2. Then for 0 < a < 1 

(16) R.(P., P2) S ^ — ) l n ^ ( f l l ~ a i ~ " " " « ' **' ^ + l(ji1' ^ 

and 

IP, - P2|i ^ [4(1 - ^ / 2 ( a , - a 2 a , 1 „ 2 , ( T ? , ^ ) e x p { - i l 1 / 2 ( p 1 , / . 2 ) } ] 1 / 2 . 

2.9. Example. Denote by %k the Poisson distribution on {0, 1, ...} with parameter 

X > 0. Suppose P, = nXl, i -= 1, 2, A,- > 0. Then an easy calculation leads to 

H«(P., P2) = exp {-(od, - (1 - a) X2 - ^ " « ) } . 

Hence 

W , P2) = — ^ T K + (1 - a) A2 - X\X\~') = /. f^A X2 . a(l - a) \X2J 

Otherwise P; is infinitely divisible and the characteristic triplet is (0, 0, Xfi). Con

sequently, 

l/^J-aW.QiUa. 

This means equality in inequality (16). Furthermore, it is clear that the equality 

in (16) holds for normal distributions as well. 

2.10. Example. We will illustrate by an example that the estimate (16) may be very 
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rough if the distributions P; are too far from normal and Poisson distributions. 

Let P; be an infinitely divisible distribution on (U, fi) which has the characteristic 

triplet (0, 0, /.() where 

ft(-»)--.f^to)H"C1+")d-. 0 < a i < 2 . 
By definition, P; is symmetric and stable. It is known that ?t is absolutely continuous 

with respect to the Lebesgue measure and the density is symmetric, increasing for 

x < 0 and decreasing for x > 0. Hence the measures Pt and P2 are not mutually 

singular and 

(18) Ra(P1, P2) < oo for 0 < a < 1 . 

On the other hand 

1-O.i.J*-) - L -7~—Mu\~il+'l) + (J " « ) » " ( 1 + a 2 ) -JKMo} a(l - a) 

_ |u|«(i+«,) + ( i-*)(i+«*))d u_ a, 

for a. 4= a2. This means that the right hand side of (16) is infinite while the left hand 

Side in View of (18) is finite. (Received September 18, 1985.) 
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